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Drug resistance constitutes a major challenge in designing melanoma therapies. 
Microenvironment-driven tumor heterogeneity and plasticity play a key role in this 
phenomenon. Melanoma is highly heterogeneous with diverse genomic alterations and 
expression of different biological markers. In addition, melanoma cells are highly plastic 
and capable of adapting quickly to changing microenvironmental conditions. These 
contribute to variations in therapy response and durability between individual melanoma 
patients. In response to changing microenvironmental conditions, like hypoxia and nutri-
ent starvation, proliferative melanoma cells can switch to an invasive slow-cycling state. 
Cells in this state are more aggressive and metastatic, and show increased intrinsic 
drug resistance. During continuous treatment, slow-cycling cells are enriched within the 
tumor and give rise to a new proliferative subpopulation with increased drug resistance, 
by exerting their stem cell-like behavior and phenotypic plasticity. In melanoma, the 
proliferative and invasive states are defined by high and low microphthalmia-associated 
transcription factor (MITF) expression, respectively. It has been observed that in MITFhigh 
melanomas, inhibition of MITF increases the efficacy of targeted therapies and delays 
the acquisition of drug resistance. Contrarily, MITF is downregulated in melanomas 
with acquired drug resistance. According to the phenotype switching theory, the gene 
expression profile of the MITFlow state is predominantly regulated by WNT5A, AXL, 
and NF-κB signaling. Thus, different combinations of therapies should be effective in 
treating different phases of melanoma, such as the combination of targeted therapies 
with inhibitors of MITF expression during the initial treatment phase, but with inhibitors 
of WNT5A/AXL/NF-κB signaling during relapse.

Keywords: melanoma, tumor heterogeneity, clonality, cancer drug resistance, tumor microenvironment, 
microphthalmia-associated transcription factor, tumor plasticity, slow-cycling tumor cells

inTRODUCTiOn

The development of targeted therapies for metastatic melanoma using small molecule MAPK 
pathway inhibitors (MAPKi) or immune checkpoint antagonists (ICi) has revolutionized derma­
tological oncology. However, first­generation MAPKi only works in approximately 35–50% of cases 
as a BRAFV600 mutation must be present (1, 2). ICi show response rates of up to 60%, depending on 
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drug or combination, and many of these are durable effects (3).  
Yet, drug resistance constitutes a major challenge for effective 
cancer treatment with melanoma being no exception. Rapid 
resistance to MAPKi is common and has also been reported for 
ICi (4–9). Although the molecular mechanisms leading to inher­
ent and acquired drug resistance have been discussed extensively 
in the literature, the dynamics leading to resistance are poorly 
understood but yet critical to designing better treatments. 
Besides genetic and epigenetic factors, other contributors to drug 
resistance are microenvironment­driven tumor heterogeneity 
and plasticity (10–16).

