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INTRODUCTION

All natural Leishmania infections start when Leishmania 
promastigotes are injected into the skin dermis of  

humans and other warm-blooded animals. To survive, the 
parasite must resist exposure to host serum component 
and destruction by innate immune cells present in or 
rapidly recruited to the skin. The skin is a complex 
immunological organ in which multiple innate immune 
cells [Table 1] function to protect the host from infectious 
pathogens. Normal skin of  adult humans also contains a 
substantial number of  T cells, nearly twice that present in 
the circulation,[1] which may play an important role in the 
local response.

The interaction with the complement system depends on 
the developmental stage and the species of  the parasite. In 
short, exponentially multiplying log-phase promastigotes 
are sensitive to complement mediated lysis and perform 
poorly in experimental infections while metacyclic 
promastigotes and amastigotes are more resistant and 
more infective.[2,3] However, no parasite is completely 
resistant to physiological plasma complement levels.[4] 
Prompt infection of  susceptible host cell may be essential 
for survival. While surface deposition of  complement 

can cause destruction, Leishmania can use deposited C3b, 
which is rapidly converted into iC3b, to facilitate parasite 
entry into macrophages and neutrophils via complement 
receptor (CR)3.[3,5]

NEUTROPHILS – TROJAN HORSES, EXPLOITED 
INTERMEDIATE HOST CELLS OR PARASITE 

KILLERS? 

Leishmania infection has been assumed to be initiated 
by direct parasitization of  skin resident macrophages[6] 
whereas uptake by skin DCs has been linked to priming 
and shaping the T cell response.[7] Recent studies have, 
however, slightly changed this view; in vivo imaging of  
sandfly transmitted L. major infection revealed neutrophils 
as the first cells to be infected by the parasites.[8] 

Neutrophils are primary antimicrobial effector cells, with 
the main function to phagocytose and destroy invading 
pathogens. Neutrophils are rapidly recruited to sites of  the 
body where tissue damaged has occurred, such as the site 
of  a sandfly bite. Most microorganisms are rapidly killed 
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when taken up by neutrophils, but a few mostly intracellular 
pathogens, can survive the destructive milieu of  these cells. 

Following sandfly transmission or needle inoculation with 
L. major, invading neutrophils were observed to rapidly and 
efficiently capture parasites.[8] Infiltrating neutrophils did 
not destroy the parasites, instead they facilitated infection 
as depletion of  neutrophils prior to infection reduced the 
parasites load and delayed onset of  disease.[8] Infection of  
neutrophils is transient and within a week post infection 
macrophages/monocytes take over as the primary host cell.[8] 
However, in human VL neutrophils have been reported to 
harbor parasites during active disease.[9,10] It may be noted 
that human blood is much more neutrophil rich than that 
of  mice.[11]

Laskay and colleagues have supported by in vitro studies 
showing that Leishmania infected apoptotic neutrophils 
can be taken up by macrophages that allow parasites to 
thrive, proposed a model in which neutrophils, act as 
“Trojan horses” for Leishmania.[12,13] Apoptotic neutrophils 
are normally cleared without triggering activation of  
macrophages. Thus, uptake of  infected apoptotic 
neutrophils could facilitate silent entry and infection of  
macrophages. Leishmania may also extend the life span 
of  a neutrophil by delaying apoptosis, suggested to give 
monocytes time to infiltrate the site of  infection and 
become infected by apoptotic neutrophils.[13] However, 

the in vivo images by Peters et al. were not able to capture 
neutrophils uptake by monocytes/macrophages.[8] Instead 
parasites were observed to egress dying neutrophils, to 
invade macrophages. Regardless if  neutrophils act as 
Trojan horses or not, compelling evidence indicates that 
the Leishmania parasite, in the early infection phase, can 
both evade and exploit neutrophils to ensure its survival. 

