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Abstract

Motivation: Analysis of genetic sequences is usually based on finding similar parts of sequences, e.g. DNA reads
and/or genomes. For big data, this is typically done via ‘seeds’: simple similarities (e.g. exact matches) that can be
found quickly. For huge data, sparse seeding is useful, where we only consider seeds at a subset of positions in a
sequence.

Results: Here, we study a simple sparse-seeding method: using seeds at positions of certain ‘words’ (e.g. ac, at, gc
or gt). Sensitivity is maximized by using words with minimal overlaps. That is because, in a random sequence, min-
imally overlapping words are anti-clumped. We provide evidence that this is often superior to acclaimed ‘minimizer’
sparse-seeding methods. Our approach can be unified with design of inexact (spaced and subset) seeds, further
boosting sensitivity. Thus, we present a promising approach to sequence similarity search, with open questions on
how to optimize it.

Availability and implementation: Software to design and test minimally overlapping words is freely available at
https://gitlab.com/mcfrith/noverlap.

Contact: mcfrith@edu.k.u-tokyo.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

1.1 Backgound and aim
Sequence similarity search remains fundamental in bioinformatics.
It has a basic tradeoff between sensitivity and computational cost
(time and memory use). We present here an approach that advances
the Pareto frontier in the low-cost, low-sensitivity region: in other
words, we show how to achieve very low cost with not-so-low sensi-
tivity. This is useful for: huge sequence data where minimizing com-
putational cost is essential; moderately large data requiring fast
analysis, e.g. in clinical applications; and interactive-speed analysis
of moderate-size data. This is timely because large datasets are
becoming more ubiquitous, e.g. whole-genome sequencing, genomes
or transcriptomes from thousands of single cells, or deep sequencing
of DNA from an environment, such as seawater. While many meth-
ods are optimized for human genomes (3 Gb), some important
genomes are larger, e.g. wheat (17 Gb) and oat (12 Gb). We do not
describe an implementation, but rather a new theoretical approach
that could be used in various sequence search tools: we have imple-
mented it in LAST (http://last.cbrc.jp/). In order to explain our ap-
proach, we first review alignment seeds and sparse seeding.

1.2 Alignment seeds and sparse seeding
Finding similar sequences, in large data, is typically done via ‘seeds’:
simple similarities that can be found quickly. The simplest type of
seed is exact matches of a given length, e.g. 10 letters for DNA. The
seed length affects the sensitivity and run time: shorter seeds are
more sensitive, but find more hits that must then be checked. By
lengthening the seeds, we can arbitrarily reduce the run time of the
downstream steps, but not the time and memory usage for finding
the seeds.

An alternative way to reduce time and/or memory use is sparse
seeding. The simplest way is to only use seeds starting at every
nth position in one of the two sequences being compared (if we
only use seeds at every nth position in both sequences, the sensi-
tivity will be poor. For example, we cannot find identical seg-
ments starting at coordinate x in the first sequence and xþ1 in
the second sequence). Sparse seeding reduces sensitivity, but we
could then increase the sensitivity by shortening the seeds. This
raises the prospect of reducing run time and/or memory use with-
out loss of sensitivity.

An intriguing idea is to achieve sparsity by selecting seeds start-
ing at positions of certain words. For example, if we only use seeds
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starting with ‘a’ (Paul Horton, personal communication), we achieve
4-fold sparsity in both sequences without huge loss of sensitivity.
We can imagine more complex variants, e.g. use seeds starting with
any of these words: ac, at, gc, gt. One version of this is seeding at
(arbitrary) words that hash to 0 mod n, for some hash function and
some positive integer n (Manber, 1994; Schleimer et al., 2003).

1.3 Summary of our contribution
We improve word-based seeding, by showing that some word sets
are better than others: so we can benefit from using designed rather
than arbitrary word sets. Specifically, it is better to use words with
minimal overlap (e.g. ac, at, gc, gt cannot overlap). The reason,
briefly, is that in a random sequence, minimally overlapping words
occur with more uniform spacing, i.e. they are anti-clumped or
under-dispersed; equivalently, their number of occurrences has
lower variance. We show evidence that this sparse-seeding approach
is superior to a currently popular alternative: minimizers. Finally,
we show that word-based seeding can be naturally unified with in-
exact seeds (spaced and subset seeds), further boosting sensitivity.
The remainder of this introduction reviews further background im-
portant for this study.