MeCHAniSMS OF inTRinSiC AnD 
ACQUiReD DRUG ReSiSTAnCe in 
MeLAnOMA

Intrinsic refers to a pre­existent drug resistance of the entire 
population or a subpopulation of cancer cells before exposure to 
the drug. For example, intrinsically resistant cancer cells do not 
harbor the targeted mutation or are not dependent on the path­
way inhibited by the drug. In the case of acquired drug resistance, 
the tumor responds initially to the treatment but relapses and 
progresses later. However, it is difficult to distinguish between 
intrinsic and acquired resistance as a small subpopulation of 
intrinsically resistant cancer cells subsequently enriched, may 
also explain initial response and later relapse (17–20). Causative 
factors that contribute to MAPKi resistance can be broadly classi­
fied into three categories: mutational events, non­mutational 
events, and changes in the surrounding microenvironment (21). 
Mutational and non­mutational events that contribute to the 
development of drug resistance have been discussed previously 
(21, 22) and are not the focus of this review. In brief, the mecha­
nisms linked with these events predominantly lead to MAPK 
pathway reactivation and/or activation of parallel signaling 
pathways (e.g., PI3K/AKT/mTOR) (21, 23). Besides mutational 
and non­mutational events which are intrinsic to tumor cells, the 
tumor microenvironment contributes to the development of drug 
resistance by influencing the crosstalk between distinct cellular 
compartments. Solid tumors are comprised of tumor cells and 
stromal cells (e.g., fibroblasts, endothelial cells, and lymphocytes) 
that form an organ­like structure which is embedded within the 
extracellular matrix (ECM) and nourished by a vascular network. 
Each of these components show varying distribution within the 
tumor resulting in a highly complex and heterogeneous tumor 
microenvironment (24). In melanoma, secretion of tumor necro­
sis factor­α (25, 26), hepatocyte growth factor (HGF) (27), Wnt 
antagonist, sFRP2 (28), and increased production of ECM (29) by 
stromal cells in the tumor can cause resistance to MAPKi. Thus, 
the density of stromal cells in different parts of the tumor plays 
a key role in determining response and resistance to MAPKi. 
In addition, the distribution of the vasculature plays a crucial 
role in the acquisition of varying drug resistance mechanisms 
in different parts of the tumor, due to differences in the levels of 
nutrients and oxygen. Hypoxia can induce resistance to MAPKi 
by mediating upregulation of HGF/MET signaling (30), increas­
ing SNAIL, and decreasing E­cadherin expression (31).

TUMOR HeTeROGeneiTY AnD 
PLASTiCiTY

Tumor heterogeneity refers to the presence of subpopulations 
of cells that differ phenotypically and/or by biological behavior, 
either within a tumor (intra­tumoral) or between tumors of the 
same histopathological subtype within a patient (inter­tumoral) 
or between patients (inter­patient) (32). Melanoma heterogeneity 
plays a key role in the response to MAPKi (5, 20). At the mole­
cular level, the features of different subpopulations are conferred 
by alterations of the genome, transcriptome, epigenome, and 
proteome (33, 34). Melanoma is one of the most heterogeneous 
cancers (35), harboring diverse genomic alterations, including 
gain of function mutations (e.g., NRAS, BRAF, KIT, CDK4, 
and MITF), loss of function mutations (e.g., CDKN2A, PTEN, 
ARID2, and NF), and epigenetic changes (e.g., PTEN, CDKN2A, 
RAC1, and P53) (36). In addition, various biological markers 
of melanoma (e.g., CD20, CD133, ABCB5, CD271, JARID1B, 
and ALDH1) show differential expression patterns in different 
regions within a tumor (36).

There are three tumor heterogeneity models (37). The well­
accepted clonal evolution model (38) refers to acquired additional 
genetic mutations in cancer cells that contribute to their altered 
phenotype and malignant potential. This results in a Darwinian­
style selection of clones during disease progression (38). The stem 
cell model suggests that only a small fraction of tumor cells have 
the potential for maintaining the tumor and drive progression 
(39). These cancer stem cells have self­renewal capability and 
can be differentiated into “non­stem cancer cells” that lose their 
tumorigenic potential by acquiring stable epigenetic changes 
and occupy the largest fraction of the tumor (37, 39, 40). These 
two models are complementary to each other, rather than mutu­
ally exclusive (41). Their common feature is the unidirectional, 
irreversible nature of the molecular changes that lead to tumor 
hetero geneity (37). An alternative model is “phenotypic plasticity” 
or “phenotype switching.” This model suggests that tumor cells 
with different phenotypic and functional behavior can dynami­
cally shift between different transcriptional programs (42–44). 
The different phenotypic states, described in terms of differential 
gene expression patterns, have been termed “proliferative” and 
“invasive” signatures (45). In this model, molecular changes 
resulting in tumor heterogeneity are reversible, unlike the clonal 
evolution and stem cell models. These changes are predominantly 
regulated by cues from the surrounding microenviron ment, 
e.g., hypoxia, stroma­derived factors like HGF, TGF­β. For  
example, in response to hypoxia, proliferative melanoma cells can 
switch to the invasive phenotype by altering their gene expression 
profile (10, 46).