Nevertheless, when appropriately activated, neutrophils 
can kill intracellular pathogens such as Leishmania[14] and 
there are several reports suggesting that neutrophils play 
a role in early protection against Leishmanial disease.[15-17] 
Leishmania amazonensis promastigotes can induce and be 
killed by neutrophils extracellular traps (NETs). The same 
would appear to be the case for amastigotes, albeit not 
to the same extent as promastigotes. More interestingly 
meshes of  DNA and elastate suggestive of  NET were 
found in skin biopsies of  patients.[18] Furthermore, in 
a mouse model of  Leishmania donovani infection, using 
amastigotes for infection, neutrophils were found to have 
a protective function.[16]

The capacity of  neutrophils to function as immune evasion 
targets probably depend on the genetic background of  the 
host, the parasite strain and the developmental stage of  
the parasite used.[19] While metacyclic promastigotes may 
survive in neutrophils, non-metacyclic ones can rapidly be 
killed. Neutrophils may act in disease-stage specific way, 

Table 1: Innate immune cells in the skin and their role in leishmanial disease (Leish)
Cell type General function Observations in murine Leish Observations in Leish patients and/or in vitro

Keratinocytes
Location: epidermis

Sensors of injury & infection - Source of IL-10, associated with PKDL[111]

Langerhans cells
Location: epidermis

Antigen presentation in certain infections
Induction of peripheral tolerance 
Th2 induction
Cross priming of naïve CD8+ T cells

Uncertain, not necessary for 
induction of Th1 responses[33]

Correlation between high LC density and acute 
cutaneous L. tropica disease[112]

Dermal DC
Location: dermis 

Immune surveillance
Antigen presentation
Cross presentation to CD8+ T cells 

Sensors of infection[33] -

Dermal macrophages
Location: dermis

Antimicrobial activity and production of 
pro- and anti-inflammatory mediators 

Can act as host cells 
[8,32]

Host cells (non-human primate skin)[6]

Plasmacytoid DC
Location: dermis

IFNα production
Activation of NK cells, B cells T cells and 
myeloid DC cells

Leishmania loaded pDC can induce 
protective immunity[113]

-

Mast cells
Location:Dermis

Regulating later Inflammatory response 
by Neutrophils

Sentinels, contribute to DC 
recruitment[114] Tissue pathology[115]

Susceptibility[116]

Elevated numbers in MCL lesion[117] 
Possibly an association with wound healing[118]

Monocyte derived 
Inflammatory DC 
Location: Inflamed dermis

Inflammatory cells
T cell stimulation Production of IL-12, 
iNOS and TNFα 

Induction of protective immunity[7]

Primary cells harboring parasites in 
later stages of disease development 
(healing mice)[28]

Species dependent production of IL-12,  
co-stimulation[36]

Neutrophils polymorph 
nucleated cells (PMN)
Location: dermis

Uptake and destruction of pathogens Temporary early major host cells 
facilitating L. major infection[8]

Protective[16]

Tissue pathology – in later stages of 
disease[22,23]

*Human PMN can kill promasitigotes and amastigotes.[14]

Silent Transfer of parasites into macrophages[13]

Found in lesions[18,20]

Can harbor parasites in VL[9]

NK cells
Location: Inflamed dermis

Early source of IFNγ Contribute to early resistance 
against the parasite[37,119]

Associated with protection and cure[43,45]

The general functions of cells have been adapted from Nestle et al.[110]
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being permissive hosts for metacyclic promastigotes while 
contributing to the over-all inflammatory and parasitocidal 
response in active lesions. In both human and murine 
leishmaniasis neutrophils are prominent infiltrates in 
lesions;[20,21] their presence at the site of  infection can cause 
immune mediated tissue pathology.[22,23] 

MANIPULATING ANTIGEN PRESENTING CELLS A 
KEY STRATEGY FOR SURVIVAL

For a productive infection, the Leishmania parasites need 
to establish in macrophages. Macrophages possess potent 
antimicrobial functions and activated macrophages can 
kill Leishmania. To survive the parasite need to avoid 
macrophage activation and recognition by T cells. The 
ability to survive in macrophages is partly stage specific with 
metacyclic promastigotes having better capacity to survive 
compare to pro-cyclic promastigotes.[3] The parasites have 
several strategies by which macrophage activation can be 
prevented including: silent entry utilizing engagement of  
non-triggering receptors such as CR1 and the phosphatidyl 
serine (PS) receptor;[24,25] more direct inhibition of  
macrophage function by interfering with NFB transcription 
and IL-12 production, down regulation of  MHC class II; 
promoting production of  regulatory cytokines like IL-10 
and TGFβ.[26,27]

Dermal macrophages are readily infected with Leishmania 
and permit differentiation and growth and may initiate the 
infection.[6] However, most targets for Leishmania would 
appear to be infiltrating monocytes/macrophages, which 
enter the site of  infection one to two days post infection.[8,28] 
Interestingly, recent studies show that macrophages may 
not be the main host cells for the parasites in chronic 
stages of  healing disease. In chronic self-healing L. major 
infection (in C57Bl/6) mice) TNF and iNOS producing 
CD11b+CD11c+Ly6C+MHC-II+DC (TIP-DC), which 
most likely are derived from monocytes, host the majority 
parasites in the skin.[28,29] If  this is related to cure and 
generation of  a protective Th1 response and/or preparing 
the parasite for transmission to blood feeding sandflies, is 
not known.