1.4 Minimizers
The minimizer method is a bit more complex (Roberts et al., 2004;
Schleimer et al., 2003). First, we must define an ordering of the posi-
tions in a sequence, e.g. by alphabetic order of the suffix starting at
each position. Then, we identify all positions that are the minimum
in any window of w consecutive positions (e.g. w ¼ 7). Only seeds
starting at these positions are used.

Various orderings can be used, e.g. compare two suffixes using
order c <a <t <g at odd-numbered bases and g <t <a <c at even-
numbered bases, so that cgcg. . . is the minimum possible suffix
(Roberts et al., 2004). The resulting degree of sparsity is not obvi-
ous, and it depends on the ordering (Marçais et al., 2017).
Typically, a fraction 2=ðwþ 1Þ of positions is selected (Schleimer
et al., 2003).

Another related idea is universal k-mer hitting sets (Orenstein
et al., 2017). This means a set of length-k words, such that every
possible length-L sequence contains at least one of the words.
Recent studies have defined minimizer orderings based on universal
k-mer hitting sets, resulting in high sparsity for a given w (Marçais
et al., 2017, 2018; Orenstein et al., 2017).

Minimizers have been described as ‘a central recent paradigm’
(Orenstein et al., 2017): they have been widely used for sparse seed-
ing (e.g. Jain et al., 2018; Li, 2018) and other applications (e.g.
Deorowicz et al., 2015; Li et al., 2013; Wood and Salzberg, 2014).

1.5 Spaced and subset seeds
So far, we have considered exact-match seeds, but inexact seeds are
also used. One variant is spaced seeds, which allow mismatches at
some fixed positions in the seed (e.g. positions 3 and 5 out of 9).
Spaced seeds are often superior to exact seeds (Ma et al., 2002), be-
cause their hits are less concentrated in overlapping clumps. Thus,
spaced seeds have been designed by minimizing their ‘overlap com-
plexity’ (Ilie and Ilie, 2007), which is similar to minimizing the vari-
ance in number of hits (Hahn et al., 2016).

Subset seeds are a further generalization: they allow some mis-
matches (e.g. a$g and c$t) at fixed positions (Noé and Kucherov,
2004). This is useful for DNA, because a$g and c$t substitutions
(termed ‘transitions’) are often more frequent than the other types of
substitution (‘transversions’). Transition seeds have also been
designed for use with every-nth sparsity (Frith and Noé, 2014).

1.6 Repeats
Natural DNA has many repeats, which are the main difficulty for
similarity search. For example, a primate genome may have a mil-
lion Alu elements, so naive comparison of such genomes yields an
unmanageable 1012 significant similarities. Our practical aim cannot
be to find all significant similarities, but rather orthologs and/or

strongest similarities. In any case, a seeding method must avoid get-
ting too many repetitive seeds. One solution is to omit high-
frequency seeds, another is to use variable-length seeds that are
made longer until they are sufficiently rare (Cs}urös, 2004; Kielbasa
et al., 2011).

1.7 Non-overlapping words
Since we are interested in minimally overlapping words, let us con-
sider non-overlapping words. A basic question is: what is the max-
imum possible number of non-overlapping words of some length k?
That is, given an alphabet of size a (so there are ak possible words),
what is the maximum possible number of words where no proper
prefix of any word equals a proper suffix of any word? This seems
hard to answer in general (Blackburn, 2015).

The following construction has been suggested for getting a large
number of non-overlapping words (Blackburn, 2015). Divide the al-
phabet into two subsets, e.g. fag and fc, g, tg, and choose a prefix
length j (0 < j < k). These words have no overlaps: words whose
first j letters are from the first subset, whose ðjþ 1Þth and kth letters
are from the second subset, and whose letters between jþ1 and k
have no run of � j letters from the first subset.

