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Decoding heterogeneity of pluripotent stem cell (PSC)-derived neural progeny is fundamental

for revealing the origin of diverse progenitors, for defining their lineages, and for identifying

fate determinants driving transition through distinct potencies. Here we have prospectively

isolated consecutively appearing PSC-derived primary progenitors based on their

Notch activation state. We first isolate early neuroepithelial cells and show their broad

Notch-dependent developmental and proliferative potential. Neuroepithelial cells further yield

successive Notch-dependent functional primary progenitors, from early and midneurogenic

radial glia and their derived basal progenitors, to gliogenic radial glia and adult-like neural

progenitors, together recapitulating hallmarks of neural stem cell (NSC) ontogeny. Gene

expression profiling reveals dynamic stage-specific transcriptional patterns that may link

development of distinct progenitor identities through Notch activation. Our observations

provide a platform for characterization and manipulation of distinct progenitor cell types

amenable for developing streamlined neural lineage specification paradigms for modelling

development in health and disease.
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T
he identification of NSCs in the developing and adult brain
has transformed the way we understand central nervous
system (CNS) development and regeneration. However,

long following their isolation from the CNS1 or the derivation of
neural progenitors from PSCs, our ability to address the dynamic
changes in self-renewal and potency of distinct NSC types in vitro
has remained poor. The exceptionally pioneering studies done in
the NSC field in vivo have led to the identification of fundamental
NSC types populating the germinal zones—neuroepithelial
(NE) cells, radial glial (RG) cells and adult NSCs (aNSCs; for
review see refs 2,3). These studies provided the basis for our
understanding of the dynamic nature and lineage relationship of
these distinct NSC types in vivo, describing the unique timing
mechanism of neuronal cell type generation4. However, in depth
in vitro dissection of the molecular characteristics of each stage,
particularly within the RG compartment, has been stalled mainly
by the heterogeneity of NSC cultures and the lack of stage-specific
markers. In fact, despite being highly heterogeneous5, distinct RG
cell types as well as aNSCs are known to share similar RG cell
markers rather than distinctive ones. The reporter gene- and
surface marker-based prospective isolation of acute mouse aNSCs
serves as a great example for a more in depth analysis of
aNSC characteristics6. However, applying such a study to human
CNS-derived RG cells is limited due to obvious shortage in early
human CNS tissue. Thus, in depth understanding on human NSC
ontogeny and dynamics in culture is still elusive.

The advent of PSCs has brought the ability to direct
early neural progenitors towards a range of neuronal cell fates
including midbrain dopaminergic neurons7, spinal motoneurons8

and telencephalic cortical neurons9–11 (for review see ref. 12). One
remarkable study by Knoblich and coworkers allows monitoring
early to midgestation cerebral morphogenesis and neurogenesis,
making up an attractive approach to model development and
disease of the human brain13. Another recently published
comprehensive work delineates the temporal transcriptome
analysis of cerebral cortex neuronal subtypes derived from
PSCs14. These two latter advancements have significantly helped
to demonstrate the capability of hESC differentiation strategies to
recapitulate major hallmarks of in vivo neural development
and serve as a valuable resource for modelling development
and disease of the human brain. Further to these important
findings, however, there is a need to better understand how
different types of progenitors emerge and exert their full potential
while progressing through distinct competences during
development. Addressing such an aim requires employing
differentiation culture strategies that allow distinguishing
primary progenitor cells holding extensive proliferation
capacity and broad differentiation potential from the bulk of
accompanying progenitors that lack these abilities. We previously
isolated an early progenitor cell type from PSCs that exhibits
considerable self-renewal capacity (termed rosette-neural stem
cells (R-NSCs)), and showed their developmental potential and
distinct molecular signature15. However, also the R-NSC stage
exhibits high heterogeneity with respect to NSC potential and
corresponds to a transient stage in vitro. Currently there is no list
of genes at high confidence that are known for specific types of
neural progenitors emerging in culture, stressing the need to
unravel generalized networks and pathways involved in the
extensively changing dynamics of early NE cells. Taken together,
despite many years of NSC research, the heterogeneity and rapid
transition through distinct neural stem and progenitor cell types
still impedes our understanding of origin, lineage transitions and
the key factors that maintain or alter the epigenetic stability of
early NE cells.

To begin to tackle these fundamental challenges, here we
establish a long-term neural differentiation system from PSCs

using HES5::eGFP reporter human embryonic stem cell (hESC)
line. HES5 is a major and direct downstream target of Notch
activation pathway (for review see ref. 16). This allows the
prospective isolation and characterization of primary progenitors
retaining low proneural transcriptional activity and broad
developmental potential and thus serving as the primary
progenitors—or NSCs—that generate neural cellular diversity.
The stepwise isolation of Notch active NSCs during neural
differentiation of PSCs enables a systematic investigation of
human NSC ontogeny and proposes a controlled module-based
platform for understanding the development of normal and
pathogenic NSCs and their progeny.

Results
Notch activation links major neural lineage transitions. We
used the previously established H9 (WA09) derived HES5::eGFP
hESC reporter line17 to monitor morphology and HES5 reporter
cell expression dynamics. We defined five consecutive stages
during 220 days of neural differentiation and propagation
(Fig. 1a,b; Supplementary Fig. 1a,b). Neuroectodermal cells
emerged as early as day 5–8 and expressed SOX1 followed by
PAX6, but not HES5 (Supplementary Fig. 1c). On day 12, HES5 is
widely expressed and coincides PAX6 and SOX1, along with
other progenitor cell markers such as SOX2 and NESTIN (Fig. 1c;
Supplementary Fig. 1d), possibly marking establishment of the
CNS earliest NE cells following neural induction18. Shortly after,
on day 14, HES5-expressing cells rapidly become elongated,
maintain PAX6 expression and form neural rosettes—highly
polarized structures containing radially organized columnar
cells15—reminiscent of RG cells residing within the developing
ventricular zone (VZ)19,20 and as suggested by other in vitro
studies9–11. Neural rosettes last till approximately day 35
(Fig. 1b,c; Supplementary Fig. 1a). We therefore designated
day-14 rosettes as early radial glial (E-RG) cells and day-35
rosettes as midradial glial (M-RG) cells. HES5 continues to be
expressed in progenitors throughout the progression period,
albeit in progressively decreasing numbers (Supplementary
Fig. 1b). In contrast, SOX1, SOX2 and NESTIN remained
highly expressed in the majority of cells throughout the entire
propagation (Fig. 1c). This indicates that the highly proliferative
conditions are not sufficient to retain the initial high Notch
activation level beyond the E-RG stage. More importantly, this
may reflect the transition of early NSCs into more limited
progenitors, in line with in vivo findings21,22. This observation
was also accompanied by an apparent expression of DCX at the
M-RG and L-RG stages, together with a gradual loss in rosette
integrity (Fig. 1c). Taken together, these findings suggest that
extensive neurogenesis occurs mainly during M-RG through
L-RG stages. On the basis of these observations we defined two
additional post rosette consecutive stages for analysis—day 80
and day 220. Neural progenitors on day 80 represent a later radial
glial (L-RG) cell population exhibiting a more gliogenic bias,
based on downregulation of rosette (R-NSC) markers such as
PLZF and the upregulation of glial markers such as epidermal
growth factor receptor (EGFR) and S100B15 (Supplementary
Fig. 1e). These were still capable of generating neurons and glia,
supporting existence of subsets of NSCs15. Neural progenitors
could continuously propagate for many additional passages. Day
220 represents a long-term cultured neural progenitor (LNP)
stage exhibiting a further substantial increase in EGFR and
S100B levels (Supplementary Fig. 1e), while retaining
multipotency (Supplementary Fig. 1f). These dynamic changes
in Notch activation state along with morphological features
suggest that this long-term culture system provides a suitable
paradigm to study NSC state and cell fate transition.
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Notch activation confers CNS rostrocaudal patterning ability.
To dissect the early cell fate potential of HES5þ compared with
that of HES5� isolated progenitor cell populations, we tested
whether early Notch activation is required for NE cells to respond

to early developmental cues that yield regionally specified CNS
neurons. We exposed neuroectodermal cells to patterning cues
directing rostrocaudal regional fates before onset of HES5::eGFP
expression. When neuroectodermal cells reached the NE stage
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Figure 1 | Notch activation links major neural lineage transitions in hESC derived neural progenitor cells. (a) Neural differentiation scheme. Neural

induction was performed by a dual SMAD inhibition protocol followed by long-term propagation with the factors indicated for 220 days. Naming

conventions representing neuroepithelial (NE), early radial glial (E-RG), midradial glial (M-RG), late radial glial (L-RG) and long-term cultured progenitors

