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Abstract: This study investigated the impact of feeding pelleted diets containing camelina (Camelina
sativa L. Crantz) hay (CAHP) or camelina meal (CAMP) as a supplement compared with a control
pellet (CONP) diet, without vitamin E fortification. The fatty acid profile, retail colour, and lipid
oxidative stability of lamb and yearling meat (m. longissimus lumborum) stored for short-, medium-,
or long-periods (2 days (fresh), 45 days and 90 days) under chilled to semi-frozen conditions were
determined. The CAMP diet altered key fatty acids (p < 0.05) in a nutritionally beneficial manner for
human health compared to the other diets, with increased total omega-3, decreased omega-6 fatty
acids and decreased omega-6/omega-3 ratio of muscle. Muscle vitamin E concentration was lower
(p < 0.05) for both camelina diets (CAMP and CAHP) when compared with the CONP diet, with the
average concentrations less than 1 mg/kg muscle for all three treatments. Animal type and storage
length were factors that all affected (p < 0.05) colour and lipid oxidative stability of meat. These
results emphasise the importance of vitamin E concentration in meat stored for extended periods
under semi-frozen conditions to maintain desirable meat colour during retail display, and to avoid
off-flavour development of the cooked meat.

Keywords: feeding systems; diets; sheep; meat preservation; meat quality; antioxidant action; muscle;
vitamin E

1. Introduction

Emerging economies in Asia and the Middle East have seen a dramatic increase
in the amount of Australian sheep meat exported to these markets in recent years. In
2018/2019, Australia exported 447,000 tonnes of sheep meat to international markets as
either frozen or refrigerated products [1]. For the Australian sheep meat industry to
continue to grow exports, and meet consumer and safety regulator expectations, it is
worth reviewing current production and processing techniques. Red meat preservation
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techniques commonly involve vacuum packing of primal cuts under anoxic conditions and
then transporting the products at an appropriate temperature [2,3]. Longer storage periods
and different storage conditions may be required for products to reach different export
destinations with desired quality. For Asian and Middle Eastern markets, it might be most
appropriate to transport sheep meat products under chilled (2 ◦C to 4 ◦C) or semi frozen
(−0.5 ◦C to 0 ◦C) conditions. Maintaining sheep meat products under these conditions
might be a better balance of limiting microbial spoilage and limiting energy consumption
during transport when compared to either refrigerated, or frozen, meat products [2].

Red meat is a rich source of key nutrients such as protein, trace elements, vitamins
and essential fatty acids (FAs) [4]. A critical component of managing the preservation or
storage of red meat is an understanding of factors that affect the nutritional value and
sensorial quality of the meat [5–7]. This is because considerable changes in the structural,
functional and biochemical properties of red meat can occur during storage, and this can
have a substantial effect on resultant product quality and integrity [8]. Factors associated
with the production system, such as diet and animal types, can affect carcass fatness,
nutritional value of meat, and meat sensory characteristics [5] by influencing structural
and biochemical components of muscle tissues.

In summer and early autumn, Australian livestock producers rely on the grazing of
senesced pastures, cereal hays, or stubble. These pasture or forage based grazing systems
are often supplemented with available cereal grains or pulses to maintain animal produc-
tivity and performance. Camelina (Camelina sativa L. Crantz) forage hay and/or meal may
provide an alternate option for improving ruminant animal production and nutritional
value of meat (essential fatty acid) in seasons of low pasture availability. Previous studies
have examined the growth and reproductive performance of replacement beef heifers fed
camelina biodiesel co-products [9] and the fatty acid composition of blood in milking sheep
supplemented with camelina cake [10]. Others showed that supplementing lambs with
camelina cake or meal [11,12] and either chemically treated camelina seed or camelina
oil [13] improved nutritionally desired unsaturated fatty acid content in the longissimus
muscle. However, the effect of feeding camelina hay or meal as an unprotected (natural
feed) supplement in a sheep finishing diet on the functionality (lipid oxidation and colour
stability) of stored meat is unknown.

The aim of the study was to examine impacts of supplementing a finishing diet, which
has nutritional characteristics typical of Australian production systems, with camelina
hay or camelina meal without vitamin E fortification. Impacts examined included muscle
vitamin E concentration, fatty acid profile, and flow on effects for retail colour stability
and lipid oxidation of meat (M. longissimus lumborum, LL) stored for short-, medium-, or
long-term under chilled to semi-frozen conditions. Maternal Composite (Composite) lambs
and Merino yearlings were used in order to examine the effects on lamb and yearling
meat, respectively.

2. Materials and Methods
2.1. Diets, Animals, and Experimental Design

Three pelleted diets were formulated (J.T. Johnson & Sons and TMR Feed Solutions,
South Australia) using ingredients available in the major sheep producing regions of
southeast Australia. Pelleted diets containing camelina hay (CAHP) and camelina meal
(CAMP) were compared with a control diet containing cereal hay and grains (CONP).
Feeds offered were recorded daily and refusals measured weekly. Feed samples were
collected weekly over the course of the experiment and the samples bulked by treatment.
These samples were dried at 100 ◦C, ground using a UDY Cyclone Mill (model # 3010-
019) equipped with 1 mm sample screen and then analysed for chemical composition
determined by near infra-red spectrometry (NIR, ACE Laboratories Pty. Ltd., Bendigo,
Victoria, Australia). NIR prediction equations developed by Cumberland Valley Analytical
Services (www.foragelab.com) using in house chemistry and NIR spectra using WinISI
(Foss) chemometric software were used to determine the chemical constituents as reported
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in detail [14]. The ingredients used to formulate the experimental diets and the nutritive
composition of each diet, including vitamin E, α-linolenic acid (n − 3) and linoleic acid
(n − 6) concentrations, are presented in Table 1. Dried, ground, and homogenised feed
samples were used to determine the vitamin E (1 g feed sample), α-linolenic acid, and
linoleic acid (0.5 g feed sample) concentrations, with the analytical procedures used being
the same as for muscle samples reported in Section 2.3. The metabolisable energy (ME) and
crude protein (CP) concentrations of diets were about 11 MJ/kg dry matter (DM) and 15%
crude protein (CP), respectively. Diets were designed to achieve at least 150 g/day of live
weight gain (LWG) for both Composite lambs and Merino yearlings.