2 Materials and methods

2.1 Mean and variance
Given a set of length-k words, let us consider their occurrence in a
random i.i.d. length-s sequence. Define Ij to be 1 if any of the words
occurs starting at position j, else 0. The number of occurrences is
X ¼ I1 þ I2 þ � � � þ Is�kþ1, and the expected number is:

E½X� ¼ ðs� kþ 1Þp; (1)

where p is the total probability of any of the words occurring at a
given position. The variance in occurrence number is:

Var½X� ¼ E½X2� � E½X�2; (2)

where

E½X2� ¼ E½ðI1 þ I2 þ � � � þ Is�kþ1Þ2� (3)

¼
X

i;j
E½IiIj�: (4)

If we define l ¼ ji� jj, then

E½IiIj� ¼ f
p if l ¼ 0P

V;W Bk�l
VWPl

VPk
W if 0 < l < k

p2 if l � k;

(5)

where Bm
VW is defined to be 1 if the length-m suffix of word V equals

the length-m prefix of word W, else 0. Also, Pn
W is the product of

probabilities of the first n letters in word W. Thus, assuming that
s � 2k� 2 (see the Supplementary Material):

Var½X� ¼ ðs� kþ 1Þp

þ2
X

V;W

Xk�1

l¼1

½ðs� kþ 1� lÞBk�l
VWPl

VPk
W �

�½ð2k� 1Þs� ð3k� 1Þðk� 1Þ�p2:

(6)

For circular sequences, the formulas are simpler (assuming
s � 2k� 1):

E½X� ¼ sp (7)

Var½X� ¼ s½p� ð2k� 1Þp2 þ 2
X

V;W

Xk�1

l¼1

ðBk�l
VWPl

VPk
WÞ�: (8)
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These formulas also apply to linear sequences when s� k. With
these formulas, the variance-to-mean ratio (VMR), also called index
of dispersion, is independent of the sequence length. The formulas
also simplify for linear sequences with s ¼ 2k� 1 (the smallest s
where all kinds of pairwise overlap contribute):

E½X� ¼ kp (9)

Var½X� ¼ kp � k2p2 þ 2
X

V;W

Xk�1

l¼1

½ðk� lÞBk�l
VWPl

VPk
W �: (10)

2.2 Simulated sequences
To test homology detection, DNA sequences were simulated with
the T92 model of evolution (Tamura, 1992). This model has three
input parameters: gc-content, transition/transversion rate ratio j
and PAM substitution distance (Table 1).

For each test, 100 000 pairs of DNA sequences were simulated.
The default parameters, unless specified otherwise, are: %gþ c¼50,
j¼1 (unbiased), PAM¼20, sequence length ¼ 100. A seeding
method was deemed to find a pair of sequences if it found at least
one match at identical coordinates of the pair.

To test specificity, two unrelated length-106 sequences were gen-
erated, and the number of seed pair matches counted. This is a
proxy for the computational cost of checking all the seed hits.

3 Results

3.1 Non-overlapping DNA words
The maximum possible number of non-overlapping DNA words, for
word length k ¼ 2 to 6 (Table 2), was found by brute-force clique
search (Konc and Jane�zi�c, 2007). For k < 6, Blackburn’s construc-
tion (Blackburn, 2015) achieves this maximum. For k ¼ 2, a max-
imum set is ry (r¼ a or g, y¼ c or t). In general, abb. . . (b ¼ any base
except a) is a good way to get non-overlapping words, and a nice
generalization of Horton’s idea.

3.2 Every-nth sparsity
We first tested every-nth sparsity (only using seeds starting at every
nth position in one of the two sequences being compared), with
exact-match seeds. We defined ‘sensitivity’ as % of sequence pairs
with � 1 seed match at homologous positions. As expected, if we in-
crease sparsity without changing the seed length, both sensitivity
and random hit count decrease (Fig. 1). If we then shorten the seeds,
the sensitivity and random hit count increase. The important result

is that higher sparsity has lower sensitivity for a given random hit
count. The exception is n ¼ 2, which is no worse than n ¼ 1, indeed
giving us something for nothing: sparsity at no cost.