(LNP) are indicated. Number of passages are indicated as P(n). (b) Bright field microscopy of progenitor cells during long-term differentiation shows

dynamic morphological features. Scale bar: 50mm (valid for all images in b). (GFP matched images can be seen in Supplementary Fig. 1a). (c) Combined

HES5::eGFP reporter expression and Immunostainings of stem/progenitor cell as well as differentiation markers throughout the progression period. Top:

PAX6, SOX1 and HES5 induction during early stages (See also Supplementary Fig. 1a,b for HES5::eGFP percentages). Middle and Bottom: SOX2, NESTIN and

DCX expression. Scale bar: 50mm (valid for all images in c). Individual qPCR analyses for all genes tested at all stages are shown in Supplementary Fig. 1d.
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(day 12), HES5þ and HES5� cells were separated, further
subjected to complete differentiation along the selected regional
paradigm, and were finally assessed for their ability to yield the
corresponding regional-specific neuronal subtypes (Fig. 2a).
Remarkably, early-projection neurons expressing appropriate
rostral to caudal regional neuronal markers such as TBR1 fore-
brain cortical neurons, FOXA2/TH midbrain dopaminergic
neurons and HB9 spinal motoneurons, could be generated mainly
from high HES5-expressing cells (Fig. 2b,c). In contrast, HES5�
progenitors weakly responded to patterning cues although
they were capable of generating neurons (Fig. 2b, bottom;
Supplementary Fig. 2a). Requirement for Notch activation in the
generation of early CNS neurons was also evident for additional
early cortical neuronal markers such as CTIP2, NR2F1 and PCP4

(ref. 23) (Supplementary Figs 4 and 5). Finally, we also confirmed
requirement for Notch activation by inhibiting this signalling
pathway using DAPT during neural induction. Both HES5 and
PAX6 expression levels were reduced following DAPT addition,
while the neural crest/placodal marker SIX1 was upregulated
(Supplementary Fig. 2b).

These findings suggest that neuroectodermal cells require high
Notch activation to acquire appropriate CNS neuronal cell
identities. To further support this latter possibility, we followed
HES5þ and HES5� progenitors derived from the NE stage
through the E-RG stage and assessed their cell fate and proliferative
capacities with respect to Notch activation. We found that
consecutively sorted HES5þ populations retained PAX6 expres-
sion, while consecutively sorted HES5� cells retained AP2A
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Figure 2 | Early Notch activation in NE cells confers amenability to neural patterning cues. (a) Neural patterning paradigm scheme. PSCs were subjected

to neural induction and were exposed to patterning cues directing differentiation into forebrain, midbrain and spinal cord cell fates with the morphogenes

indicated. Region specific progenitors were sorted to high, medium or low HES5::eGFP expressing populations followed by neuronal differentiation.

(b) Immunostaining for respective neuronal progeny derived from HES5þ (top) or HES5� (bottom) isolated on day 12 of progression. Cortical neurons

marked by TBR1, midbrain dopaminergic neurons marked by FOXA2/TH and spinal cord motoneurons marked by HB9 are shown. Scale bar: 50 mm.

(c) Quantitative PCR analysis of transcript levels of HES5 as well as selected regional markers in high (þþ , dark green bars), medium (þ , light green bars)

and low (� , grey bars) HES5-expressing progenitors, in their proliferative state (day 12 or day 14) and following terminal neuronal differentiation (day 19,

day 26, or day 28). All transcript levels shown are normalized to respective HPRT levels in each sample. Values were obtained from three technical

replicates. Statistical analysis: mean±s.e.m.; t-Test: ***Po0.001; **Po0.01; *Po0.05. Individual qPCR analyses for additional regional or neuronal markers

are shown in Supplementary Fig. 2a.
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expression, confirming that CNS and neural crest fates are dictated
by Notch active and inactive states, respectively (Supplementary
Fig. 3a). Furthermore, additional CNS markers such as SOX2 and
OTX2 were enriched in HES5þ cells at the NE stage compared
with HES5� cells, while the neuronal marker DCX was enriched
in HES5� cells (Supplementary Fig. 3b). Finally, consecutively
sorted HES5þ populations retained an overall stable level of BrdU
incorporation, compared with consecutively sorted HES5� cells
(Supplementary Fig. 3c). These results suggest that Notch in
neuroectodermal cells is mainly important for segregating CNS
from non-CNS cell fates and in addition may confer CNS cells with
a proliferative advantage.

Notch activation enables cortical lamination and glial fates.
Studies on cortical differentiation from PSCs have shown how
continued culture of early rosettes yields sequentially appearing
cortical neuronal layers by a default intrinsic mechanism9–11.
Here we asked whether HES5þ NE cells generated by such a
default model serve as the primary progenitor cell source also for
cortical lamination. We specifically asked whether prospective
purification of Notch active progenitor cells throughout the
progression in vitro correlates with potential to yield cortical
neurons in a time and cortical layer dependent manner.

We found that early NE and E-RG progenitor stages gave rise
mainly to neurons populating deep layers (Fig. 3a) and in a
Notch-dependent manner (Fig. 3b,c; Supplementary Figs 4 and
5). These included deep layer-V FEZF2þ and CTIP2þ
corticospinal neurons24, early subplate and deep layer-VI
TBR1þ corticothalamic neurons25, early marginal zone
RELNþ Cajal Retzius neurons26, and deep layer SATB2þ
callosal neurons. While the latter are mainly known in their
contribution to upper layers, they have been also shown to reside
within deep layers to some extent27. In contrast, later M-RG and
L-RG stages gave rise mainly to neurons that populate superficial
layers (Fig. 3a) and in a Notch-independent manner (Fig. 3b,c;
Supplementary Figs 4 and 5). These included CUX1þ and
CUX2þ (ref. 28) as well as SATB2þ layers II-IV callosal
neurons. We interestingly noticed that while CUX1/2 protein
levels were induced in neurons derived from M-RG progenitors
and onwards, at the RNA level they were induced already at early-
stage-derived neurons, and this transcript expression depended
on Notch activation (Fig. 3b,c; Supplementary Fig. 4). This
suggested that early CUX1/2 RNA expression reflected early
progenitor potential, rather than immediate competence, to
generate superficial layer neurons. This result is paralleled by an
in vivo observation according to which progenitors prospectively

labelled for Cux2 appear already during early cortical
development29. Taken together, these results show that early
progenitor stages require Notch activation to generate early
appearing neurons, while late progenitor stages yield later derived
neurons regardless of Notch activation.

We hypothesized that M-RG stage progenitors did not require
Notch activation for generating later derived neurons because many
of them correspond to HES5� subventricular zone (SVZ)-like
intermediate progenitor (INP) cells that have already accumulated
from earlier stages in a Notch-dependent manner. To test this, we
asked whether the generation of such SVZ progenitors expressing
TBR2 (EOMES)30 requires Notch activation. We found that TBR2
was upregulated during differentiation of NE cells in a Notch-
dependent manner and that this upregulation was prevented
following Notch inhibition by DAPT (Fig. 3d). This is in contrast to
the later (M-RG) stage, where most TBR2 levels were derived from
HES5� cells, and accordingly were not inhibited by DAPT. This
shows that the majority of TBR2 progenitors that were apparent at
the M-RG stage were already generated from early Notch active
cells rather than generated de novo at the M-RG stage. For
comparison, we also tested the expression of FEZF2—a hallmark of
earliest cortical RG progenitors31,32. FEZF2 expression at early
stages also strictly depended on Notch activation and was fully
inhibited by DAPT (Fig. 3d). The inhibition of FEZF2 and TBR2 by
DAPT demonstrates that generation of both early and late
progenitors and their neurons is significantly affected in the
absence of Notch activation.