Table 1. Dietary ingredients, nutritive characteristics, vitamin E, α-linolenic acid, and linoleic acid concentrations of pelleted
diets fed to Maternal Composite lambs and Merino yearlings.

Dietary Ingredients Used (%) Camelina Hay (CAHP) 1 Camelina Meal (CAMP) 2 Control Pellet (CONP) 3

Camelina meal 0 8 0
Lupins 30 22 30

Barley grain 10 20 20
Oat grain 15 5 5
Oaten hay 0 45 45

Camelina–Oaten–Barley hay (33:33:33 w/w/w) 45 0 0
Nutritive characteristics of diet

Dry matter, % 88.85 88.90 89.35
Crude protein, % DM 15.20 14.93 14.80

Metabolisable energy, MJ/ kg DM 10.83 11.23 10.80
Crude fat, % DM 2.91 3.65 2.11

Acid detergent fibre, % DM 19.93 17.78 19.03
Neutral detergent fibre, % DM 34.03 31.18 34.23

Lignin, % DM 4.20 4.13 4.30
Phosphorous, % DM 0.42 0.52 0.47

Potassium, % DM 1.42 1.52 1.47
Sulphur, % DM 0.21 0.26 0.25

Vitamin E concentration, mg/kg DM 4.1 4.2 4.9
Linolenic acid (n − 3) concentration, mg/100g DM 367 846 228
Linoleic acid (n − 6) concentration, mg/100 g DM 1433 1391 1357

1 CAHP = Pelleted diet containing camelina hay; 2 CAMP = Pelleted diet containing camelina meal; 3 CONP = control diet containing
cereal hay and grains; DM = dry matter.

The study was approved by the Animal Ethics Committee of the Department of Jobs,
Precincts and Regions (AEC Approval No: 2016-17). All procedures were conducted in ac-
cordance with the Australian Code of Practice for the Care and Use of Animals for Scientific
Purposes [15]. Eighty Composite lambs (28–38 kg) and 80 Merino yearlings (37–43 kg) were
selected from the Research flock maintained at Agriculture Victoria, Hamilton, VIC, Aus-
tralia. At the commencement of the experiment, Composite lambs and Merino yearlings
were 4 and 15 months of age, respectively. The study utilised 20 pens in the animal house
facility at Agriculture Victoria, Hamilton. Each pen contained two feed troughs (21 cm
width × 84 cm length × 51 cm height), with each trough capable of holding approximately
10 kg DM. For each animal type, three pens were used for the CAHP diet, three pens were
used for the CAMP diet, and four pens were used for the CONP diet. Within each sheep
type, animals were allocated to pens (eight lambs per pen) by stratified randomisation
based on live weight. Animals always had free access to water.

2.2. Slaughter of Animals and Muscle Sample Collection

Animals were slaughtered at a commercial abattoir after ~3 h of transportation and
18 h in lairage, in similar numbers and allocation strata from each pen, after either 8, 9
or 10 weeks feeding as they reached an average slaughter weight of 51.4 kg for Merino
yearlings and 52.5 kg for Composite lambs. At 24 h post-slaughter, carcasses were split in
half and the left side of the carcasses were dissected between the seventh/eighth rib to the
caudal end of the LL muscle. Muscle samples (LL) were collected for the measurement of
vitamin E concentration (10 g, ~1 cm length), fatty acid profile (40 g, ~2 cm length), meat
tenderness (60–65 g, ~3–4 cm length), and colour stability of short- (2 days, 80 g), medium-



Antioxidants 2021, 10, 166 4 of 16

(45 days, 80 g), or long- (90 days, 80 g) term storage, respectively. The samples taken for
colour stability were ~4 cm length. For animals slaughtered at 10 weeks (60 animals in
total), two LL muscle samples (20 g) were collected to assess the lipid oxidative stability of
short-, medium- and long-term storage of meat. All muscle samples were vacuum packed
upon collection. Short-term storage (2 days) muscle samples used for colour evaluation
were stored at between 2 and 3 ◦C. The 45-day and 90-day muscles samples were stored at
between −0.5 ◦C to 0 ◦C until simulated retail display. The samples collected for vitamin E
concentration, meat tenderness, fatty acid concentration, and lipid oxidation determination
were stored at −20 ◦C until analyses were undertaken.