MiCROenviROnMenT-DRiven DYnAMiC 
HeTeROGeneiTY in MeLAnOMA

“Tumor microenvironment” is a broad term, which includes 
(1) the tumor stroma composed of fibroblasts, endothelial cells, 
immune cells, soluble molecules, and the ECM, (2) the epider­
mal microenvironment where the tumor had originated from, 

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org/
https://www.frontiersin.org/oncology/archive


FiGURe 1 | Schematic representation of microenvironment-driven dynamic 
heterogeneity and phenotypic plasticity as a mechanism of melanoma 
therapy resistance. Tumor cells close to the blood vessels proliferate, while 
those away from blood vessels experience hypoxia and nutrient starvation 
that contribute to their slow-cycling phenotype. While treatment readily 
targets proliferating cells, slow-cycling cells can evade drug action and 
survive. Upon continuous treatment, this slow-cycling subpopulation is 
enriched within the tumor by clonal expansion. Due to their inherent cancer 
stem cell-like property, they are capable of self-renewal or differentiation into 
a proliferative tumor cells with increased drug resistance. In addition to this, 
the slow-cycling cells can switch their phenotype to fast proliferating cells 
upon exposure to oxygen and nutrients after replacing the original peripheral 
fast proliferating cells that had been killed by the therapy. These phenotype-
switched cells might be more drug resistant too, as they might have  
acquired resistance during their slow-cycling phase.

3

Ahmed and Haass Microenvironment-Driven Melanoma Drug Resistance

Frontiers in Oncology | www.frontiersin.org May 2018 | Volume 8 | Article 173

and (3) different subcompartments within the tumor itself (47). 
Interactions between tumor cells and the microenvironment 
contribute to the malignant behavior of tumor cells, e.g., progres­
sion, metastasis, angiogenesis, migration, and invasion (48, 49).  
In addition, microenvironmental stress signals in response to 
nutrient starvation and inflammation drive phenotypic plasti­
city and invasion and determine therapeutic outcome (16, 50). 
Similarly, a pre­existing immune­active tumor microenviron­
ment is necessary for a favorable response to ipilimumab, and 
potentially other ICi (51–53).

We have developed a 3D melanoma spheroid model, which 
recapitulates the in vivo tumor microenvironment and architecture 
(54, 55), that combined with the fluorescent ubiquitination­based 
cell cycle indicator (56) is a useful tool to study the microenvi­
ronment in  vitro (57, 58). This model is being complemented 
constantly, e.g., by including DRAQ7 as a real­time cell death 
marker (59) or by applying mathematical algorithms to predict 
spatial and temporal patterns of cell density and cell cycle  
(60, 61). Due to an oxygen and nutrient gradient, melanoma sphe­
roids segregate into a continuously proliferating subpopulation 
in the periphery and a G1­arrested subpopulation in the center 
(12). A similar phenomenon is observed in human melanoma 
xenografts in mice, where clusters of cycling cells are located near 
blood vessels and quiescent cells in central tumor zones (12). 
After isolating these two subpopulations from spheroids and 
plating them in 2D culture separately, within 24 h G1­arrested 
central cells recommence their cell cycle and become indistin­
guishable from the proliferating peripheral subpopulation (12). 
This supports the phenotypic plasticity model (10, 23). The cell 
cycle phase can also contribute to drug sensitivity (13, 62, 63)  
and can be targeted for cell cycle­tailored melanoma therapy (64). 
For example, bortezomib preferentially kills melanoma cells in 
the S/G2/M phase of the cell cycle (15). By contrast, cell cycle 
arrest can confer tolerance to drugs (14, 64, 65).

THe ROLe OF A SLOw-CYCLinG 
SUBPOPULATiOn in MeLAnOMA 
THeRAPY ReSiSTAnCe

Although dysregulated proliferation is a hallmark of cancer (66, 67),  
a quiescent or slow­cycling cell subpopulation is reported in 
many solid cancers, including melanoma. This slow­cycling 
subpopulation is a major determinant of treatment resistance 
to targeted therapies (68–70). Increased level of oxidative phos­
phorylation in slow cycling compared to normal cells (69, 71) 
contributes to drug resistance in many cancers including mela­
noma (72–74). MAPKi are predominantly effective in targeting 
rapidly proliferating cells, while the slow­cycling cells are not 
readily responsive to MAPKi (69, 75, 76). Thus, cells in the slow­
cycling state or cells that switch to this state due to therapeutic 
stress, can evade the action of MAPKi.