Additional support for stage-specific differential dependence
on Notch is provided by TBR1þ and RELNþ neurons. These
appear not only during early sublate and marginal zone
formation, respectively, but also during midgestation by later
SVZ progenitors33, and may also populate more caudal cortical
regions34. Accordingly, we found that TBR1 and RELN neurons
could be both generated also at the M-RG stage and in a Notch-
independent manner (Fig. 3b,c; Supplementary Figs 4 and 5).

Similar to the critical role of Notch activation during the
derivation of early progenitor cells and their neuronal progeny,
also the generation of astrocytes expressing GFAP at the L-RG
stage required Notch activation (Fig. 3e). This is in contrast to
neurons at that stage, which could be derived also from HES5�
cells (Fig. 3b,c). Taken together, these results show that the
distinct progenitor units spatiotemporally organized in the
developing VZ and SVZ and which are responsible for cortical
lamination and glial transformation in vivo, can be consecutively
isolated from PSCs through sustained Notch signalling in vitro.
While the main role of Notch activation is to promote the
perpetuation of potent progenitors through culture, it may not be

Figure 3 | Consecutive isolation of Notch active progenitors recapitulates cortical lamination and glial fates. (a) Combined HES5::eGFP reporter

expression and immunostainings of cortical layer specific neuronal markers: Early born neurons expressing TBR1, RELN and CTIP2 (top two panels), and

late derived neurons expressing SATB2, POU3F2 and CUX1 (bottom two panels), are shown for NE, M-RG and L-RG progenitors that were subjected to

neuronal differentiation. Insets for RELN/TBR1 and SATB2/POU3F2 show magnified areas within the image. Inset for CTIP/TUJ1 shows same magnification

but a different view of neuronal axons. Images of HES5þ derived neurons are shown. Scale bars: 50mm for images, 25 mm for Insets. Images of HES5�
derived neurons and percentages of all cortical subtypes derived from both HES5þ and HES5� cells are presented in Supplementary Fig. 5. (b)

Distribution of relative transcript abundance based on qPCR for selected stage-specific marker gene groups for either deep or upper layer neuronal progeny.

Contributions of HES5þ and HES5� populations per each respective stage are shown. Marker gene groups for each progenitor stage were created by

collapsing the normalized values of TBR1/RELN, CTIP2/FEZF2 and CUX1/CUX2/SATB2 (see Methods for details). Individual qPCR analyses for all genes

tested at all stages are shown in Supplementary Fig. 4. (c) Same as in b. Here, cumulative neuronal marker levels based on relative transcript levels are

shown (top). Note the decrease in total neuronal progeny shown in the lower panel, as the glial marker GFAP is upregulated in panel e. (d) Distribution of

relative transcript abundance based on qPCR for selected stage-specific marker genes for indicated progenitor or neuronal cell markers. Contributions of

HES5þ and HES5� populations per each respective stage from either untreated or DAPT treated cells are shown. Expression levels relative to HPRT of

all four conditions (colour coded) were summed per each gene and plotted as a single bar. (e) Top: Combined HES5::eGFP reporter expression and

immunostaining of the glial marker GFAP following differentiation of the L-RG stage. Scale bar: 50mm. Bottom: GFAP transcript level for distinct progenitor

stages as assessed by qPCR. Values were obtained from three technical replicates. Statistical analysis: mean±s.e.m.
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directly involved in generating cellular diversity, but rather
maintain progenitors responsive to our culture conditions, which
instruct these cell fate changes.

Notch activation links hallmarks of cortical development. We
next looked into the molecular hallmarks that specifically define

each of the developmental stages in vitro with respect to Notch
activation. We employed global gene expression analysis
(Supplementary Data 1; see Methods for details) and specifically
investigated transcripts differentially expressed in HES5þ com-
pared with HES5� progenitors at each stage (Fig. 4a;
Supplementary Data 2). Interestingly, genes upregulated in
HES5þ NE cells were mainly associated with cell cycle
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progression and DNA replication, and included CDC6, CDK1,
CENPH and TOP2A (Fig. 4a). Genes specifically enriched in
HES5� cells at the NE stage included the proneural genes
NEUROD4, NGN1/2, TBR2 and DCX (Supplementary Data 3).
These results are compatible with NE HES5þ acting as sym-
metrically dividing NSCs during early nervous system develop-
ment (for review see ref. 21) and further suggest that Notch
confers amenability for regional neuronal specification through
promoting cell cycle.

In contrast to NE cells, HES5þ at the E-RG stage (day 14)
were enriched for genes such as ARX, FEZF2 and NR2E1 with
respect to HES5� cells (Fig. 4a), indicating that Notch active NE

cells underwent a sharp and rapid transition towards an RG cell
stage with a strong dorsocaudal telencephalic character. Notch
active progenitors in the more advanced rosette M-RG stage
continued to highlight cerebral developmental genes such as
POU3F2 (BRN2) as well as genes associated with neuroblast cell
division such as ASPM (Fig. 4a), fitting with extensive neurogen-
esis during the M-RG stage. Transcripts overrepresented in
HES5þ cells in the L-RG stage were associated with glial fate key
genes such as OLIG1 and PDGFRA (Fig. 4a). Finally, genes
overrepresented in HES5þ versus HES5� progenitors at the
LNP stage such as ANXA2 and LGALS1 (GALECTIN) are
associated with ependymal cells and aNSCs6 (Fig. 4a), suggesting
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Figure 4 | Transition through progenitor cell stages demarcates developing rosettes as VZ and SVZ equivalents. (a) Differential expression levels for

selected genes that are most differentially expressed between HES5þ and HES5� cells in a stage-specific manner. Selected gene members are indicated

on the left, developmental stages are indicated on the bottom, and gene categories classified by stage are indicated on the right. Values plotted on the

heatmap represent ratios of expression levels relative to ES cells. (b) Relative expression levels (z-scores) based on microarray expression data for the

entire differentiation time course for selected germinal zone marker genes. Relative expression levels are shown for HES5þ (top) and HES5� (bottom)

samples separately. Genes are ordered from VZ to SVZ and from neurogenic to gliogenic markers. Individual qPCR analyses for all genes tested at all stages

are shown in Supplementary Fig. 6c. Note that the apparently high GFAP expression in HES5þ cells at the L-RG stage has in fact low absolute expression

values, and only appear high relatively to expression in other stages (all stages per each gene are normalized to 1; that is, highest red intensity). To compare

GFAP transcript levels during proliferation and serum induced astrocytic differentiation, see Figs 5d and 3e, respectively. (c) Combined HES5::eGFP reporter

expression and immunostainings of neural stem/progenitor markers, RG markers, and proliferation markers throughout the progression period. From top:

PAX6 marking the VZ and TBR2 marking the SVZ are shown. Middle: CUX1 marking SVZ is shown. Bottom: the (mainly) SVZ marker POU3F2 is shown.

Scale bar: 50mm (valid for all images in c). (d) High-power magnification of E-RG and M-RG images shown in c. Dashed lines demarcate proposed VZ, SVZ

and OSVZ regions, containing apical RG, INPs and basal RG, respectively. Scale bar: 25mm (valid for all images in d).
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that LNP cells progressed beyond RG fates towards adult-like
progenitor identity. These results show that PSC-derived neural
progenitors progress through distinct stages that may be possibly
linked via Notch activation, from NE cell proliferation through
neurogenic RG cell differentiation, glial transformation and adult
NSC specification. To further support these observations we
looked specifically at the relative distribution of germinal zone
genes among the various stages with respect to Notch activation.
The heatmap in Fig. 4b (see also Supplementary Fig. 6c) shows a
consecutive correlation of NE/E-RG, M-RG, L-RG and LNP
stages in vitro, with VZ, early SVZ, late SVZ and subependymal
zone (SEZ) in vivo, respectively. Furthermore, it is evident that
VZ markers are enriched in Notch active cells while SVZ markers
are more comparably distributed between Notch active and
inactive cells. To summarize, our molecular data further confirm
that Notch activation links the establishment of NE cells and their
transition through consecutive primary RG progenitors.