2.3. Determination of Meat (Muscle LL) Tenderness, Vitamin E Concentration, and Fatty
Acid Composition

Meat tenderness was measured using a Warner–Bratzler shear force (WBSF) instru-
ment according to Hopkins and others [16]. Extracted LL muscle (60–65 g) was vacuum
packed and aged for 5 days at 2–3 ◦C. After 5-days ageing, the vacuum-packed sample was
stored at −20 ◦C until meat tenderness analysis. Directly from frozen, the vacuum-packed
sample was cooked at 70 ◦C for 35 min and immediately cooled in ice-slurry for 20 min.
The sample was then removed from the vacuum-pack, padded dry and placed onto a
tray. The tray was covered with film/wrap and refrigerated overnight at 3–4 ◦C. The next
morning, meat tenderness measurements were performed using a Lloyd texture instrument
(Model LRX, Lloyd Instruments, Hampshire, UK) fitted with a Warner-Bratzler shear blade
moving at 300 mm/min crosshead speed. The thickness of the V shaped blade cutting edge
is 0.88 mm. For each sample, three cuboidal strips with a cross section of 1 cm2 and 3 cm
long were removed perpendicular to the muscle fibre direction. The average peak force
value for each sample was measured from the WB shear instrument with values recorded
in Newton. The data from the three samples were averaged to give a final shear force value
for each animal. Muscle fatty acid concentration was determined using the procedure
described by O’Fallon et al. [17], with modifications. Specifically, 20 g frozen meat samples
were freeze dried, ground and a representative sub-sample (0.5 g) was processed for fatty
acid extraction, methylation and gas chromatography (GC) quantification using a Varian
3800 GC instrument fitted with a FID detector (Agilent Pty. Ltd., Mulgrave, VIC., Australia).
Fatty acid concentrations of meat were reported in mg/100 g meat (Table 2) as per nutrient
reference for human dietary recommendations [4]. The vitamin E (α-tocopherol) concen-
tration of meat was determined (1.00 ± 0.05 g freeze dried sample) using the method of
Mestre Prates, Gonçalves Quaresma [18] and the results expressed as mg/kg of fresh meat.

2.4. Assessment of Colour and Lipid Oxidative Stability of Meat

After 2- (fresh), 45-, and 90-day storage, the designated 80 g portion of LL muscle
was sliced into two slices of meat per sample, each slice ~2 cm in thickness, to expose a
fresh meat surface. Both slices of meat were placed on a black foam tray and over wrapped
with a PVC food film (15 µm thickness) as retail display packs. Trays were maintained at
3 ◦C–4 ◦C under fluorescent light (1000 lux) for 72 h to simulate retail display conditions.
After blooming for 60 min, the redness (a*-value) of meat was measured in duplicate on
each sample at 1 h, 24 h, 48 h, and 72 h using a Hunter Laboratory Mini Scan XE Plus
meter with a 25 mm aperture, light source set to illuminant D-65 with a 10-degree standard
observer (Model 45/0-S, Hunter Associates Laboratory Inc., Virginia, USA) [19]. The lipid
oxidation of meat was obtained in malondialdehyde equivalents (mg MDA/kg of meat)
using a thiobarbituric acid reactive substances (TBARS) procedure [20]. The lipid oxidation
of meat was assessed at 1 h and 72 h of retail display time for meat stored for 2, 45, or
90 days under chilled to semi-frozen conditions.
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Table 2. Effect of diet and animal type on vitamin E concentration, meat tenderness and individual and major group fatty acids in muscle longissimus lumborum. Fatty acid concentrations
reported in parentheses are reported in mg/100 g meat from back-transformed log10 mean fatty acid values.

Effect of Diet Effect of Animal Type p-Value
CAHP 1 CAMP 2 CONP 3 Sed 4 Composite Merino Sed 4 Diet Breed Interaction of Diet × Breed

Vitamin E (mg/kg meat) 0.81 0.86 0.99 0.029–0.031 0.76 1.04 0.024 4.4 × 10−5 1.1 × 10−8 0.25
Meat tenderness (N) 34.9 36.3 33.1 2.55–2.72 33.3 35.9 2.11 0.47 0.24 0.73

Fatty acid content (log10 transformed; back-transformed means in parentheses are mg/100 g meat)

C10:0 0.68 (4.7) 0.68 (4.8) 0.69 (4.9) 0.025–0.026 0.56 (3.6) 0.81 (6.5) 0.020 0.77 4.6 × 10−9 0.70
C12:0 0.53 (3.4) 0.56 (3.6) 0.57 (3.7) 0.031–0.034 0.58 (3.8) 0.52 (3.3) 0.026 0.47 0.036 0.74
C14:0 1.93 (86) 1.97 (92) 1.94 (87) 0.023–0.024 1.88 (76) 2.01 (103) 0.023 0.41 4.4 × 10−6 0.42
C14:1 0.41 (2.6) 0.41 (2.6) 0.43 (2.7) 0.039–0.042 0.32 (2.1) 0.52 (3.3) 0.033 0.80 2.9 × 10−5 0.76
C15:0 0.98 (9.5) 0.99 (9.8) 0.99 (9.8) 0.026–0.028 0.88 (7.6) 1.09 (12.4) 0.022 0.90 1.4 × 10−7 0.75
C15:1 0.21 (1.6) 0.12 (1.3) 0.20 (1.6) 0.039–0.042 0.26 (1.8) 0.09 (1.2) 0.032 0.091 0.00012 0.25
C16:0 2.98 (960) 3.01 (1020) 2.99 (970) 0.014–0.015 2.88 (760) 3.10 (1270) 0.012 0.23 2.5 × 10−11 0.13
C16:1 1.79 (61) 1.79 (61) 1.80 (63) 0.026–0.027 1.65 (44) 1.94 (86) 0.021 0.83 1.8 × 10−9 0.70
C17:0 1.50 (31) 1.50 (32) 1.50 (32) 0.017–0.018 1.37 (23) 1.63 (42) 0.014 0.90 2.6 × 10−11 0.65
C18:0 2.79 (617) 2.80 (632) 2.79 (613) 0.015–0.016 2.70 (503) 2.88 (764) 0.013 0.69 9.3 × 10−10 0.34

C18:2n−6 cis 2.14 (136) 2.33 (216) 2.00 (99) 0.040–0.042 1.94 (86) 2.34 (220) 0.033 2.9 × 10−5 5.7 × 10−9 0.23
C18:1n-9 cis 3.20 (1600) 3.20 (1600) 3.21 (1610) 0.011–0.012 3.09 (1230) 3.32 (2090) 0.009 0.90 6.0 × 10−13 0.019