APOPTOSIS – A WAY TO AVOID IMMUNE 
ACTIVATION AND PROMOTE SURVIVAL

Exposure of  PS is fundamental for the non-inflammatory 
phagocytosis of  apoptotic cells. Recognition of  this 
phospholipid by macrophages induces TGFβ secretion, 
IL-10 synthesis and inhibits NO production. Utilizing 
apoptotic cells as vectors or mimicking mammalian 

apoptotic cells is a strategy to escape host protective 
inflammatory response. Leishmania parasites have 
evolved several strategies to use apoptosis to it advantage  
[Figure 1]. 

DENDRITIC CELLS ORCHESTRATING THE 
IMMUNE RESPONSE 

Leishmania parasites-DC, interactions are complex, 
inconsistent and may lead to the control of  infection or 
progression of  disease. Activation of  DC varies in quantity 
and quality depending upon developmental stage and the 
species/strain of  Leishmania as well as DC cell subset and 
exogenous stimuli involved in different studies.[30] 

Several different types of  DC with different location and 
probably different function exist in the skin. The first studies 
of  murine skin DC indicated epidermal Langerhans cells 
(LC) as the important cells for sensing, uptake and transport 
of  Leishmania to the lymph node.[31] More recent studies have 
shown that it is dermal DCs that are involved in the early 
recognition of  the parasite. Dermal DC can efficiently take 
up and incorporate parasites in vacuoles[32] and have been 
suggested by some to act as principal antigen presenting 
cells in leishmaniasis,[33] while other suggest lymph node 
resident DC as the initiators of  the immune response.[34]

Leishmania have evolved several strategies to avoid or 
dampen DC, while some appear general to Leishmania 
other tend to be species related.[30] This may be, in part, 
the explanation for the severity of  disease caused by the 
different species. In general, more papers report inhibitory 
effects of  L. donovani and the South American species (L. 
amazonensis, Leishmania braziliensis) compared to L. major. 
In human cells L. donovani has been suggested to block 
maturation of  human DC.[35] Production of  IL-12 by 
DC, which is essential for the initiation of  a protective 
immune response in mice (and probably also in humans) 
is differently affected by L. donovani and L. major: while 
uptake of  L. major by human monocyte derived DC 
efficiently prime DC for IL-12 production uptake of  L. 
donovani does not.[36] 

A RECOVERED ROLE FOR NATURAL KILLER 
(NK) CELLS IN INDUCTION OF IMMUNITY 

Together with phagocytes, NK cells represent the first line 
of  defense against pathogens by two principal mechanisms, 
cytolytic destruction of  infected cells and secretion of  pro-
inflammatory cytokines (e.g. IFNγ, TNFα). 

Early studies of  experimental leishmaniasis in C3H/HeN 

Nylén and Gautam: Immune responses to Leishmania



138  Journal of Global Infectious Diseases / May-Aug 2010 / Vol-2 / Issue-2

mice indicated that IFNγ production by NK cells was 
important for generation of  protective immune responses 
and control of  infection. Subsequent studies, which of  
note, were mainly done in mice on C57Bl/6 background, 
demonstrated, however, that NK cells are not required 
for generation of  adequate T helper type-1 response 
and protective immunity. Their presence however, may 
delay onset of  disease as Balb/c mice lacking NK cells 
develop lesions faster and harbor more parasite.[37] Thus, 
NK cells can serve a function in control of  Leishmania 
burden during early phases of  infection through their 
ability to rapidly respond with IFNγ production. In vitro, 
human NK cells have been shown to have the ability to 
be directly activated to IFNγ production by Leishmania 
promastigotes or their LPG.[38,39]

A new interest in NK cells and Leishmania infection has 
evolved from the interaction between these cells and DC. 
Activated NK cells promote DC maturation, while they may 
kill autologous immature DC.[40] DC can on the other hand 
efficiently prime resting NK cells. In vitro resting NK cells 
have been shown to promote activation of  DCs pre-infected 
with L. amazonensis promastigotes and these activated DCs 
can, in turn, mostly via cell contact-dependent mechanisms 
stimulate NK cells.[41] L. major infection induces NK cells to 
secretion of  IFNγ and in vivo imaging has shown that NK 
cells are recruited to the paracortex, a strategic area in the 
lymph node, where they can interact with DC and regulate 
co-localized CD4 T cells responses.[42]

In patients, NK cell number and activity has mainly been 
associated with protection against or healing of  disease. 