Early- and midrosettes demarcate germinal zone equivalents.
We next employed immunostainings and 3D (three-dimensional)
reconstruction analyses to dissect the hierarchical progression of
progenitors at the cellular and cytoarchitectural levels with
respect to Notch signalling. The abundant occupancy of PAX6
and HES5 at all rosette cells at the E-RG stage (Fig. 4c,d) indeed
fits the dorsal cortex molecular identity of E-RG cells
(Fig. 4a)10,11. In contrast, PAX6 and HES5 spatial distribution in
the M-RG stage was mainly confined to lumens, as well as to
regions located distally to rosette areas (Fig. 4c,d). These two
PAX6 and HES5-expressing progenitor cell types possibly
corresponded to VZ residing apical RG progenitors and
putative outer SVZ (OSVZ) localized basal RG progenitors,
respectively35,36. 3D reconstruction analysis of E-RG and M-RG
rosettes demonstrates that HES5þ cells are composed of
elongated radial fibres that cross the entire Z-section in an
apical to basal manner, attesting for a complex rather than flat
rosette composition obtained via non-confocal images. E-RG
rosettes (Supplementary Movie 1) are packed with HES5þ /
PAX6þ cells across all rosette area while dividing nuclei located
luminally, at multiple Z-levels. M-RG rosettes are characterized
by HES5þ /PAX6þ cells and dividing nuclei both confined to
luminal regions only, at multiple Z-levels, in addition to neuronal
processes accumulating at lower Z-levels (Supplementary
Movie 2). The cell division at luminal sites is also reflected
by the expression pattern of the M-phase marker PHH3,
which is confined to nuclei within lumens at E-RG and
M-RG rosettes, while the general cell cycle marker KI67 was
apparent among all progenitors regardless of HES5 expression
(Supplementary Fig. 6a).

Further evidence ascribing the M-RG stage rosettes as a site of
midneurogenesis is also provided by the many TBR2þ INPs that
appeared transiently and specifically at this stage, and were
located at rosette peripheries, assigning these regions in M-RG
rosettes as midneurogenesis SVZ-like areas (Fig. 4c,d;
Supplementary Fig. 6b)30,33. This was further corroborated by
the expression of CUX1/2 and POU3F2/3. These neuronal
markers begin to be expressed in VZ/SVZ progenitors during
midgestation28,37, and accordingly appeared at the M-RG stage,
located at rosette peripheries (Fig. 4c,d; Supplementary Fig. 6b).

Rosette disassembly marks the beginning of gliogenesis. Evi-
dence suggesting that M-RG rosettes serve not only as a site of
extensive neurogenesis, but also of transition to glial stages is
provided by the expression pattern of the RG markers GLAST
and FABP7. These became evident already in E-RG rosettes,
coinciding with PAX6 and HES5 (Fig. 5a,b), marking neurogenic

RG. At the M-RG stage these markers appeared at luminal
regions together with HES5 and PAX6, but were also located at
rosettes peripheries where they did not coexpress PAX6 and
HES5. This fits the findings that CNS progenitors prospectively
tagged for GLAST and FABP7 at early stages in vivo were found
labelling most neuronal progeny, while if prospectively marked at
midneurogenesis, they labelled glial fates38.

The L-RG and LNP stages were no longer capable of forming
rosettes, reflecting loss of epithelial integrity due to accumulation
of basal progenitors, neurons and cells with astroglial character.
HES5 and PAX6 cells further decreased in numbers (Fig. 1c;
Supplementary Fig. 1b), reflective of the reduction in neurogenic
NSCs. Some CUX1/2 and POU3F2 progenitors still remained at
the L-RG stage, marking residual neurogenesis (Fig. 4c,d).
Enhanced astroglial identity is supported by the further increase
in GLAST and FABP7 levels (Fig. 5a,b) as well as the glial
markers S100B and EGFR (Supplementary Fig. 1e). The increase
in EGFR transcript levels was also reflected by an increase in
EGFRþ cells in 10% of L-RG cells, as judged by fluorescent-
activated cell sorting (FACS) analysis (Fig. 5c). EGFR labelling
possibly reflected a newly established subset of progenitors at the
L-RG stage, compatible with EGFR labelling mainly late SVZ
progenitors in vivo39.

In contrast to L-RG cells, most LNP cells expressed EGFR as
shown by FACS analysis (Fig. 5c), suggesting that following long-
term culture, progenitors correspond to EGFRþ transit
amplifying cells. Such cells can be derived from aNSC astrocytes
following activation by EGF in culture40. This observation may
explain the low GFAP levels found in our cultures throughout the
progression period (Fig. 5d). Interestingly, many HES5-
expressing cells at the LNP stage colocalized with S100B
(Supplementary Fig. 1e), indicative of ependymal cells41, and in
line with enrichment of genes harbouring ependymal character in
HES5þ LNP cells (Fig. 4a).

Molecular characterization of neural cell fate transition. Our
findings suggest that HES5 expression during progenitor pro-
gression links the sequential transition through distinct compe-
tences. Such a mechanism can underlie the generation of
heterogeneity in culture due to the fact that many HES5� cells
exist throughout culture. Accordingly, factors that share expres-
sion among HES5þ cell stages may serve as transcriptional
regulators for neural development, while stage-specifically
expressed factors may be coopted to drive the transition through
distinct competences. To identify such potential candidate genes
having a role in inducing, maintaining, or transitioning between
distinct competences, we employed an unbiased clustering ana-
lysis on all differentially expressed genes across HES5þ and
HES5� populations. This analysis yielded 26 gene clusters that
were divided to 7 distinct gene expression patterns (Fig. 6a;
Supplementary Data 4). Gene clusters upregulated early from ES
to NE cells and sustained among all stages are expected to
have a role in inducing neural fates and maintain anterior cell
character throughout prolonged periods. Accordingly, this early
upregulated cluster is enriched for central nervous system
(P¼ 8E� 13; right-tailed Fisher exact test used by IPA) and
forebrain (P¼ 1.0E� 8) development as well as neuronal cell
movement (P¼ 1.0E� 10) GO categories (Fig. 6b), and contained
factors such as FOXG1, PAX6, ZIC1 and SP8, which have been
well implicated either in neural induction, forebrain specification
and cortical areal patterning. Gene clusters upregulated at the
M-RG stage and sustained throughout subsequent stages are
anticipated to have role in active neurogenesis but also in
the initiation of gliogenic bias, in correlation with our findings
(Figs 4 and 5). As such, this cluster was enriched for genes
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involved in morphology of nervous system (P¼ 7.9E� 7) and
formation of plasma membrane projections (P¼ 2.2E� 6), both
implicated in neuronal axon maturation. These categories inclu-
ded for example NFIA and NFIB, which are interestingly involved
in both repressing neuronal progenitor state through Notch sig-
nalling concomitantly with activating glial fates42. Other factors
included are SLITRK, ASCL1 and PREX1, which are associated
with neurite outgrowth as well as neuronal maturation and
migration. In addition, we interestingly found that EZH2—the
histone methyltransferase of PRC2, is transiently expressed
through the M-RG stage (Supplementary Fig. 7a). This latter
observation nicely correlates the finding that Ezh2 regulates the
balance between self-renewal and differentiation in the
mouse cerebral cortex, as its loss leads to aberrant timing of
cortical development43. One particularly interesting cluster is
characterized by genes exhibiting a transient expression during
the NE stage (specifically in HES5� cells) followed by a transient
reexpression during the M-RG stage. This cluster included TBR2,
RSPO2, NEUROD1 and TFAP2B—genes associated with
neurogenesis and basal progenitor (INP) cell fate. This
observation may intriguingly imply that the establishment of a
set of transcription factors (TFs) regulating SVZ generation and
cortical expansion may already originate and act during early
corticogenesis. Genes upregulated at the L-RG and LNP stages are
highly enriched for genes involved in neurotransmission
(P¼ 2.4E� 7) and include GABBR2, GRIA4 and GRM3, but are
also enriched for genes strongly implicated in glial fates such as