C20:0 0.56 (3.6) 0.67 (4.7) 0.53 (3.4) 0.018–0.019 0.52 (3.3) 0.64 (4.4) 0.015 4.1 × 10−6 1.4 × 10−6 0.050
C18:3n−6 −0.24 (0.6) −0.57 (0.3) −0.13 (0.7) 0.051–0.055 −0.38 (0.4) −0.20 (0.6) 0.042 1.8 × 10−6 0.00087 0.12

C18:3n−3 (ALA 5) 1.43 (27) 1.74 (55) 1.40 (25) 0.020–0.022 1.38 (24) 1.64 (44) 0.017 2.2 × 10−10 4.6 × 10−10 0.37
C20:4n−6 (AA 6) 1.51 (32) 1.45 (28) 1.54 (35) 0.009–0.010 1.54 (35) 1.47 (29) 0.008 2.9 × 10−7 1.5 × 10−7 0.46
C20:5n−3 (EPA 7) 1.12 (13.1) 1.56 (14.3) 1.14 (13.9) 0.010–0.011 1.14 (13.7) 1.14 (13.8) 0.008 0.0075 0.87 0.17
C22:5n−3 (DPA 8) 1.24 (17.3) 1.26 (18.1) 1.27 (18.6) 0.009 1.25 (17.9) 1.26 (18.3) 0.007 0.011 0.21 0.43
C22:6n−3 (DHA 9) 0.65 (4.5) 0.66 (4.5) 0.71 (5.2) 0.016–0.017 0.62 (4.1) 0.74 (5.5) 0.013 0.0018 2.8 × 10−7 0.062

EPA + DHA 1.25 (18) 1.28 (19) 1.28 (19) 0.010–0.011 1.25 (18) 1.28 (19) 0.008 0.0072 0.0016 0.094
EPA + DPA + DHA 1.54 (35) 1.57 (37) 1.58 (38) 0.009 1.55 (36) 1.57 (38) 0.007 0.0052 0.011 0.17
Total n-6 (Omega-6) 2.22 (166) 2.21 (161) 2.23 (171) 0.009–0.010 2.19 (156) 2.25 (177) 0.008 0.038 4.9 × 10−6 0.033

Total n−3 (Omega-3) 1.80 (62) 1.97 (94) 1.81 (64) 0.013–0.014 1.79 (62) 1.92 (83) 0.011 4.1 × 10−9 1.5 × 10−8 0.24
n−6/n−3 0.43 (2.7) 0.24 (1.7) 0.43 (2.7) 0.011 0.41 (2.5) 0.34 (2.2) 0.009 5.5 × 10−11 2.3 × 10−6 0.88
∑ SUFA 10 3.23 (1720) 3.25 (1800) 3.24 (1720) 0.013–0.14 3.14 (1380) 3.34 (2200) 0.011 0.32 3.3 × 10−11 0.16
∑ MUFA 11 3.26 (1800) 3.28 (1880) 3.25 (1780) 0.012–0.013 3.14 (1370) 3.38 (2420) 0.010 0.15 5.2 × 10−13 0.028
∑ PUFA 12 2.36 (228) 2.41 (255) 2.37 (235) 0.010 2.34 (219) 2.42 (261) 0.008 0.00089 1.3 × 10−7 0.023

Total fat 3.57 (3750) 3.60 (3940) 3.57 (3750) 0.012–0.013 3.47 (2970) 3.69 (4880) 0.010 0.18 3.2 × 10−12 0.077
1 CAHP = Pelleted diet containing camelina hay; 2 CAMP = Pelleted diet containing camelina meal; 3 CONP = control diet containing cereal hay and grains. 4 Sed = standard error of difference. 5 ALA =
alpha-linolenic acid (n−3), 6 AA = arachidonic acid (n−6), 7 EPA = eicosapentaenoic acid (n−3), 8 DPA = docosapentaenoic acid (n−3), 9 DHA = docosahexaenoic acid (n−3), 10 ∑ SUFA (saturated fatty acid) =
C10:0 + C12:0 + C14:0 + C15:0 + C16:0 + C17:0 + C18:0 + C20:0, 11 ∑ MUFA (monounsaturated fatty acid) = C14:1 + C15.1 + C16:1 + C18:1n-9 and 12 ∑ PUFA (polyunsaturated fatty acid) = C18:2n−6 + C18:3n−3 +
C18:3n−6 + C20:4n−6 + C20:5n−3 + C22:5n−3 + C22:6n−3. p-values less than 0.05 are in bold.
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2.5. Statistical Analyses

Except for one animal that died prior to slaughter due to unrelated causes, nearly
all animals contributed to the statistical analyses of all measurements, apart from TBARS.
Approximately 6% of the TBARS measures at 1 h, and 6% of the meat tenderness mea-
surements could not be performed due to insufficient sample availability. A single 45-day
storage TBARS at 72 h display reading and a single vitamin E reading were also not avail-
able. For each measurement determined on meat samples collected in this study, except
TBARS, the values were first averaged over all animals from a pen that were slaughtered
on the same day (two or three animals per pen at weeks 8 and 9; a total of five animals per
pen in weeks 8 and 9 combined; three animals per pen at week 10). A single value for a
pen was then obtained by averaging over the three kill day values for that pen. For TBARS
measurements, the pen value was the average of the three carcasses obtained at the week
10 slaughter. These pen values were the unit of analysis for all measurements.