Figure 1: Apoptosis - a way to avoid immune activation and promote survival; a) Sandflies inject apoptotic parasites together with viable. 
Apoptotic promastigotes facilitate infection and prevent activation of neutrophils (PMN).[108,109]; b) Parasites delay neutrophil apoptosis, giving 
monocytes/macrophages (Mφ) time to enter the site of infection; c) Silent entry of parasite into macrophages via apoptotic neutrophils.[12]; 
d) Viable amastigotes expose PS and mimic apoptotic cells. This facilitates internalization and increases macrophage susceptibility to leishmanial 
growth[25]
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Patients with active leishmaniasis (cutaneous and visceral) 
have been reported to have a reduction in the frequency 
of  peripheral NK cells[43,44] and recently an increased 
frequency NK cells, following immunotherapy, in a L. 
amazonensis diffuse cutaneous leishmaniasis (DCL) patients 
was associated with cure.[45] 

EFFECTOR T CELLS IN CONTROL AND FAILURE 
OF LEISHMANIAL INFECTION 

Protective immune responses against Leishmania, in 
self-healing strains of  mice (C57BL/6, C3H, CBA), are 
intimately linked to development of  a Th1 response and 
IFNγ production. In experimental self-healing disease DC 
are stimulated to produce IL-12, which drives the generation 
of  Th1 cells (effector and memory). T cell dependent IFNγ 
in turn activates macrophages to upregulation of  iNOS 
and NO production, which results in killing of  intracellular 
parasites and control of  disease.[46,47] Disease progression 
has to a large extent been viewed as development of  Th2 
responses and IL-4 based on studies of  L. major infection 
in Balb/c mice. The polarized Th1/Th2 responses in mice 
have been more thoroughly reviewed by others[48] and is 
not the scope of  this review. 

Most data point to the fact that same or similar Th1 
dependent mechanisms are involved in control of  human 
disease. Self-healing forms of  leishmaniasis and cure of  VL 
is typically accompanied by parasite specific proliferation 
and IFNγ production. Human macrophages are activated 
to kill intracellular parasites by IFNγ and exogenous IFNγ 
can promote cure of  human CL.[49] Though Th2 responses 
can act in favor of  the parasite, polarized Th2 response 
has never been able to explain non-curative or visceralizing 
human disease. Th2 independent disease progression is also 
supported by studies on non-healing disease in the Th1 
phenotypic B6 mice.[50] In this context it can also be noted 
that in patients with VL the effect of  IFNγ administration 
was limited[51] and in human CL, IFNγ production by 
CD4+ cells, alone, in response to Leishmania antigens is not 
predictive of  protection or disease development.[52] This 
indicates that other mechanisms acting in synergy with 
IFNγ or counteracting the effects of  IFNγ are as important. 

ADVANCING THE TH1/TH2 PARADIGM: TH17 AND 
REGULATORY T CELLS AND THEIR ROLE IN 

PATHOLOGY OF LEISHMANIAL DISEASES

Th17 and Treg are today widely accepted subsets with 
important functions in induction and control of  the 
inflammatory response. Both Th17 and Treg have a greater 
degree of  plasticity in their differentiation decision, as 

compared to conventional Th1 and Th2 cells, enabling 
response to signals provided by the environment in which 
they reside.[53]

Th17 cells are pro-inflammatory T helper cells, hallmarked 
by their ability to secrete IL-17. IL-17 is involved in 
recruitment, migration and activation of  neutrophils and 
Th17 cells have an important function in protecting surfaces 
against certain extracellular bacteria and fungal pathogens, 
but can also mediate severe immune pathologies.[54]

In experimental leishmaniasis Th17 cells have been 
associated with tissue destruction: IL-17 deficient Balb/c 
mice develop smaller lesions, have decreased CXCL2 
accumulation and fewer neutrophils in lesions as compared 
to wild type, while elevated IL-17 conferred no reduction 
in parasite load.[22]