OLIG1 and OLIG2 (P¼ 3.4E� 7), again manifesting how late
neuronal maturation events coincide with extensive gliogenesis.
Another gene expressed at the LNP stage is LGALS1
(Supplementary Fig. 7a,b). Interestingly, Lgals1 was shown to be
specifically enriched in prospectively isolated GFAPþ /
Prominin1þ aNSCs as well as ependymal cells6. Gene clusters
upregulated at the NE towards E-RG stage were enriched for
nervous system morphogenesis (P¼ 1.2E� 7) and cancer
associated factors (P¼ 6.9E� 8) and included genes such as
NR2E1 and LGR5. NR2E1 is mainly expressed in Notch active
cells at the E-RG stage (Supplementary Fig. 7a), compatible with
Nr2e1 role in controlling proliferation of VZ progenitors during
the establishment and expansion of the SVZ44. Interestingly,
NR2E1 was also moderately expressed at the later LNP stage
(Supplementary Fig. 7a), in correlation with its expression in
mouse aNSC astrocytes as well as its role also in brain tumor
initiation from NSCs45. LGR5—another interesting E-RG specific
gene (Supplementary Fig. 7a)—is a major stem cell regulator of
adult tissue regeneration and malignancy, and was initially
identified in the stem cells of the small intestine and colon46.
Finally, we also identified a cluster of genes expressed in ES cells
but also transiently in NE and E-RG stages. One such candidate is
LIN28A (Supplementary Fig. 7b). Interestingly, this RNA-binding
protein is known also to have a role in reprogramming to
pluripotency47, suggesting additional roles for this protein during
early neural development. Accompanying in this cluster is
HMGA2 (Fig. 6a)—a fetal and young-adult (but not old) NSC
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Figure 5 | Glial transformation with respect to Notch activation. (a) Combined HES5::eGFP reporter expression and immunostainings of the RG markers

GLAST (top) and FABP7 (bottom). Scale bar: 50mm (valid for all images in a). (b) High-power magnification of E-RG and M-RG images for selected genes

shown in a. Scale bar: 25mm (valid for all images in b). (c) EGFR expression percentages by FACS analysis for L-RG (purple) and LNP (turquoise) stages is

shown. Average of 2 independent experiments is shown. Statistical analysis: mean±s.e.m. (d) Relative GFAP expression levels based on qPCR data for the

entire progression period. Relative expression levels are shown for HES5þ and HES5� samples during progenitor proliferation. Values were obtained from

three technical replicates. Statistical analysis: mean±s.e.m. Compare the very low relative levels of GFAP during proliferation (day 80 HES5þ cells) to

GFAP levels at the same progenitor type following astrocytic differentiation in Fig. 3e.
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marker48 and a target for Let-7, a microRNA whose maturation
and function is repressed by LIN28A. Finally, we also identified
F11R (Supplementary Fig. 7b). This tight junction protein shown
to be involved in platelet adhesion to the activated endothelium49,
but was also suggested to act in the cell-to-cell adhesion of neuro-
epithelial cells50. Taken together, these transcriptional trends
suggest that the dynamic changes occurring in progenitor cell
potency during culture are linked via Notch activation through
stage-specifically acting factors.

Discussion
This study offers a first in depth dissection of the dynamic
changes that lead to heterogeneity in PSC-derived neuroepithelial
cells during long-term culture, and shows that they match
developmental logics and timing principles of mammalian NSC
ontogeny. Moreover, this study suggests that Notch activation is a
critical component orchestrating this ontogeny in vitro, by
establishing the identity of neuroepithelial cells, regulating their
numbers during progression, and linking their transition through
distinct developmentally specific primary progenitor cells—which
together comprise the diversity of NSC types promoting
neurogenesis and gliogenesis of the CNS.

The consecutive prospective isolation of Notch active progeni-
tors along the entire differentiation period in vitro enabled us to
enrich cultures for primary progenitor cells that may hold
proliferative advantage and broad developmental potential, while

eliminating those lacking these features. This allowed the
generation of distinct progenitor modules in vitro temporally
linked via Notch activation to serve as building blocks of nervous
system establishment and neocortical construction (see Model,
Fig. 7). It is conceivable that each of the distinct HES5þ
populations exhibits improved homogeneity with respect to
Notch activation. This allows a more meaningful evaluation of the
functional, cellular and molecular properties of distinct progeni-
tor cell types during normal and abnormal development. The
combined functional analysis and gene profiling of the isolated
cell types during stage transitions provide a highly valuable
resource of stably expressed as well as stage specifically expressed
transcriptional regulators, which may be critical for both
launching the onset of early NSCs as well as driving their
progression through distinct developmental potencies, through
Notch activation.

One exciting finding in this study is the more accurate
identification of neuroepithelial cells and their properties with
respect to Notch activation. Our findings emphasize the ability of
enhanced Notch activation to ensure the maintenance of
progenitors in a state that allows them to respond to develop-
mental cues. Importantly, high Notch activation does not prevent
the progression through distinct fate competences, but rather
links the progression through distinct lineages in culture, thus
ensuring the execution of the full developmental potential of NE
cells. Mechanistically, Notch activation first dictates CNS identity
during neural induction. Second, it represses proneural trans-
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criptional activity in NE cells and by that maintains a highly
undifferentiated state. Third, Notch active NE cells display
augmented expression of cell cycle components, in correlation
with maintenance of BrdU incorporation in later derived HES5þ
cells. We propose that Notch activation may confer amenability
to specification cues mainly by extending the time window during
which NE progenitors are exposed to these cues. This model can
explain the ability of HES5þ but not HES5� progenitors to
undergo complete neuronal specification for various distinct
regional identities. This model is supported by in vivo studies
showing the requirement for successive cell cycles during
the specification of both spinal motoneurons and cortical
neurons51,52.

Several intriguing aspects on the molecular forces that drive
NSC progression can be drawn from our study. The findings that
genes such as SOX2, FOXG1, OTX2 and PAX6 are expressed
throughout the culture progression support a model according to
which CNS identity is determined during early stages by a core of
stably expressed TFs. Nonetheless, the significantly differentially
expressed gene sets among stages indicate that stage-specifically
expressed genes are also critical for stage transition. We propose
that the extensive remodelling capacity of NE cells through
progression is provided by stably expressed TFs coacting with
consecutively and transiently appearing factors to control NSC

progression through Notch activation. It is intriguing to speculate
that distinct sets of Notch regulators are consecutively appearing
and replacing one another in a relay mechanism to generate
potency diversity, while maintaining proliferation capacity
through Notch signalling. Such a model should further advance
our ability to use these factors to directly induce or maintain
specific modules in vitro—towards establishing perpetuating NSC
types amenable for drug screening, disease modelling and for
developing better protocols for deriving specific neuronal and
glial lineages.

Our progenitor module dissection approach enables new
possibilities of gaining knowledge on progenitor cell dynamics
during disease onset and progression. Many disease models,
particularly iPS cell based, rely on the ability to generate specific
neuronal types suspected to be clinically and physiologically
relevant. Our approach offers a unique possibility to specifically
isolate damaged or malfunctioning progenitor modules that give
rise to the clinically affected neuronal or glial cell types, and to
gain deep insights into pathogenic features within such defected
modules such as stem cell properties, developmental potential
and molecular drivers. Also, the comprehensive array data sets
may help to link the expression pattern of disease causing
mutated genes along our developmental stage modules with
relation to Notch activation. Using our cellular system for
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Figure 7 | Schematic model for NSC progression. Neuroectodermal cells yield the earliest NE cells of the CNS by launching Notch activation and HES5

expression, while non-CNS neuroectodermal cells lack this activation. Under proliferation conditions, HES5þ NE cells yield consecutive radial glial

progenitor cell types and their corresponding neuronal and glial progeny, hence considered as primary NSCs generating CNS neural diversity. Following

mitogen withdrawal, HES5þ NE cells exert their competence towards deep-layer-specific neuronal types (RELN, TBR1 but also FEZF2 and CTIP2; blue-to-

red wave, bottom panel) and do so in a Notch-dependent manner. In addition, they also upregulate SVZ progenitor markers such as TBR2 and CUX1, CUX2

at the RNA level (Red font, light brown early wave; bottom panel) and in a Notch-dependent manner, implying on their future potential to generate these

progenitors at later stages. In contrast to NE cells, HES5þ E-RG cells are already committed to early dorsocaudal cortical identity, based on their elongated

polarized cell morphology, rosette formation capacity and FEZF2 and EMX2 expression. Hence, they exhibit competence towards deep layer neurons