Vitamin E concentration, meat tenderness, and fatty acid measurements were anal-
ysed as a fully randomised two animal type × three diet factorial analysis of variance,
which had 14 residual degrees of freedom. Redness of meat was analysed as a split plot
repeated measurement analysis of variance with Greenhouse-Geisser correction for degrees
of freedom, so that effects involving storage type and display time could be evaluated
(Table 3). TBARS measurements were analysed similarly to redness, except that there were
two display times, and thus no Greenhouse-Geisser correction was necessary (Table 4).
Statistical analysis was carried out using the ANOVA directive and AREPMEASURES
procedure in GenStat, version 19 [21].

Table 3. Repeated measures analysis of variance for the redness (a*-value) of muscle longissimus
lumborum displayed for 72 h under simulated refrigeration conditions. Degrees of freedom are
corrected by the Greenhouse–Geisser epsilon in the between display times stratum (ε = 0.6204;
p = 0.00002 for testing difference from 1).

Terms Degrees of freedom Mean Square F-Value p-Value

Between pens

Animal type
(AT) 1 19.054 9.36 0.0085

Diet 2 0.039 0.02 0.98
Diet. AT 2 0.416 0.20 0.82

Error 14 2.034

Between storage lengths within pens combinations

Storage length
(ST) 2 82.66 145.57 1.6 × 10−16

AT. ST 2 0.159 0.28 0.76
Diet. ST 4 0.781 1.37 0.27

Diet. AT. ST 4 0.914 1.61 0.20
Error 28

Between display times within storage lengths within pens

Display time
(DT) 1.86 361.89 2616.4 2.9 × 10−71

ST. DT 3.72 35.324 255.39 4.2 × 10−43

AT. DT 1.86 5.446 39.37 4.6 × 10−12

AT. ST. DT 3.72 0.103 0.75 0.56
Diet. DT 3.72 0.085 0.61 0.64

Diet. ST. DT 7.44 0.055 0.40 0.91
Diet. AT. DT 3.72 0.600 4.34 0.0039

Diet. AT. ST. DT 7.44 0.060 0.44 0.89
Error 78.17

p-values less than 0.05 are in bold.
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Table 4. Analysis of variance for the square root of TBARS of muscle longissimus lumborum subjected
to different storage times (ST) and different display times (DT).

Terms Degrees of Freedom Mean Square F-Value p-Value

Between pens
Animal type

(AT) 1 0.002 0.00 0.96

Diet 2 0.011 0.17 0.85
Diet.AT 2 0.009 0.13 0.88

Error 14 0.067

Between storage lengths within pens combinations

Storage times
(ST) 2 3.692 556.38 2.9 × 10−23

AT.ST 2 0.165 24.80 6.3 ×10-7

Diet.ST 4 0.011 1.58 0.21
Diet.AT.ST 4 0.009 1.32 0.29

Error 26 0.007

Between display times within storage lengths within pens

Display time
(DT) 1 36.18 1889.7 1.5 × 10-36

ST.DT 2 3.69 192.9 6.8 × 10-22

AT.DT 1 0.010 0.54 0.47
AT.ST.DT 2 0.064 3.32 0.046
Diet.DT 2 0.028 1.47 0.24

Diet.ST.DT 4 0.002 0.12 0.97
Diet.AT.DT 2 0.020 1.05 0.36

Diet.AT.ST.DT 4 0.018 0.93 0.46
Error 42

p-values less than 0.05 are in bold.

3. Results

With the exceptions of a few FAs with 0.01 < p < 0.05 (Table 2), and a three way
diet × animal type × display time interaction for a*-value (p = 0.004; Table 3), there
was no evidence (p < 0.05) of any interaction between animal type and diet for any of the
measurements (Tables 2–4). Thus, the results of diet and animal type, including interactions
with storage type and display time, are reported separately.

3.1. Meat Tenderness, Vitamin E Concentration, and Fatty Acid Composition of Meat

In this study, no difference in meat tenderness (Warner–Bratzler shear force) was
observed among animals fed the CONP, CAHP, or CAMP diet (p = 0.47; Table 2) or between
the Composite lambs and Merino yearlings (p = 0.24; Table 2). The mean values for
tenderness of meat was 35 N. Dietary vitamin E concentration in CAHP and CAMP diets
was lower than the CONP diet (Table 1). This resulted in lower vitamin E concentration of
meat in the CAHP and CAMP diets than the CONP diet (0.81, 0.86, and 0.99 mg/kg meat,
respectively; p < 0.001; Table 2).

Compared to the CONP diet, the CAMP diet affected polyunsaturated fatty acid
concentration, mainly via alpha-linolenic acid (ALA, 18:3n−3) and arachidonic acid (AA,
20:4n−6) concentrations in meat (Table 2). Alpha-linolenic acid concentration in meat
of CAMP was approximately double the ALA concentration in meat of CONP (55 vs.
25 mg/kg meat; Table 2), presumably because the dietary ALA concentrations for CONP
and CAMP were 228 and 846 mg/100 g of diet (Table 1). Arachidonic acid concentration in
meat of CAMP was approximately 20% less than the AA concentration in meat of CONP
(28 vs. 35 mg/kg meat, Table 2). There was no evidence of any difference between the
CAHP diet and CONP diet for ALA concentration, total omega-3 concentration, total
omega-6 concentration or the ratio of n−6/n−3 in meat, although AA was about 10% less
in CAHP than CONP. Diet also affected long chain omega-3 FAs of eicosapentaenoic acid
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(EPA, 20:5n−3), docosapentaenoic acid (DPA, 22:5n−3) or docosahexaenoic acid (DHA,
22:6n−3) but the magnitude of these effects is smaller. The total muscle fat content was 65%
(95% confidence interval = (57%, 73%)) greater for Merino yearlings than Composite lambs
(4.88 vs. 2.97 g/100 g of meat). This resulted in higher values for most individual and
major fatty acid groups in Merino yearlings when compared to Composite lambs (Table 2).