Interestingly, a recent study of  human VL linked IL-17 and 
IL-22 (a pro-inflammatory cytokine, produced by Th17 and 
NK cells), to protection against human kala-azar caused by 
L. donovani. L. donovani was furthermore shown to stimulate 
generation of  cells producing IL-17, IL-22 as well as IFNγ 
by human T cells.[55] IL-27 is an IL-12 related cytokine, 
produced mainly by macrophages and DC, thought to be 
important in regulation of  Th17 cells. In C57Bl/6 mice 
IL-27 is important in early Th1 development, mediating 
suppression of  the early IL-4 burst that occur in B6 mice.[56] 
IL-27 also has anti-inflammatory properties, mediated 
through the ability of  IL-27 to suppress Th17 cells[57] and 
induction of  naïve human CD4 cells to IL-10 production.[58] 

Interleukin-27 receptor deficient mice display enhanced 
resistance to L. donovani infection[59] and findings of  
elevated levels of  IL-27 together with low RoRγT/IL-17 
in VL patients before treatment, implicate IL-27 in VL 
pathogenesis.[60] However mice deficient in IL-27R develop 
severe liver immunopathology when infected with L. 
donovani[59] and more severe cutaneous lesions in infection 
with non-healing L. major.[57] Both studies showed that CD4 
T cells were linked to pathology, in the latter study IL-27 
was found to regulate both IL-10 and IL-17, and tissue 
pathology was associated with IL-17 producing T cells. 
Thus, the elevated levels of  IL-27 in human VL may serve 
an important function suppression of  IL-17 producing 
CD4 T cells and subsequent tissue damage by neutrophils.

REGULATORY T CELLS AND PARASITE 
PERSISTENCE 

Regulatory CD4 T cells can broadly be divided into two 
categories - natural Foxp3+ (CD4+CD25high) regulatory 
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T cells (nTreg) that arise in the thymus and inducible 
regulatory T cells generated in the periphery, the latter 
can be both, Foxp3+ (iTreg) and adaptive FoxP3-, type-
1 regulatory T cells (Tr1). All regulatory T cells act to 
counteract inflammatory immune response to limit tissue 
damage and absence of  regulatory T cells is linked to a 
number of  autoimmune conditions. 

The skin (and other epithelial surfaces) has a high frequency 
of  steady state, nTreg that function to suppress the 
generation of  harmful immune response to infectious 
and non-infectious antigens to, which the skin is regularly 
exposed. The presence of  these cells may, however, 
precondition the skin for survival of  Leishmania parasites 
and favor long-term parasite survival.[61] In humans 
CD4+CD25+ Treg cells are found in cutaneous lesions [62] 
and elevated intra lesional FoxP3 and IL-10 have been 
associated with unresponsiveness to treatment during L. 
amazonensis infection.[63] 

IL-10 is a cytokine intimately linked with disease progression 
of  both murine and human Leishmania infection.[64] 
Experimental models have clearly demonstrated the central 
role played by IL-10 in pathology and parasite persistence.[65-67] 
In human VL, elevated levels of  IL-10/IL-10 mRNA are 
found systemically as well as in spleen, bone marrow and 
lymph nodes. A role for IL-10 in human VL pathology 
is supported by studies indicating that IL-10 blockade 
can enhance VL PBMC IFNγ responses and inhibit VL 
serum promoted parasite replication in macrophages.[44,68,69] 
However, if  the IL-10, as assumed, is a major suppressor 
of  effector T cell in VL patients, remains to be proved. 
In human CL, elevated IL-10 has been demonstrated in 
lesions.[70-72] A recent genetic analysis of  IL10-819C/T 
polymorphism, in the IL10 promoter, showed that the C 
allele, which is linked to higher levels of  IL-10 production, 
is associated with increased risk of  developing cutaneous 
lesions in populations exposed to L. braziliensis.[72]

All regulatory T cells can be sources of  IL-10. In leishmanial 
infection most data point to antigen-induced Foxp3- T cells, 
producing IL-10, as being responsible for delayed healing 
associated with disease progression.[50] In line with this T 
cells other than those expressing FoxP3 would appear to 
be the main source of  IL-10 in human VL.[43,44] The B6 
mouse model of  non-healing disease indicates that Th1, 
which secrete IFNγ cells, can be the main source IL-10.[50] 
IL-10 secretion by Th1 cells is a self-regulating mechanism 
evolved to minimize T cell mediated immune-pathology. 