(CTIP2, FEZF2; blue-to-red wave, bottom panel). M-RG stage cells are characterized by lower HES5 percentages, reduced rosette organization, substantial

accumulation of HES5þ -derived HES5� progenitors expressing CUX1, CUX2 and TBR2 at the protein level, and competence for yielding upper layer

neuronal fates (CUX1, CUX2, SATB2; light brown second wave, bottom panel) in a Notch-independent manner. HES5þ L-RG cells are able to give rise to

astrocytes in a Notch-dependent manner (GFAP; light blue wave, bottom panel), yet both HES5þ and HES5� cells at that stage continue to contribute to

neurogenesis. Ultimately, L-RG cells transform to long-term progenitors (LNP) associated with adult NSC progeny (purple wave, bottom panel). Horizontal

green arrows mark transition in a Notch-dependent manner. Diagonal green and black arrows mark HES5þ and HES5� cells, respectively, subjected to

differentiation following FACS-based separation. When indicated, Notch active pathways were confirmed by DAPT (red bar-headed lines). Top panel shows

cell types and developmental potential. Bottom panel shows temporal phases of neuronal and glial markers derived by the stages indicated above. BP, basal

progenitors.
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deciphering ‘defective units’ during pathogenesis of various
nervous system diseases in vitro should be a great advancement
to the field of disease modelling. Lissencephaly, a developmental
cortical disorder, is associated with defects in ‘core’ genes such as
ARX, stage-specific genes such as DCX, and Notch active specific
genes such as VLDLR. Similarly, Microcephaly is associated with
defects in ‘core’ genes such as MCPH1 and STIL, stage-specific
genes such as CENP, and Notch active specific genes such as
ASPM. Our data sets may provide insights also to other nervous
system disorders such as autism as well as psychiatric disorders.
Altered regulation of DISC1 associated with schizophrenia may be
interesting due the fact that expression of this gene appears in
culture only starting the M-RG stage. Neurodegenerative diseases
associated with mutations or SNPs in genes differentially
expressed in our system may also shed light on the potential
role of such candidates in predisposition and/or actual elderly
onset. For example, we found that SPON1 and RRAS2, over-
represented specifically in L-RG HES5þ cells and thus may relate
to gliogenesis, contain SNPs associated with Alzheimer’s disease
(P¼ 2.07E� 4, Odds¼ 15.26). Such findings may imply that the
potential embryonic roles of these factors may be inferred also to
the malfunction of such SNP-bearing genes during disease onset.

Our system also offers a unique possibility to look into the
origin and tumorigenic properties of distinct and yet to be defined
brain cancer stem cells. As many of the developmental genes have
tumorigenic potential, this study may potentially advance our
understanding of how Notch activation is associated with the
emergence of distinct brain cancer stem cells. The association of
our data sets with brain growth and tumorigenesis also
reinvigorates the development of strategies to minimize
heterogeneity of progenitors beyond our findings on cortical
development. Such studies should also help to develop
approaches to control the balance between proliferation and
differentiation in vitro, to eliminate proliferating progenitors
from their differentiated progeny, and to minimize chances of
tumorigenicity—towards future implications in preclinical setups.

Last, it will be interesting to test whether the newly described
naive PSCs53 can be used to generate NE cells and their progeny
with employing our described differentiation paradigm, and
whether such approach can be helpful to improve harnessing the
full neurogenic and gliogenic potential of these cells.

To summarize, because the uniqueness of the data sets and
cellular analysis is in their proliferative nature, we envisage that
our comprehensive data analyses would serve as a powerful tool
to dissect lineage transitions, to identify origin of progenitor cells,
to relate them to onset and progression of brain tumours,
and to address fundamental questions related to human cortical
expansion.

Methods
Culturing undifferentiated hESCs. The human ES cell (hESC) line H9 (WA-09,
XX, Wicell)-derived BAC transgenic HES5::eGFP line17 was cultured on mitotically
inactivated mouse embryonic fibroblasts (MEFs; Globalstem). Undifferentiated
hESCs were maintained in medium containing DMEM/F12, 20% KSR, 1 mM
Glutamine, 1% Penicillin/Streptomycin, non-essential amino acids, beta-
mercaptoethanol and Fibroblast growth factor 2 (FGF2; 10 ng ml� 1). Medium was
replaced daily and cells were passaged weekly by treating cells with Dispase
(6 U ml� 1, Worthington) followed by mechanical trituration.

Neural induction and rosette formation and propagation. For neural induction
and generation of NE cells, hESC colonies were removed from MEFs by Dispase
(6 U ml� 1, Worthington), dissociated with Accutase (Innovative Cell Technolo-
gies, Inc.), plated at subconfluent cell density (40–50 K cells per cm2, although
twice higher density or alternatively small hESC clusters work well and accelerate
confluence) on Matrigel (1:20, BD)-coated dishes, and supplemented with MEF-
conditioned media and 10 mM ROCK inhibitor (Y-27632, Tocris) with daily fresh
FGF2 (10 ng ml� 1, R&D). Confluent cultures were subjected to dual SMAD
inhibition neural differentiation protocol54 containing Noggin (R&D,
250 ng ml� 1) and SB-431542 (10 mM, Tocris), and further supplemented with

LDN-193189 (100 nM, Stemgent; denoted LNSB protocol). HES5::eGFP usually
appears on day 8 or 9. To generate E-RG rosettes and subsequent progenitors, NE
cells were scrapped from plates on day 10–12, preincubated with Caþ 2/Mgþ 2 free
HBSS followed by collagenase II (2.5 mg ml� 1), Collagenase IV (2.5 mg ml� 1) and
DNAse (0.5 mg ml� 1) solution (all from Worthington; 37 �C, 20 min). Cells were
then dissociated and replated at high density (500,000 cells per cm2) on moist
matrigel drops, and grown for additional days till rosettes appeared (E-RG stage).
Neural induction and direct formation of E-RG stage rosettes could be also formed
by coculture of hESC clusters with MS5 stromal cells as previously described15.
Briefly, early appearing rosettes on MS5 were harvested mechanically beginning on
day 8–10 of differentiation, replated on culture dishes pre-coated with 15 mg ml� 1

polyornithine (Sigma), 1 mg ml� 1 Laminin (BD Biosciences) and 1 mg ml� 1

Fibronectin (BD Biosciences) (Po/Lam/FN) till Day 14, to obtain E-RG rosettes.
Under both protocols, early appearing NE cells were cultured from Day 9 with N2
medium (composed of DMEM/F12 and N2 supplement containing Insulin, Apo-
transferin, Sodium Selenite, Putrescine and Progesterone), and further
supplemented with low SHH (30 ng ml� 1), FGF8 (100 ng ml� 1) and BDNF
(5 ng ml� 1). Long-term culture of E-RG rosettes was performed by a weekly
mechanical harvesting of rosettes and replating on Po/Lam/FN coated dishes with
N2 medium, SHH and FGF8, till day 28. These were replaced by FGF2
(20 ng ml� 1) and EGF (20 ng ml� 1) on day 28 (all cytokines from R&D Systems).
At each stage cells were either replated as clusters for next passage or subjected to
FACS purification by preincubation with Caþ 2/Mgþ 2-free HBSS followed by
mechanical dissociation.