A plausible explanation for why n ¼ 1 is not better than n ¼ 2 is
that highly overlapping seeds provide little independent information.
This is also why spaced seeds are better than exact-match seeds.
Thus, it would be interesting to compare n ¼ 1 to n ¼ 2 using opti-
mized spaced/subset-seed patterns: this was done previously, and
n ¼ 2 was worse (Frith and Noé, 2014).

3.3 Sparsity via words
Let us now see how seeds starting with ‘a’ compare to every-4th
seeding. For a given seed length, the random hit counts are the same
(as expected), but seeds starting with ‘a’ have lower sensitivity
(Fig. 2A). This is not too surprising, because every-4th seeding is
sparse in just one sequence, but seeds starting with ‘a’ are sparse in
both sequences. Seeds starting with ry also have the same random
hit counts, and their sensitivity is closer to (but still less than) that of
every-4th seeds. On the other hand, seeds starting with rr have
worse sensitivity. This supports the idea that non-overlapping words
are good and highly overlapping words are bad.

Seeds starting with abb have a sparsity factor of 43=32 � 7:1,
and they perform slightly worse than every-8th seeds (Fig. 2B).
On the other hand, they perform better than seeds starting with
avv (v ¼ any base except t). Seeds starting with abbb (sparsity
9.5) or abbbb (sparsity 12.6) show similar results (Fig. 2C and
D), confirming the advantage of non-overlapping words.

3.4 Minimal-variance words
We can perhaps do better by using longer words with some overlap.
Seeds starting with ry are the same as seeds starting with ryn (where
n is any base), so it may be better to replace ryn with a less-
overlapping set of length-3 words.

It is not obvious how best to quantify ‘amount of overlap’, but
one idea is to use variance of occurrence number in random sequen-
ces. Let us try these two measures of overlap: VMR1 [from
Equations (7) and (8)] and VMR2 [from Equations (9) and (10)].

It is also unclear how to find a set of words that minimizes
VMR1 or VMR2, because the number of possible sets is enormous.
Brute-force search is feasible if we restrict ourselves to a 2-letter ry
alphabet.

Such words can indeed boost sensitivity. For example, the words
rrry, ryrr, ryyr, yyyr have lower VMR2 than rynn (Table 3), and
seeds starting at these words have better sensitivity (Fig. 3A). We
can do even better with 8 length-5 words, and better still with 16
length-6 words (Table 3 and Fig. 3A).

We attempted to find best-possible sets of minimal-variance
words, for a useful range of sparsities (Table 3 and Supplementary
Table S1). For more than �16 words, our brute-force search was
too slow, so we switched to a heuristic search method (simulated
annealing) that does not guarantee to find the minimum possible
VMR. On one hand, we successfully obtained high-sensitivity word

Table 1. Parameters of the T92 DNA model

PAM j %gþ c %identity Transitions per

transversion

20 1 50 82 0.5

50 1 50 64 0.5

20 3 50 83 1.4

Table 2. Non-overlapping DNA words

Word Constructed Maximum

length Words Number number

2 ry 4 4

3 abb 9 9

4 abbb 27 27

5 abbbb 81 81

6 abbbbb 243 251

Note: r ¼ fa; gg; y ¼ fc; tg; b ¼ fc; g; tg:

Fig. 1. Sensitivity (y-axis) and spurious hit count (x-axis) for exact-match seeds with

every-nth sparsity. Sensitivity was measured on sequence pairs with PAM distance

20 (left panel) or 50 (right panel). Seed lengths 5–14 were tested, shown in gray in

the left panel
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sets (Fig. 3); on the other hand, we found that decreasing VMR does
not always increase sensitivity (Supplementary Fig. S2). Thus, a bet-
ter criterion for choosing a set of words is still to be designed.
Another limitation is that longer words perform badly when they

exceed the seed length (e.g. right-hand part of Fig. 3C). In short, we

provide useful word sets for sparse seeding, but there is scope for
further understanding and improvement.