Central cytokines in healing and progression of  leishmanial 
disease are summarized in Table 2.

CD8 T CELLS ARE PROTECTIVE AND 
DESTRUCTIVE 

The role of  CD8+ T cells is still not completely defined 
in Leishmania infection. Though a number of  early reports 
suggested a role for CD8+ cells in immunity against L. 
major infection,[73,74] CD8+ T cells, were for a long time 
thought to play a secondary role as CD8 cells alone could 
not induce protective immunity and CD8 defective mice, 
were able to control infection.[75] However, Belkaid et al. 
later demonstrated that CD8 cells actually were required 
for healing when C57BL/6 mice were infected with a low, 
and more physiological relevant, dose of  parasites and in 
experimental infection with L. donovani both CD8 and CD4 
can on their own cells prevent reactivation of  disease.[76,77]

CD8+ T cells participate in protection against pathogens 
by two major mechanisms: production of  cytokines (IFNγ 
and TNF-α) and by direct killing of  infected cells. In 
Leishmania infection the main contribution of  CD8 T cells 
in immunity is considered to be through IFNγ production. 
Cytotoxic T-lymphocyte (CTL)-mediated mechanisms in 
the regulation and control of  Leishmania infection remain 
largely unexplored.[78] Perforin (together with IFNγ) has, 
however, been suggested as an important effector molecule 
in vaccination induced immunity against L. amazonensis.[79] 
Both murine and human Leishmania infection can prime 
CD8 T cells for killing of  antigen pulsed macrophages.[80,81] 
In vivo studies have moreover indicated that the Fas–Fas 
ligand (L) pathway contributes to healing of  lesions 
induced by L. major,[82] as Fas- and FasL-deficient mice 
cannot control infection despite upregulation of  IL-12 
and NO production. Moreover, CD95 is required for the 
early control of  parasite burden in the liver of  L. donovani-
infected mice.[83] In contrast, elevated levels of  Fas in 
human CL lesions have been suggested to contribute to 
ulcer formation.[84]

CD8+ T-cells have been associated with both cure and 
pathology in human leishmaniasis: An expanded CD8+ cell 
population was observed in the draining lymph node prior 
to ulcer development, implicating CD8 mediated immunity 
in the early containment of  Leishmania infection.[85] An 
increase in responding CD8+ cells has been associated 
with cure of  L. braziliensis CL.[86,87] Exacerbated CD8+ 
activity, in addition to a poor regulatory response, could 
however, underlie an unfavorable fate with regard to 
MCL. Recruitment of  CD8+ T cells expressing granzyme 
associated with lesion progression of  CL caused by L. 
braziliensis and more CD8 cells were found in relapse cases.
[88,89] Accumulation of  CD8 cells have also been linked to 
PKDL.[90]
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CD8 T cells can just like CD4 T cells have natural or 
acquired regulatory properties.[91] IL-10 producing CD8 
cells of  memory phenotype have been identified in humans 
infected with Leishmania guanyensis.[92] The function of  
these IL-10 producing CD8 T cells in leishmanial disease 
is unknown.

B CELLS AND ANTIBODY RESPONSES: HARMFUL 
OR PROTECTIVE 

B cells and antibodies are generally not considered to 
be of  major importance in protective immunity against 
Leishmania. Antibodies are not effective at killing the 
parasite as it hides inside the parasitophorus vacuole and 
antibody responses in self-healing cutaneous disease are 
very modest. 

High levels of  Leishmania specific antibodies are observed 
in patients with VL and other severe forms of  leishmanial 
disease and there are accumulating evidence that B cells 
and antibodies correlate with pathology. 