3.2. Stability of Meat Colour and Lipid Oxidation after 2-, 45-, and 90-Day Storage under Chilled
to Semi-Frozen Conditions

Redness of meat was affected by animal type, storage length, and display time, but
not by diet in this study (Table 3). The redness of meat stored for a short duration (2 days,
i.e., fresh meat) was above the threshold value of 14.8 for consumer acceptance after 72 h
simulated retail display [22]. Meat stored for 45 days (medium-term) under semi-frozen
conditions failed to maintain its redness past 48 h retail display and meat stored for 90 days
(long-term) under semi-frozen conditions failed to maintain its redness past 24 h retail
display (Figure 1). With animal type, the decline in meat redness with increasing display
time was greater in yearling meat from Merino sheep than lamb meat from Composite
sheep (p < 0.0001 for animal type × display time interaction; Table 3). Most of this greater
decline in yearling meat from Merino sheep occurred between 1 and 24 h retail display
(Figure 2).
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Figure 1. Effect of short-, medium-, and long-term storage (fresh, 45- and 90-day storage) on redness (a*-value) of muscle
longissimus lumborum during 72 h of retail display under simulated refrigeration. Display time is the number of hours after
muscle is cut and displayed for retail colour measurement. Sed denotes standard of difference.

It should be noted that for all storage lengths applied in this study, including lamb
and yearling meat samples stored under chilled (2 days) and semi-frozen conditions (45
and 90 days), the lipid oxidation of meat at 1 h display time as assessed by TBARS was
below the threshold that can develop abnormal flavour or other sensory defects in sheep
meat. In terms of animal type (Composites vs. Merinos), there is evidence that at 72 h
display time, lamb meat from Composite sheep had somewhat greater lipid oxidation than
yearling meat from Merino sheep for meat stored for 2 days. However, for yearling meat
from Merino sheep stored for 45 or 90 days, these samples had somewhat greater lipid
oxidation than lamb meat from Composite sheep (p = 0.046 for 3-way interaction of animal
type × storage time × display time; Table 4, Figure 3). At 72 h retail display, TBARS values
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for 45-day and 90-day storage meat samples were 10 to 15 times greater than the 1 h TBARS
values (Figures 3 and 4).

Antioxidants 2021, 10, 166 11 of 19 
 

 

Figure 1. Effect of short-, medium-, and long-term storage (fresh, 45- and 90-day storage) on 

redness (a*-value) of muscle longissimus lumborum during 72 h of retail display under simulated 

refrigeration. Display time is the number of hours after muscle is cut and displayed for retail 

colour measurement. Sed denotes standard of difference. 

 

Figure 2. Effect of animal type (Composites vs. Merinos) on redness (a*-value) of muscle 

longissimus lumborum during 72 h of retail display under simulated refrigeration. Display time is 

the number of hours after muscle is cut and displayed for retail colour measurement. Sed denotes 

standard error of difference. 

It should be noted that for all storage lengths applied in this study, including lamb 

and yearling meat samples stored under chilled (2 days) and semi-frozen conditions (45 

and 90 days), the lipid oxidation of meat at 1 h display time as assessed by TBARS was 

below the threshold that can develop abnormal flavour or other sensory defects in sheep 

Figure 2. Effect of animal type (Composites vs. Merinos) on redness (a*-value) of muscle longissimus lumborum during 72 h
of retail display under simulated refrigeration. Display time is the number of hours after muscle is cut and displayed for
retail colour measurement. Sed denotes standard error of difference.Antioxidants 2021, 10, 166 13 of 19 

 

 

Figure 3. Effect of storage time (fresh, 45 and 90 days), retail colour display time (1 and 72 h) and 

animal type (lamb meat from Composite sheep and yearling meat from Merino sheep) on lipid 

oxidation (TBARS, mg MDA/kg meat). Results are presented on a square root scale along with the 

minimum and maximum standard errors of difference (sed) on that scale. 

 

Figure 4. Effect of storage time (fresh, 45 and 90 days), retail colour display time (1 and 72 h) and diet (CAHP = pelleted 

diet containing camelina hay, CAMP = pelleted diet containing camelina meal and CONP = control diet containing cereal 

hay and grains) on lipid oxidation (TBARS, mg MDA/kg meat). Results are presented on a square root scale along with 

the minimum and maximum standard errors of difference (sed) on that scale. 

Figure 3. Effect of storage time (fresh, 45 and 90 days), retail colour display time (1 and 72 h) and animal type (lamb meat
from Composite sheep and yearling meat from Merino sheep) on lipid oxidation (TBARS, mg MDA/kg meat). Results are
presented on a square root scale along with the minimum and maximum standard errors of difference (sed) on that scale.
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Figure 4. Effect of storage time (fresh, 45 and 90 days), retail colour display time (1 and 72 h) and diet (CAHP = pelleted
diet containing camelina hay, CAMP = pelleted diet containing camelina meal and CONP = control diet containing cereal
hay and grains) on lipid oxidation (TBARS, mg MDA/kg meat). Results are presented on a square root scale along with the
minimum and maximum standard errors of difference (sed) on that scale.