3.5 Minimizers
We next tested minimizers, with three orderings:

• Alphabetic order.
• cg-order, where cgcg. . . is the minimum sequence. This is repre-

sentative of methods that have been used in practice (Marçais

et al., 2017).
• abb-order. This is a novel ordering, inspired by non-overlapping

abb. . . words. It compares two suffixes using order a <c <g <t at

the first position and t¼g¼c <a at all subsequent positions.

Let us first see the sparsity (average distance between seed start

coordinates) of these orderings. Alphabetic minimizers have the low-
est sparsity (highest density) for a given window length w, and cg

minimizers have higher sparsity (Fig. 4), as reported previously

Fig. 2. Sensitivity (y-axis) and spurious hit count (x-axis) for exact-match seeds with

every nth or word-based sparsity (A, B, C, D). Sensitivity was measured on sequence

pairs with PAM distance 20. Seed lengths 5–14 were tested, as shown in (A)

Table 3. Variance-to-mean ratios

Words VMR1 VMR2

sparsity 4

ry 0.25 0.5

ryn 0.25 0.417

rynn 0.25 0.375

rrry, ryrr, ryyr, yyyr 0.25 0.344

rrrry, rryrr, ryryr, ryyrr,

ryyry, ryyyy, yyyrr, yyyry 0.125 0.25

rrrrry, rryrry, rryryy, ryrrrr,

ryrrry, ryryry, ryyrrr, ryyrry,

ryyryr, ryyryy, ryyyry, ryyyyy,

yryrry, yyyrrr, yyyrry, yyyyry 0.0938 0.188

sparsity 8

ryy 0.375 0.625

rrrry, yrrry, yrryy, yryyy 0.25 0.45

rrrrry, yrrrry, yrrryr, yrrryy,

yrryry, yrryyy, yyryry, yyryyy 0.188 0.372

rrryrrr, rrryryr, rryrryr, rryyrrr,

rryyrry, rryyryr, rryyyrr, rryyyyr,

ryryyrr, ryyyryr, ryyyyyr, ryyyyyy,

yryyryr, yryyyrr, yryyyyr, yyryyrr 0.176 0.329

rrrrrrry, rryrrryy, ryrrrryr, ryrrrryy,

ryrrryry, yrrrrrry, yrrrrryr, yrrrrryy,

yrrryrry, yrryrryr, yrryrryy, yryrrryy,

yryrryry, yryrryyr, yryrryyy, yryryryy,

yyrrrryr, yyrrrryy, yyrrryry, yyrrryyr,

yyrrryyy, yyrryryr, yyrryryy, yyrryyry,

yyrryyyr, yyrryyyy, yyryryyr, yyryryyy,

yyryyryy, yyyryyyr, yyyryyyy, yyyyyyyr 0.151 0.281

Note: Bold values are known to be the minimum possible, for that sparsity

and word length.

Fig. 3. Sensitivity (y-axis) and spurious hit count (x-axis) for exact-match seeds with

word-based sparsity (A, B, C, D). Sensitivity was measured on sequence pairs with

PAM distance 20. Seed lengths 5–14 were tested, as shown in (C). In this figure, the

sensitivity is shown relative to every-nth sparsity: (% of related sequence pairs found

by word-restricted seeds)/(% of related sequence pairs found by every-nth seeds)

Fig. 4. Sparsity of minimizers, with three orderings. Red line: sparsity of abb words.

Blue line: sparsity of abbb words. The diagonal gray line in (A), and the horizontal

gray line in (B), show the expected minimizer sparsity ðwþ 1Þ=2
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(Marçais et al., 2017). Interestingly, abb minimizers have even
higher sparsity for w > 10.

Now let us see the sensitivity of these minimizers. Taking alpha-
betic minimizers as an example, if we increase the window size w
without changing the seed length, the sensitivity and random hit rate
both decrease (Fig. 5), as expected. If we then shorten the seeds, the
sensitivity and random hit rate increase. Overall, higher w results in
lower sensitivity for a given random hit count.