A model where immunoglobulin (IgG) promotes infection 
by inducing IL-10 was proposed by Kane and Mosser, who 
showed that IgG coated amastigotes (L. major) could ligate 
Fc-receptors on murine macrophages and induce IL-10 
production.[67] In support of  this models in vivo studies 
found that Fc-deficient mice infected with L. amazonensis 
produce less IL-10 and are less susceptible to infection.[93] 
Moreover, a regulatory role for B cells has been suggested 

in a VL model demonstrating that B cell depleted animal 
exhibit extensive neutrophil mediated pathology.[23]

There is still much to learn about how antibodies function 
in leishmaniasis and it should not be ruled out that certain 
antibodies might contribute to protection. Immunization 
with, the for dogs licensed vaccine, Leishmune, which 
confers some protection against leishmaniasis, result in 
seroconversion and an increase in the proportion of  B cells.[94] 

IMMUNE RESPONSES ASSOCIATED WITH 
VISCERAL DISEASE 

Infection with L. donovani and Leishmania infantum results 
in the establishment of  the parasite in the liver, spleen and 
bone marrow in mice. The liver is, in most mouse strains, 
the site of  an acute resolving infection associated with the 
development of  inflammatory granulomas around infected 
Kupffer cells, and resistance to re-infection. In contrast 
to the liver, parasites persist in the spleen. Persistent 
parasites are characterized by lack of  granuloma formation, 
splenomegaly, enhanced hematopoietic activity and 
disruption of  lymphoid tissue micro-architecture, the latter 
postulated to contribute to the immuno-compromised 
status of  the host. Splenic pathology is linked to high levels 
of  both TNFα and IL-10. TNFα mediates destruction of  
marginal zone macrophages and gp38+stromal cells, while 
IL-10 is responsible for impaired DC migration into T 
cell areas and defective T cell priming. Furthermore, the 
altered stromal cells function can promote development of  

Table 2: Expanding the Th1/ Th2 paradigm: A brief summary of central cytokines in healing and 
progression of Leishmania infection
Cytokine Producer/s Function in murine Leish Human Leish (correlation)

IL-4 Th2 cells
Mast cells basophils

Inhibition of Th1 responses 
Responsible for progression in Balb/c mice[48]

Some association with non-healing CL and VL[120,121]

IL-10 Many, including monocytes 
/macrophages, T cells and 
epithelial cells

Promote parasite persistence 
Down regulation of macrophage function. Counter act Th1 
cells[65,66,99]

Associated with visceral and non-healing disease.[64,111,122] 

IL-12 Dendritic cells
Monocytes
Neutrophils
B cells

Required for induction of protective Th1 response[123] Addition to VL PBMC induce IFNγ and cytotoxic 
response[124,125]

IL-17 Th17 cells, neutrophils Disease progression in susceptible Balb/C mice[22] Associated with protection from disease[55]

IL-22 Th17 cells
NK-22 cells

- Associated with protection from disease[55]

IL-27 Dendritic cells Monocytes
Macrophages

Fewer parasites, but more tissue pathology due to impaired 
regulatory response[57,59]

Associated with active VL[60]

IFNγ Many, most importantly Th1 
cells and NK cells

Required for protective responses, 
KO mice cannot control infection[48]

Antigen specific IFNγ response by PBMC are associated with 
cure and protection[126]

May promote cure of CL[49]

TNFα Many, mainly macrophages Required for control of most, leishmania strains.[127]

Cause tissue destruction and loss of splenic architecture in 
experimental VL[128]

Associated with protection and cure[126]

Case reports of VL in TNF antagonist treated patients[129]

High levels associated with tissue pathology[130]

TGFβ Monocytes /macrophages 
T (reg) cells Chondrocytes

Regulatory function associated with disease progression.[131] 
Suppression of IFNγ by NK cells[132]

Act in synergy with IL-10[133] 

Associated with non-healing phenotype (MCL, PKDL)[131,134]

Important producers of the respective cytokines in leishmanial disease
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IL-10 producing DC, with immuno-regulatory properties 
(reviewed in[95]).

The mechanisms underlying the failure to control growth 
and spread of  parasites in human VL are less well 
understood. Most humans infected with visceralizing 
Leishmania species never develop disease. How control 
is mediated in these people is largely unknown. Absence 
of  antigen specific Th1 responses, in peripheral blood 
mononuclear cells of  VL patients is, thought to be, causally 
related to disease progression. However, there appears to 
be no inherent defect in antigen induced Th1 response as 
patient cell respond after cure and the finding that patients 
express elevated levels of  IFNγ mRNA in T cells, in 
lesional tissue and the multiple pro-inflammatory cytokines, 
found systemically and at the site of  infection indicates 
that neither can their immunological defect simply be 
explained by immune tolerance or Th2 polarization. Most 
clinical evidence point to that the host regulatory response, 
generated to limit collateral tissue damage, promotes spread 
and growth of  microorganism in chronic infections, like 
VL. Human VL is clearly associated with elevated levels 
of  the regulatory cytokines IL-10.[64] The inhibitory effect 
of  IL-10 on macrophage may be detrimental, as IL-10 
renders macrophages unresponsive to activating cytokines. 
In addition IL-10 may contribute to loss of  important 
effector T cells in VL. It is still unclear if  patients with VL 
have developed antigen specific T cell responses that are 
suppressed by regulatory responses or if  antigen specific 
T cell responses are never appropriately generated. 