Neural patterning and cortical laminar specification. Neural patterning was
performed in parallel to or immediately following neural induction. For midbrain
dopaminergic neuron differentiation, hESCs were neurally induced on matrigel as
previously described7, and treated with SHH C25II (100 ng ml� 1, R&D), FGF8
(100 ng ml� 1) and CHIR99021 (3mM, Stemgent). On day 12, GFPþ and GFP�
NE cells were separated by FACS, replated at very high density (400,000 cells per
cm2), followed by terminal differentiation with Neurobasal medium (Invitrogen)
supplemented with BDNF (20 ng ml� 1), ascorbic acid (AA; 0.2 mM, Sigma),
GDNF (20 ng ml� 1), TGFb3 (1 ng ml� 1), dibutyryl cAMP (0.5 mM, Sigma) and
DAPT (10 mM, Tocris) for 14 additional days. For motoneuron differentiation,
hESC derived neurally induced cells either on matrigel or MS5 were dissociated on
day 12–14, and GFPþ and GFP� cells were separated by FACS and replated on
Po/Lam/FN (MS5 protocol) or matrigel drops (matrigel protocol) at medium
density (200,000 cells per cm� 2) and treated with Retinoic Acid (RA, 1 mM, Sigma)
and SHH C25II (125 ng ml� 1) till day 28 as previously described15. For early
cortical neurons, NE cells on Day 12 were sorted for GFPþ and GFP�
populations, replated and cultured with N2 supplemented with AA and BDNF. For
inhibition of Notch during terminal differentiation (Fig. 3d), DAPT was added to
the differentiation medium (5 mM) from day 2 of differentiation till the rest of
differentiation period. For the inhibition of Notch at early neural induction
(Supplementary Fig 2b), DAPT was added (5 mM) on day 1 and cells were collected
for analysis on day 2, day 6 and day 9.

For neuronal, astroglial or oligodendroglial differentiation of late passages,
E-RG rosettes were passaged through mechanical splitting till day 80 or day 220
with FGF2/EGF and BDNF. Either sorted GFPþ and GFP� populations (L-RG
stage) or unsorted cells (LNP stage) were replated at high density and differentiated
for 14 days in the presence of AA and BDNF for neuronal progeny, with 5% Foetal
Bovine Serum (FBS; Invitrogen) for astrocytic progeny, or with AA, BDNF, SHH
C25II (100 ng ml� 1) and FGF8 for oligodendrocytic progeny according to our
previous protocol55.

Acute lineage analysis. Neuroectodermal progenitors reaching the NE stage (day
12) using the LNSB/matrigel protocol were separated into HES5þ and HES5�
populations, and these were replated, and either immediately fixed and analysed for
cell fate/proliferation markers by immunostaining, or maintained for another
passage as separate populations till reaching the E-RG stage. Then, these NE
derived HES5þ and HES5� cell populations were again separated to newly born
HES5þ and HES5� cells, thus creating four distinct lineage related populations.
These were either acutely analysed or further maintained till the end of the passage
and then again analysed. All analyses were performed 2 h after replating. For BrdU
labelling, BrdU (30 mM) was added to cells for 1 h at the second hour following
replating, following which cells were subjected to fixation and analysed.

Immunostaining and confocal imaging. Cells were fixed in 4% paraformalde-
hyde, 0.15% picric acid, permeabilized and blocked with PBS, 1% bovine serum
albumin (BSA), 10% FBS and 0.3% Triton solution, and stained with indicated
primary antibodies (see below) followed by Alexa Fluor secondary antibodies
(Invitrogen). Cells were imaged in PBS after staining. All cell imaging was carried
out in 24-well glass bottom plates (In Vitro scientific). Fluorescence images were
obtained using a confocal microscope LSM710 (Carl Zeiss MicroImaging, Ger-
many). The confocal and time-lapse images were captured using a 10� and a 20�
objectives (NA¼ 0.3, 0.8 respectively, Plan-Apochromat). Fluorescence emissions
resulting from Ar 488, 543 and 633 nm laser lines for EGFP, CY3 and CY5,
respectively, were detected using filter sets supplied by the manufacturer. For DAPI
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detection we used our mode-locked Ti:Sapphire, fentosecond pulsed, multiphoton
laser (Chameleon Ultra II, Coherent, Inc.) at a wavelength of 720 nm. Images and
3D reconstruction movies were generated and analysed using the Zeiss ZEN 2011
software (Carl Zeiss, Inc.) and NIS elements (Nikon). All images were exported in
TIF and their contrast and brightness were optimized in Adobe Photoshop under
the same settings per each marker across all stages and as well as across HES5þ
and HES5� populations.

Neuronal output level quantification was performed by marker/DAPI ratio
calculation and statistics of the entire cells in at least two (mostly three)
independently taken images for a one representative experiment performed in
parallel for all differentiation markers and across all stages. Note that counting is
affected also by cells with positive but weak marker appearance, depending on stage
examined and epitope tested (such as RELN). For additional quantitative aspects,
see also all qPCR charts for all genes across HES5þ and HES5� and across all
stages in Supplementary Fig. 4.

Antibody list. Antibodies for CTIP2 (ab18465, 1:500), CUX1 (ab54583, 1:500),
PE-conjugated anti EGFR (ab231, 1:50), LGALS1 (ab25138, 1:1,000), Lin28
(ab46020, 1:1,000), PHH3 (ab5176, 1:250), PLZF (ab104854, 1:100), POU3F2
(ab94977, 1:1,000), SATB2 (ab51502, 1:50), SOX1 (1:1,000), SOX2 (ab79351,
1:500), TBR1 (ab31940, 1:200), TBR2 (ab23345, 1:200) were from Abcam. Anti-
bodies for BrdU (347580, 50 ml per test), KI67 (556003, 1:1,000), phycoerythrin-
conjugated (PE) SSEA-3 (560237, 20 ml per test), PE-conjugated F11R (552556; 20
ml per test), Alexa Fluor 647-conjugated TRA-1-60-647 (560850, 5 ml per test),
Alexa Fluor 647-conjugated TUJ1 (560340, 1:500) were from BD Biosciences.
Antibodies for DCX (AB2253, 1:5,000), O4 (MAB345, 1:25), RELN (MAB5364,
1:200), Tyrosine Hydroxylase (TH, AB152, 1:500) were purchased from Millipore.
Antibodies for FABP7 (51010-1-AP, 1:100), S100B (15146-1-AP, 1:100) were from
ProteinTech. Antibodies for AP2a (3B5 concentrated, 1:100) and PAX6 (super-
natant, 1:16) were from DSHB. Antibody for NESTIN (MO15012, 1:500) was from
Neuromics. Antibody for GFAP (Z0334, 1:2,000) was from DAKO. Antibody for b-
3-Tubulin (PRB-435P, 1:1,000) was from Covance. Antibody for GLAST (ACSA-1;
130-095-822, 1:10) was from Miltenyi Biotec. Antibody for OTX2 (AF1979; 1:40)
was from R&D. Antibody for FOXA2 (SC-6554; 1:100) was from Santa Cruz
Biotechnology.

Quantitative PCR (qPCR) analysis. RNA was extracted using miRNeasy kit
(Qiagene) followed by Maxima reverse transcription reaction kit (Fermentas). 1 ng
of cDNA was subjected to qPCR using our homemade designed primers (see
‘Primer set list’), ABsoluteQPCR SYBR Green ROX Mix (ABgene) and ViiA-7
cycler (ABI). Threshold cycle values were determined in triplicates and presented
as average compared with HPRT. Fold changes were calculated using the 2�DCT

method. For RT–PCR data evaluation for Fig. 3b,c, RT–PCR data were collected in
triplicates, log2 transformed and normalized to HPRT. Mean normalized expres-
sion values were then normalized to 1 across all differentiation stages of HES5þ
and HES5� for each gene separately to reflect the relative expression across stages.
Finally, gene expression levels were normalized to 1 for each stage to also reflect the
relative abundance of each gene in each stage. The resulting values were grouped
into markers for deep layer neurons TBR/RELN and CTIP/FEZF2; and upper layer
neurons CUX1/CUX2/SATB2 and displayed in pie charts and bars as shown in
Fig. 3b,c, respectively