To fairly compare the three kinds of minimizer, we should com-
pare them using different window sizes that achieve the same spars-
ity. Based on Figure 4A, alphabetic minimizers with w ¼ 7 are
comparable to cg minimizers with w ¼ 6, and alphabetic minimizers
with w ¼ 20 are comparable to abb minimizers with w ¼ 16.
Comparing them thus, cg and abb minimizers are better than alpha-
betic minimizers (Fig. 5). This supports the idea that higher sparsity
for a given w improves homology search, which does not seem to
have been clearly shown before.

3.6 Minimizers versus words
To fairly compare minimizers with words, we should use minimizer
window sizes that produce the same sparsity as the words.
Figure 6A and B compares words to minimizers with slightly lower

sparsity (higher density), giving an unfair advantage to the minimiz-
ers. Seeds starting with ‘a’ perform worse than alphabetic minimiz-
ers for PAM distance 20 (Fig. 6A), but better for PAM distance 50
(Fig. 6B). On the other hand, seeds starting at non-overlapping (ry)
or minimum-variance words perform better than alphabetic or cg
minimizers, at both PAM distances.

Figure 6C and D compares words to minimizers with about the
same sparsity. Seeds at positions of abbb perform slightly better
than alphabetic or abb minimizers. In more detail: for a given seed
length, the minimizers have worse sensitivity but slightly better
specificity.

Next, we compared word-based seeding to the minimizer scheme
of the minimap2 software (Li, 2018). This scheme uses exact-match
seeds of length 15, with minimizer window w ¼ 10, and an ordering
from a particular hash function applied to each 15-mer. The
expected density is 2=ðwþ 1Þ ¼ 0:1818, but we empirically found a
slightly higher density, 0.185–0.188, in both random and real
sequences. We compared this to 12 length-6 ry words (density
12=26 ¼ 0:1875) that minimize VMR2: rrrrry, rryrrr, rryrry, rryyrr,
rryyry, ryryrr, ryyyrr, ryyyry, ryyyyr, yryyrr, yryyry and yyyyyr.

For this test, random fragments of size 1000 were drawn from
human (GRCh38) chromosome 22, then mutated by the PAM pro-
cess, and the number of conserved 15-mer seeds was counted. At
PAM distance 0, minimap has more seeds, i.e. higher density
(Fig. 7). Nevertheless, at PAM distance � 1, minimap has fewer con-
served seeds.

3.7 Unification with subset seeds
A straightforward generalization of subset seeds incorporates word-
restricted seeding. Recall that subset seeds allow some mismatches
(e.g. a $g and c $t) at fixed positions. More precisely, each pos-
ition in the seed specifies an equivalence relation on the letters of the
sequence alphabet, e.g. ffa; gg; fc; tgg (Roytberg et al., 2009). Our
generalization is: each position specifies an equivalence relation on
some letters of the sequence alphabet.

Such a seed can be described by a pattern, such as:
ANNRYrn@y. This specifies seeds of length 9. Positions with A (in
this case, the first position) allow a: a matches only. Positions with
N allow any match. Positions with n allow any match or mismatch.
Positions with R allow purine matches only: a: a or g: g. Positions
with r allow purine matches or mismatches: a: a, g: g, a: g, g: a.
Positions with Y or y likewise allow pyrimidines (c and t). Finally,
positions with @ allow any match or transition.

Fig. 5. Sensitivity (y-axis) and spurious hit count (x-axis) for exact-match seeds at

minimizer positions. ‘w’ means window length. Seed lengths 5–14 were tested,

shown in gray in the left panel

Fig. 6. Sensitivity (y-axis) and spurious hit count (x-axis) for exact-match seeds at ei-

ther word positions or minimizer positions. Seed lengths 5–14 were tested.

Sensitivity was measured on sequence pairs with PAM distance 20 (A, C) or 50 (B,

D)

Fig. 7. Sensitivity (y-axis) at different evolutionary distances (x-axis), for minimap

seeds and word-based seeds. Here, ‘sensitivity’ is the average number of conserved

seeds over 1000 pairs of length-1000 sequences from human chromosome 22
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The sparsity and weight of a seed pattern refer to hit probabil-
ities in random i.i.d. sequences. Consider a seed pattern U with
length s, and two random sequences, A and B, each of length s.
Define pðA�U BÞ as the probability that A and B match according to
U. Sparsity means rarity of compatible positions in one random se-
quence, and can be defined as: 1=pðA�UAÞ. Weight indicates unlikeli-
hood of a chance match to a compatible position:
log pðA�UB j A�U AÞ= log pðA1 ¼ B1Þ. The denominator is just a scale
factor, to make the weight of an exact-match seed equal its length,
as is traditional.