Various mechanisms are utilized by this slow­cycling sub­
population to contribute to drug resistance. First, clonal expan­
sion of the residual slow­cycling cells, that have survived initial 
treatment, results in their enrichment within the tumor. A recent 
study suggested that these slow­cycling cells are highly aggressive 

with increased metastatic potential (77). Second, the slow­cycling 
subpopulation also displays increased cancer stem cell­like 
behavior (78). Consistent with the stem cell theory, in melanoma, 
these slow­cycling cells comprise only 0.5–5% of all tumor cells 
with self­renewal potential and are defined by the expression of 
the H3K4 demethylase JARID1B (23). In addition, JARID1B­
positive cells are essential for maintaining tumor growth (23). 
During continuous treatment, slow­cycling cells can gain the 
potential to differentiate into other cell types with an increased 
proliferation rate and drug resistance, subsequently resulting in 
relapse. The cells experience a high level of “therapeutic stress,” 
forcing them to employ several drug resistance mechanisms. 
Thus, overtime highly resistant drug tolerant cells are enriched 
within the tumor and contribute to the highly aggressive and 
drug resistant nature of metastatic melanoma after relapse. 
JARID1B­positive cells can give rise to JARID1B­negative cells 
and also vice versa (23). This supports the phenotype switching 
theory which indicates the plastic nature of tumor cells that is 
predominantly influenced by changing microenvironmental 
conditions (Figure 1). In addition to JARID1B, PGC1α defines 
another distinct slow­cycling state in melanoma with increased 
treatment resistance (71, 73).
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FiGURe 2 | Proposed role of microphthalmia-associated transcription factor 
(MITF) and WNT5A/AXL/NF-κB signaling in melanoma therapy. MITFhigh 
melanomas could be treated initially with a combination of an MAPK pathway 
inhibitors (MAPKi) and an inhibitor of MITF expression. This should increase 
the efficacy of the MAPKi and delay the acquisition of drug resistance (104). 
Once in the resistance state with low MITF levels, the therapy could comprise 
a combination of a MAPKi and an inhibitor of WNT5A/AXL/NF-κB signaling.
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Taken together, slow­cycling cells play a pivotal role in deve­
loping therapy resistance and cancer progression. Thus, it is 
cru cial to understand the underlying biology of the slow­cycling 
phenotype to improve the current therapy regimens in melanoma.

THe ROLe OF MiCROPHTHALMiA-
ASSOCiATeD TRAnSCRiPTiOn FACTOR 
(MiTF) in MeLAnOMA PLASTiCiTY AnD 
THeRAPY ReSiSTAnCe

Microphthalmia­associated transcription factor is the master 
regulator of both normal melanocyte and melanoma biology 
(79, 80). In melanoma, MITF acts as a molecular switch that 
determines whether the cell will differentiate, proliferate, or 
become quiescent with increased migratory behavior (44, 81–84).  
The proliferative and invasive phenotypes of melanoma cells 
are defined by high and low levels of MITF, respectively, 
and melanoma cells are capable of switching between these  
two states, influenced by changing microenvironmental con­
ditions (10, 45).