4. Discussion

With increasing international demand for premium red meat products, the storage
conditions under which red meat products are stored and transported are becoming in-
creasingly important. New production and processing techniques are required to extend
the shelf life of premium products under chilled to semi-frozen conditions (for example,
3 months for sheep meat and up to 6 months for beef) between slaughter and consump-
tion [2,3,23]. The maintenance of the safety and sensory attributes of meat during these
extended storage periods is important [7]. Animal nutrition (diet) and animal type (breed)
can influence carcass fatness and muscle (macro and micro) nutrients, which can, in turn,
affect the colour and lipid oxidative status of the finished meat product when kept for
different storage times and display temperatures [5,24]. These factors ultimately affect
the profitability of the red meat industry as consumer perception, at the time of purchase
of meat, can be influenced by the colour and sensory attributes of meat from previous
eating experience. Therefore, it is important to determine the retail colour stability and
lipid oxidative stability of meat after longer storage conditions.

To meet consumer acceptability for Australian lamb, meat tenderness below approxi-
mately 27 N is required [25]. Others [26] reported that meat tenderness above this threshold
had a negative relationship with all consumer sensory scores (i.e., overall liking, juiciness,
tenderness, flavour, odour, and taste of lamb). The average tenderness of lamb (33.3 N) and
yearling (35.9 N) meat from all diets was consistent with previous studies where lambs
were fed diets with oaten hay and cereal grain or oaten hay and protein supplements [27],
and slightly higher than the 27 N required to meet consumer acceptability [25]. It is interest-
ing to note that meat tenderness was not appreciably affected by animal type even though
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the Merino yearlings had remarkably higher muscle fatness compared with Composite
lambs. One would have expected yearling meat from Merino sheep to be tenderer than
lamb meat from Composite sheep due to this difference in total fat content (increased
intramuscular fat content). This indicates that intramuscular fat content is not the only con-
tributor to meat tenderness and other factors such as myofibrillar cross linkages, collagen
content, and protease enzymes [28,29] might be involved with the relationship between
meat tenderness and age of animals. As occurred in a previous study that examined the
inclusion of camelina meal in a concentrate diet [30], inclusion of camelina did not affect
meat tenderness of finished lambs.

The average vitamin E concentration differed between Composite sheep (0.8 mg/kg
lamb meat) and Merino sheep (1.0 mg/kg yearling meat). Whilst these values are low,
they are typical of previous studies that have finished sheep on traditional Australian
feedlot diets [5,31]. In turn, vitamin E concentration of meat obtained from sheep fed
the concentrate diets without vitamin E supplementation are generally between 0.5 and
2 mg/kg [32–35]. In contrast, in Australia, 4 month old weaned lambs finished on green
pasture for 6 weeks had a vitamin E concentration of 2.1–2.9 mg/kg meat [5]. The optimum
level for vitamin E in meat to delay lipid oxidation, and thus maintain retail colour, of
sheep meat varies between studies. Previous studies have shown that the colour of meat
was not affected when vitamin E concentration of meat is between 3.2–3.6 mg/kg meat [36]
or between 3.5 and 4.0 mg/kg [37]. Moreover, lipid oxidation was reduced in sheep meat
when the vitamin E concentration of meat was greater than 3.45 mg/kg [38]. Yearling
meat from Merinos had a slightly higher vitamin E concentration than lamb meat from
Composite sheep. One potential explanation for this result is that the Merino yearlings
were exposed to green spring pasture twice in their lifetimes, whereas Composite lambs
had been exposed to green spring pasture only once. This extra growing period for Merino
yearlings is normal practice because Merino sheep grow slower and achieve market weight
at older age than faster growing crossbred lambs [39,40]. Thus, over their lifetime, the
Merino yearlings had an opportunity to consume more green pastures that are rich in
vitamins and essential FAs, which also emphasises that the feeding length of ruminants on
green pasture or fresh fodders is important for increasing the vitamin E and essential fatty
acid concentrations in muscle tissues.

To stabilize lipid oxidation and colour stability of meat under commercial storage
conditions, others proposed that muscle vitamin E concentration in beef (LL) should be
at least 3.3 mg/kg meat [41] and ~3.5 mg/kg meat [42], respectively. Previous work on
finishing lambs led to vitamin E in meat of about 3.5 mg/kg for diets based on annual
pasture and about 6 mg/kg for a perennial pasture diet [36]. With these diets colour
stability, as measured by decrease in redness over 72 h of simulated retail display of fresh
meat, was about half that measured in the present study (~1 compared to 2.3 a* units).
While TBARS was not measured at the start of display in the previous study [36], the
TBARS at 72 h of the perennial pasture diet (meat vitamin E ~6 mg/kg) and the annual
pasture diet (meat vitamin E ~3.5 mg/kg) are, within experimental error, similar to the
TBARS at 1 h in the present study. This compares to the fresh meat TBARS at 72 h in the
present study being about thrice the TBARS at 1 h. These observations indicate that meat
vitamin E of 3.5 mg/kg is sufficient to prevent lipid oxidation of fresh lamb meat, but meat
vitamin E of less than 1 mg/kg is insufficient to prevent lipid oxidation of fresh lamb meat.