The hard problem is to design good seed patterns for finding
sequences related by a given PAM distance, transition/transversion
bias, etc. Fortunately, the seed design software Iedera already
allowed this kind of generalized subset seed (Kucherov et al., 2006).
Here, we used it to design seeds for PAM¼20 and j ¼3. To con-
strain the search space in this preliminary study, we only considered
patterns based on ry, i.e. having one R or r and one Y or y, and like-
wise patterns based on ryy. The only other pattern symbols allowed
were N, @, and up to 5 ns. Up to 10 transition-tolerant positions
other than n were allowed. The resulting patterns are in Table 4.
Many other patterns are equally good; we broke ties by preferring
ones that start with RY or RYY.

One notable result is that n positions are useful in the ry-based
seeds, but not the ryy-based seeds. This is presumably because n
positions make overlapping seeds more independent, but sparser
seeds have fewer overlaps.

As expected, these seed patterns are good for finding sequences
that are related by PAM¼20 and j ¼3 (Fig. 8).

4 Discussion

4.1 When to use sparsity
The aim of seeding methods is to maximize sensitivity while mini-
mizing computational cost (time and memory). Computational cost
has two parts: the cost of finding seed matches (c1) and the cost of
processing them (c2). Sparsity need not reduce sensitivity, if the seeds
are shortened, but it usually increases random seed hits (i.e. c2) for a
given sensitivity (Fig. 1). A notable exception is exact-match seeds
and every-nth sparsity with small n (e.g. n ¼ 2), which does not in-
crease random hits for a given sensitivity (Fig. 1). Typically,

however, sparsity is beneficial only when long (or rare) seeds do not
sufficiently reduce the computational cost.

4.2 When to use every-nth sparsity
Every-nth sparsity has better sensitivity per random hits (c2) than ei-
ther minimizers or word-restricted seeds, see also Almutairy and
Torng (2018). So it should be preferred unless its c1 is significantly
worse. It achieves sparsity in just one of the two sequence datasets
being compared, which is appropriate for comparing a huge dataset
to a moderate-size dataset, e.g. many DNA reads to a moderate-size
genome. It might be appropriate for comparing DNA reads to a
human genome.

Sparsity in both datasets, with minimizers or word-restricted
seeds, is appropriate for ‘huge-versus-huge’ comparisons. A typical
example is aligning DNA reads to each other in order to assemble
them, which was a major motivation for minimizers (Roberts et al.,
2004). Other examples are searching DNA sequences from un-
known organisms against a multi-genome database, or checking if
DNA data have contamination from other organisms (Steinegger
and Salzberg, 2020).

4.3 Words versus minimizers
This study indicates that seeding at minimally overlapping words is
superior to minimizers. One caveat—bias due to reduced minimizer
density at sequence edges—is addressed in the Supplementary
Material, and does not change this conclusion. It is important to
note, however, that minimizer schemes are still being optimized
(Marçais et al., 2017, 2018). On the other hand, we have barely
begun to optimize word-restricted seeding.

Compared to word-restricted seeds, a minimizer seed match has
an extra contextual requirement. A seed match can be destroyed by
a mutation inside the seed: this applies equally to both methods.
However, minimizers experience an additional effect: a mutation
outside the seed can make that seed position no longer a minimizer.
This reduces the sensitivity of minimizers, but increases their specifi-
city, which fits our observations.

Our word-restricted seeding has a potential disadvantage: there
is no upper bound on distance between words. The probability of
longer distance decreases exponentially in complex sequence, but
not in simple sequence, such as polypurine tracts or short-period
tandem repeats. Pure simple-sequence similarities are typically not
wanted, because their significance is hard to assess and they do not
reliably indicate homology.