THE QUEST FOR A VACCINE AGAINST 
LEISHMANIASIS

After clinical cure from leishmanial disease people are 
considered to have acquired lifelong immunity to infection 
with the same parasite, making vaccination a feasible 
measure. However, developing a human vaccine against 
Leishmania has proven difficult despite the many vaccine 
candidates reported to be protective against murine 
leishmaniasis. In humans, vaccination with autoclaved L. 
major (considered protective in mice) adjuvanted with BCG 
has had limited success.[96] The only reliable preventive 
measure against clinical disease remains leishmanzation 
(LZ), an ancient method where viable parasites are 
inoculated at a covered part of  the body to protect against 
subsequent disfiguring disease. While this method may be 
used to protect against mild cutaneous disease, it cannot be 
used against VL. Moreover, LZ has been questioned due 
to fear of  non-healing and disseminating ulcers. 

Vaccination in mice may, however, not be as straight 

forward as initially thought. It was recently shown that 
inoculation of  killed Leishmania in mice that resolved 
their primary L. major infection resulted in rapid and 
relatively sustained loss of  infection-induced immunity.[97] 
Moreover, while vaccination with killed parasites plus CpG 
adjuvant confer protection against needle challenge, vector 
transmitted infection can abrogate this protective immunity. 
Only live infection was able to protect against subsequent 
vector mediated transmission.[98] Indeed, studies indicate 
that parasite persistence may be required for maintenance 
of  protective T cell immunity and “sterile” cure would again 
make the animal permissive for disease.[61,99] 

Vaccination with attenuated parasites may be the solution 
for preventing leishmanial disease. Several methods have 
been used to develop live attenuated Leishmania parasites 
including long term in vitro cultures, selection for temperature 
sensitivity, chemical mutagenesis and irradiation.[100] 
Attenuated lines have been shown to confer substantial 
protection in animal models, but undefined mutations and 
concerns regarding conversion back to virulence make 
them unsuitable for human use. Targeted elimination of  
virulence or essential genes could, if  carefully done, solve 
this problem. Recently, a L. donovani strain completely 
deficient in the centrin gene, (required for growth in the 
amastigote stage) was found to be both safe and protective 
against both homologous and heterologous parasites in 
rodent models.[101] While more studies are required this may 
be an attractive vaccine candidate against VL.

COINFECTION – A REALITY RARELY 
CONSIDERED IN EXPERIMENTAL MODELS

The poor populations, which are mainly affected by 
leishmaniasis, are also plagued with many other chronic 
infections such as helminths, other protozoa, tuberculosis 
and HIV/AIDS. 

The visceralizing species of  Leishmania can in many aspects 
be considered as opportunistic infections, and patients 
with HIV are at much greater risk of  developing VL.[102] 
From an immunological perspective the two agents ability 
to escape and manipulate the immune response seem to a 
large extent work in synergy, resulting in a dangerous liaison 
where the immune system rapidly can be exhausted and 
control of  pathogens lost.[103-105] HIV/AIDS can also slow 
down diagnosis of  VL as antibody based tests may not be 
indicative of  disease in AIDS patients. Interestingly, while 
HIV may have a profound impact on VL the evolution 
of  purely cutaneous disease would only seem to be only 
moderately affected and L. major have not been reported 
to visceralize in HIV patients.[102]
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Helminths are another group of  pathogens, which may 
favor survival of  Leishmania parasites by the Th2 and 
regulatory immune responses they induce. In this respect, 
it has been shown that mice have better capacity to deal 
with L. donovani and L. major infection in the absence of  
Schistosoma mansoni infection.[106,107]

Coinfection are a reality that need to be considered 
when developing and evaluating vaccines against human 
leishmaniais in endemic populations. Treating co-infections, 
in particular worms may be a measure to enhance vaccine 
and therapeutic efficacy.
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