Primer set list (all for human genes). BRN1 (POU3F3) Forward, 50-TGGACT
CAACAGCCACGAC-30 and Reverse 50-CTTGAACTGCTTGGCGAAC-30 ; BRN2
(POU3F2) Forward, 50-TGTATGGCAACGTGTTCTCG-30 and Reverse 50-CCTC
CTCCAACCACTTGTTC-30 ; CTIP2 Forward, 50-TCCAGAGCAATCTCATC
GTG-30 and Reverse 50-GCATGTGCGTCTTCATGTG-30; CUX1 Forward,
50-CAACAAGGAATTTGCTGAAGTG-30 and Reverse 50-CTATGGTTTCGGCT
TGGTTC-30 ; CUX2 Forward, 50-GAGCTGAGCATCCTGAAAGC-30 and Reverse
50-AGGCCTCCTTTGCAATAAGC-30; EGFR Forward, 50-GATAGTCGCCCAA
AGTTCCGT-30 and Reverse 50-CTGAATGACAAGGTAGCGCTG-30; GFAP
Forward, 50-AGAGATCCGCACGCAGTATG-30 and Reverse 50-TCTGCAAACT
TGGAGCGGTA-30 ; HES5 Forward, 50-ACCAGCCCAACTCCAAGCT-30 and
Reverse 50-GGCTTTGCTGTGCTTCAGGTA-30; HPRT Forward, 50-TGACACT
GGCAAAACAATGCA-30 and Reverse 50-GGTCCTTTTCACCAGCAAGCT-30 ;
PLZF Forward, 50-CCTTTGTCTGTGATCAGTGCG-30 and Reverse 50-CAGTG
CCAGTATGGGTCTGC-30 ; RELN Forward, 50-AATGCCGTCACCTTCTGTG-30

and Reverse 50-GGAGGACAGAAGCTGTTGTTG-30 ; S100b Forward, 50-GGAA
ATCAAAGAGCAGGAGGTT-30 and Reverse 50-TCCTGGAAGTCACATTC
GCC-30 ; SATB2 Forward, 50-TAGCCAAAGAATGCCCTCTC-30 and Reverse
50-AAACTCCTGGCACTTGGTTG-30 ; TBR1 Forward, 50-GTCACCGCCTACCA
GAACAC-30 and Reverse 50-ACAGCCGGTGTAGATCGTG-30 ; TBR2 Forward,
50-AGCCGACAATAACATGCAGGG-30 and Reverse 50-TCCTGTCTCATCCA
GTGGGA-30 ; TH Forward, 50-CCTCGGATGAGGAAATTGAG-30 and Reverse
50-TCTGCTTACACAGCCCGAAC-30 ; ENGRAILED1 Forward, 50-CCCGTGGTC
AAAACTGACTC-30 and Reverse 50-TTCTTCTTCAGCTTCCTGGTG-30 ; FOXA2
Forward, 50-CCGACTGGAGCAGCTACTATG-30 and Reverse 50-TGTACGT
GTTCATGCCGTTC-30; HB9 Forward, 50-CACCAGTTCAAGCTCAACAAG-30

and Reverse 50-TTTTGCTGCGTTTCCATTTC-30 ; SOX1 Forward, 50-GCAAGA

TGGCCCAGGAGAAC-30 and Reverse 50-CGGACATGACCTTCCACTCG-30 ;
SOX2 Forward, 50-GCAAGATGGCCCAGGAGAAC-30 and Reverse 50-CCGAC
AAAAGTTTCCACTCGG-30 ; NESTIN Forward, 50-TGGAGGCAAAGAGGG
TTCAG-30 and Reverse 50-TCGGAGAACTCTGTCCCCAG-30 ; PAX6 Forward,
50-CACACCGGTTTCCTCCTTCA-30 and Reverse 50-GGCAGAGCGCTGT
AGGTGTTT-30; TUJ1 Forward, 50-TGATGAACATGGCATCGAC-30 and Reverse
50-TATTTGCCACCTGTGGCTTC-30 ; HOXB4 Forward, 50-CACGGTAAACCC
CAATTACG-30 and Reverse 50-TCCTTCTCCAGCTCCAAGAC-30 ; SIX1 For-
ward, 50-TTTAAGAACCGGAGGCAAAG-30 and Reverse 50-GGTTCTGCTT
GTTGGAGGAG-30; FEZF2 Forward, 50-CCCAGGAAAAGCCACATAAATG-30

and Reverse 50-GGATGCGGATATGCGTGTT-30 ; NR2F1 Forward, 50-AGAAGC
TCAAGGCGCTACAC-30 and Reverse 50-GACTTCTCCTGCAGGCTCTC-30;
PCP4 Forward, 50-GGTGCATCCATGTCAATGTC-30 and Reverse 50-GCAACC
AATGGAAAAGACAAG-30 ; FABP7 Forward, 50-GGTGGAGGCTTTCTGTGC
TACC-30 and Reverse 50-AAGCCCACGCCTAGAGCCTT-30 ; GLAST Forward,
50-CCCTTGGGTTTTTATTGGAGG-30 and Reverse 50-ATGGGTAGGGTGGC
AGAACT-30; LIN28A Forward, 50-ACAGGTGCTACAACTGTGGAGG-30 and
Reverse 50-AGAAGTGGCACTTCTTGGGC-30 ; LGR5 Forward, 50-GGAAATCA
TGCCTTACAGAGC-30 and Reverse 50-ACACTCCAAATGCACAGCAC-30; DCN
Forward, 50-AATGCCATCTTCGAGTGGTC-30 and Reverse 50-AGAGTTGTGT
CAGGGGGAAG-30; LGALS1 Forward, 50-AGCCTGGAAGTGTTGCAGAG-30

and Reverse 50-TGGGGAACTTGAATTCGTATC-30 ; EZH2 Forward, 50-CAGCC
TTGTGACAGTTCGTG-30 and Reverse 50-GGAAAGCGGTTTTGACACTC-30 ;
NR2E1 Forward, 50-AGACCAGCTGATGCTTTTGG-30 and Reverse 50-GTTAG
CATCAACCGGAATGG-30 .

Fluorescent-activated cell sorting (FACS). Cell sorting was performed using
ARIA flow cytometer (Beckton Dickinson). NE cells were dissociated with
collagenase II (2.5 mg ml� 1), Collagenase IV (2.5 mg ml� 1) and DNAse
(10 mg ml� 1; all from Worthington) solution (37C, 20 min). E-RG and subsequent
stages were dissociated either with Accutase (37 �C, 15 min) or Caþ 2/Mgþ 2

free HBSS (RT, 1 h). All stages were FACS sorted to GFPþ and GFP� -gated
populations following exclusion of dead cells with DAPI. L-RG and LNP stages
were also analysed for EGFR abundance. Undifferentiated hESCs were sorted for
the pluripotency markers Tra-1-60 and SSEA-3.

Microarray data processing and analysis. GeneChip PrimeView Human Arrays
were used for all array hybridizations. Normalized log2 transformed probe level
intensities were collapsed onto MGI gene symbols yielding 19,448 gene level
measurements. Next, genes were filtered for a minimum log2 change of one or
greater across between any pair of samples as well as a minimum log2 expression
level of three or greater in at least one sample. The results yielded 6,371 gene
entries, which are listed in Supplementary Data 1.

Stage-wise clustering. To get a high-resolution view of the underlying dynamics
and evaluate the distinct expression patterns, we performed clustering k-means
(k¼ 100; n¼ 26) on the time series of the positive samples based on a set of eight
predefined patterns. The expression patterns were defined based on all possibilities
of gene upregulation between consecutive differentiation stages, for example,
upregulated from hESCs to NE, but down in E-RG, upregulated from hESCs to NE
and not changing from NE to E-RG but downregulated from E-RG to M-RG and
so on. Differential expression between two stages was defined as a minimum
log2 expression change of one or greater. In total, we classified 495 genes, which are
listed in Supplementary Data 4, to follow one of these patterns. Subsequently,
each cluster was subjected to gene set enrichment analysis. The results are
shown in Fig. 6a.

Notch active specific genes. Genes expressed in a stage-specific manner
for HES5þ with respect to the HES5� populations and vice versa were deter-
mined by first clustering all time points using k-means (k¼ 100). Subsequently,
hESC expression levels were subtracted from each stage. Next, HES5þ expression
levels were divided by HES5- and vice versa. Next, we selected clusters that
at the same time point (i) showed an average fold change exceeding 1.4 in one of
the time points; and (ii) average fold changes that are o1.2 in all remaining
time points. Results are reported in Supplementary Data 2 and 3, respectively
and in Fig. 4a (for genes highly expressed in HES5þ ), or referred within text
(for genes highly expressed in HES5� ).

Gene enrichment analysis. Stage-specific obtained gene data sets were analysed
for enriched categories using Ingenuity Pathway Analysis (IPA) and selected
resulting categories were plotted as heatmap (Fig. 6b), or directly referred to
within text.
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