4.4 Further advantages of words
Word-restricted seeding has further advantages over minimizers.
Firstly, it can be co-designed with subset seeds. Secondly, it seems
likely that word positions can be found faster than minimizer posi-
tions. Thirdly, word-restricted seeding is more conducive to efficient
indexes. Seed matches are usually found with an index data-
structure. There are various kinds of index, but they often include a

Table 4. Seed patterns designed by Iedera for PAM 20, j ¼3, align-

ment length 64

Weight Pattern

ry-based seeds: sparsity 4

5 RYNN@@

6 RY@@@@NN

7 RYN@@@@NN

8 RYN@@@@NNN

9 RYN@@@@@@NNN

10 RYN@@@nnNN@@@NN

11 RYN@@@nnNN@@@NNN

12 RYN@@@@NNnn@@@@NNN

13 RYN@@@@NN@nn@@@NNNN

14 RYN@@@@NN@nn@@@@NNNN@

ryy-based seeds: sparsity 8

5 RYY@@@@

6 RYYN@@@@

7 RYYN@@@@@@

8 RYYNN@@@@@@

9 RYY@@@@@@@@NN

10 RYY@@@@@@@@NNN

11 RYYN@@@@@@@@NNN

12 RYYN@@@@@@@@@@NNN

13 RYYN@@@@@@@@@@NNNN

14 RYYN@@@@@@@@@@NNNNN

Fig. 8. Sensitivity (y-axis) and random hit count (x-axis) of seeding methods, for

sequences with transition/transversion bias (j ¼3) and PAM distance 20. Seed

weights 5–14 were tested. ‘Transition seeds’ allow transition substitutions at all

positions

Minimally overlapping words 5349
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lookup table for any possible DNA sequence of some length d. This
table can be reduced (or d increased) with word-restricted seeding,
because only a subset of length-d words are ever considered.

4.5 Co-designed seed patterns
The sensitivity benefit of spaced and subset seeds can be enhanced
by using, instead of one seed pattern, several co-designed patterns
(Buhler et al., 2003; Sun and Buhler, 2006). Each pattern tends to

find similarities that tend to be missed by the other patterns. This
idea could be combined with word-restricted seeding. For example,
we could use four different patterns, each starting with one of the

minimally overlapping words RRRY, RYRR, RYYR and YYYR
(Table 3). Most interestingly, the best set of words may then not be

minimally overlapping ones, but rather words whose overlaps com-
plement the seed patterns.

4.6 Open questions
Our study provides a new motivation for the problem of maximizing
the number of non-overlapping words. For our purposes, minimally

overlapping words are especially useful, but we remain unsure how
best to quantify overlap. Another challenge is how to search a large

number of possible word sets for one with low overlap. More gener-
ally, we would like to design a set of word-restricted subset–seed
patterns.

A further difficulty is how to optimize word-restricted seeding
when the letter frequencies are unequal. In this case, we cannot sim-

ply seek an optimal set of n length-k words, because the sparsity is
not constant. It is notable, however, that most natural DNA has

near-equal frequencies of r and y.
Going further in the direction of empirical data, it might be use-

ful to optimize word-restricted seeding for a particular sequence set
(e.g. a genome). Presumably, it is beneficial to use words that are
anti-clumped while tending to avoid repetitive sequence. Minimally

overlapping words avoid some kinds of repeat, e.g. homopolymers.
Previously, minimizer ordering was defined by frequency in a par-
ticular sequence set (Chikhi et al., 2014).

Word-restricted seeding requires fast word-finding. Perhaps
some word sets are conducive to fast detection, e.g. the eight length-

7 words in Supplementary Table S1 share a common prefix.
When we use increasingly long minimum-variance words, with

fixed sparsity n, the sensitivity might approach that of every-nth
seeding (Figs 2 and 3). The seed count of every-nth seeding has zero

variance: can the words achieve arbitrarily low variance? If so, they
become arbitrarily close to a universal k-mer hitting set. Perhaps
optimized minimizers, minimally overlapping words and universal

k-mer hitting sets will converge.
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