Depletion of MITF can reduce proliferation through G1­arrest 
(42, 68, 81, 85) with increased expression of cancer stem cell 
markers (68, 86). In response to hypoxia, MITF expression is 
downregulated (87). These properties are attributes of slow­
cycling JARID1B­positive melanoma cells (20), supported by a 
negative correlation of MITF and JARID1B/SerpinE2 (77). Thus, 
in response to stress, e.g., hypoxia and/or nutrient starvation, 
melanoma cells switch from a proliferative MITFhigh to an invasive 
MITFlow slow­cycling phenotype. However, these subpopula­
tions are not mutually exclusive, as within a tumor there can be 
MITFhigh and MITFlow cells, reflecting tumor heterogeneity as 
discussed above. In contrast to the proliferative MITFhigh pheno­
type, the invasive MITFlow phenotype is mainly governed by 
receptor tyrosine kinases (e.g., AXL, EGFR, and ERB3), WNT5A 
or NF­κB signaling, and the BRN2–NFIB–EZH2 axis (46, 88–90). 
Single cell expression analysis revealed that some MITFhigh cells 
also express the gene signature of the invasive MITFlow pheno­
type (91, 92). These and other studies indicate the presence of 
a third subpopulation in melanoma that expresses MITF, AXL, 
and WNT5A simultaneously (88, 93, 94). Consistent with this, 
we showed by using a 3D melanoma spheroid model that indeed 
melanoma cells can proliferate and invade simultaneously (12). 
In addition, another study has shown that invasive MITFlow and 
poorly invasive MITFhigh cells cooperate to invade into the sur­
rounding matrix (95).

The role of MITF in drug resistance is controversial and the 
underlying mechanisms are yet to be understood. For instance, 
the presence of MITF is a marker for responsiveness to MAPKi 
treatment, but when MITF expression is upregulated, it can 
confer resistance to MAPKi (96). This might reflect the extreme 
end of the MITF rheostat model defined by differentiation, slow 
cycling (42), high PGC1α expression, and therapy resistance (20). 
Augmenting MITF levels in melanoma cells should switch the 
invasive slow­cycling phenotype to a proliferative phenotype. This 
would increase drug sensitivity because MAPKi predominantly 
act on rapidly proliferating cells. In addition, over­expression of 

MITF will inhibit the switching of proliferative cells to the inva­
sive slow­cycling phenotype in response to stress by maintaining 
MITF levels constant. However, MITF is also reported as a driver 
of melanoma progression (97–99) and long­term MITF depletion 
induces senescence in melanoma cells and/or promotes apoptosis 
(81, 100, 101). Melanoma cells upregulate MITF expression to 
recover the loss of MAPK signaling upon exposure to MAPKi, 
enabling the cells to tolerate MAPKi (102). Downregulation of 
MITF increases the cytotoxic effects of MAPKi on melanoma cells 
and also reduces the acquisition of drug resistance (101, 103, 104).  
Upregulation of MITF has also been seen in several MAPKi 
acquired resistant cell lines (89). However, the same study reports 
that another population of resistant cell lines has lost MITF 
expression. MITF is downregulated in the acquired drug resist­
ant phase and makes the cells more invasive (89). Thus, further 
investigation of these signaling pathways is required to determine 
in which combination these signaling pathways can be targeted 
along with the inhibition of MAPK signaling, to improve the 
outcomes of melanoma patients with disease relapse.

However, the situation appears to be even more complex, as 
in heterogeneous tumors MITFhigh and AXLhigh populations can 
co­exist (33, 102). Nevertheless, it has been shown that these 
subpopulations benefit from endothelin­1 in the presence of 
MAPKi, as inhibiting endothelin­1 signaling can effectively 
inhibit the growth of such heterogeneous tumors (105). More 
comprehensive studies are required to determine how MITF 
expression levels are altered in relation to the tumor’s response 
to MAPKi during ongoing treatment. Combination of MITF 
inhibitors with MAPKi should improve the efficacy of MAPKi in  
treating phases with high MITF expression. On the contrary, 
inhibitors of WNT5A/AXL/NF­κB in combination with MAPKi 
should improve the efficacy of MAPKi in treating phases with 
low MITF expression (Figure  2). Indeed, targeting AXL and 
BRAF/MEK simultaneously in a patient­derived xenograft model 
confers an increased survival advantage to the mice compared 
to monotherapy with either AXL or combination therapy with 
BRAF/MEK inhibitors (106).
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at various phases of melanomagenesis, MITF levels can be con­
sidered as a predictive marker for a suitable therapy regimen 
for treating a particular melanoma phase. We have developed 
an in vitro 3D melanoma spheroid model that mimics dynamic 
tumor heterogeneity to study the biology of microenvironment­
driven tumor heterogeneity and plasticity and as these dynamic 
changes are difficult, time­consuming, and expensive to study 
in vivo.
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