As observed in previous studies where lambs were finished on a range of diets, at
the time of initial display (1 h) fresh meat had less redness than meat stored for longer
periods [43,44]. We propose that with longer storage (ageing) of meat, the muscle (fibres)
membrane permeability and integrity weakens. We propose that this allows the oxygen
to reach the muscle myoglobin (pigment) faster, resulting initially in a greater redness
(cherry red oxymyoglobin) when the meat is cut and displayed for retail assessment.
However, in the present study, the lower redness in fresh meat was not maintained from
24 h display onwards.
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Irrespective of the three experimental diets, and only marginally affected by whether
the meat was yearling or lamb, the decline in redness values between 1 and 72 h display
time was 2 units for fresh meat, 6 units for 45 day stored meat, and 8 units for 90 days stored
meat. This led to fresh meat displayed for 72 h having comparable colour to meat stored for
45 days after 48 h retail display and meat stored for 90 days after 24 h retail display (Table 3,
Figures 1 and 2). This result shows there was a reduction in colour stability (redness) for
meat stored for between 45 and 90 days, with the redness being below the recognized
threshold of 14.8 for meat to be acceptable for consumers [22] at 72 h for 45 days storage
and at 48 h for 90 days storage (Figure 1). It is postulated that the vitamin E concentration
of meat was not adequate to delay myoglobin (heme pigment) oxidation in meat stored
for 45 and 90 days under semi-frozen condition and then displayed at simulated retail
condition for 72 h. A likely explanation is that, at slaughter, all treatments had a vitamin E
concentration much below a level of 3–3.5 mg/kg of meat, which is necessary to scavenge
free radicals propagated from the polyunsaturated fatty acids (PUFA) or myoglobin (heme
pigment) oxidation that enhance the oxidative process in meat post-mortem. A previous
study showed that the colour stability of sheep meat as assessed by redness was affected
by iron, but not by omega-3 and omega-6 fatty acid concentrations, when the vitamin E
concentration of muscle was below this threshold range [45].

The redness over 12 days of retail display of the LL muscle collected at 24 h post-
mortem from lambs fed different types of camelina-based lipid supplemented diets, forti-
fied with vitamin E at supranutritional level (360–415 mg/kg diet across treatments) was
not affected by dietary treatments [24]; resulting in meat vitamin E concentration ranging
from 2.05–4.71 mg/kg across all dietary treatments. In the latter study, muscle samples
were stored frozen for 90 days, thawed for 24 h at 4 ◦C and then packed under oxygen
permeable modified atmosphere packaging (sliced 25 mm thickness), using a gas mixture
of O2:CO2 at 80:20% (v/v), prior to retail display for 12 days at 4 ◦C. These results indicate
that dietary vitamin E fortification protected the meat sample from colour deterioration
during retail display, despite the increase in PUFA concentration in the meat caused by
chemically protected oilseed and oil supplementation in the diets. In the present study, with
low muscle vitamin E concentration (≤ 1 mg/kg meat), the higher PUFA concentration in
Merino yearling meat is likely to result in more myoglobin oxidation. This will cause the
observed greater decline in meat redness with the Merinos compared to the Composites.
All the three diets produced lambs with muscle vitamin E less than 1 mg/kg, which is well
below the 3–3.5 mg/kg value needed to prevent lipid oxidation. The minimal effect of diet
on colour stability and lipid oxidation, under any storage condition, is likely to be due to
the vitamin E in meat being too low to appreciably affect lipid oxidation.

Storage duration and display conditions can influence free radical formation in meat
propagated from PUFA, leading to lipid oxidation that, in turn, results in the development
of rancid and abnormal flavours in cooked meat. Lipid oxidation evaluated as TBARS
values were affected by storage time, retail display time, and animal type, but not by
dietary treatments (Table 4). However, a previous study [24] showed TBARS values in meat
increased in lambs fed linseed oil or sodium hydroxide treated linseed diets and camelina
oil or sodium hydroxide treated camelina seed diets when compared to a Megalac fat
supplemented control diet. The PUFA concentration in the LL muscle was also greatest in
the linseed diets followed by diets that contained camelina diets and then the control diet
supplemented with Megalac. The change in PUFA concentration is most likely the cause
of the change in TBARS values across dietary treatments observed in the latter study [24].
However, there was not a close relationship among responses to breed (animal type),
storage time, and retail display time for a*-value and TBARS values in the present study. At
1 h retail display, TBARS values were around 0.25 mg MDA/kg meat, irrespective of storage
time (fresh or 45 days or 90 days) when compared across animal types (Figure 3) or across
all diets (Figure 4). For fresh meat, after 72 h retail display, TBARS values were about 3 times
greater than after 1 h retail display (Figure 3; Figure 4) and less than half the critical value
of 2 mg MDA/kg meat where off-flavours are developed in meat during cooking [46,47].
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In contrast, after 72 h retail display, lamb meat from Composites and yearling meat from
Merinos stored for 45 or 90 days had TBARS values about double the critical value for off-
flavour development. This is further evidence that the muscle antioxidant status (vitamin
E), iron concentration (heme pigment), and fatty acid composition (PUFA) are important
factors to maintain colour and sensory attributes of meat, when storing sheep meat under
semi-frozen conditions for extended periods.

The increase in ALA in meat observed from animals fed the CAMP diet is considered
advantageous for human health because of the consequential increase in the total omega-3
concentration and the decrease in the total omega-6 concentration, whilst maintaining
the ratio of n−6/n-3 below 4. As the inclusion of concentrates or grain high in omega-6
increases in sheep diets, the omega-6 FA concentration of meat increases. This, in turn,
results in increased PUFA concentration of meat [5,48]. Increasing PUFA concentration
of meat through elevated levels of omega-6 concentration would not be beneficial and it
has been proposed that the n−6/n−3 ratio in meat should be 4 or less to help maintain
a balanced and healthy life [4,49]. The benefits of increasing omega-3 fatty acids has
previously been observed with diets containing products derived from camelina seed
(camelina oil, camelina meal, camelina seed treated with NaOH, and camelina cake)
irrespective of the nutritional level of the diet [11–13,24]. However, the omega-3 benefit
of supplementing diets with products of camelina seed does not extend appreciably to
supplementing diets with camelina hay. This difference is likely associated with the ALA
concentration in CAHP (367 mg/100 g of diet) being lower than the ALA concentration
in CAMP diet (846 mg/100 g of diet). Whilst there were some smaller effects of diet on
the concentration of long chain omega-3 FAs; the concentration of eicosapentaenoic acid
(EPA, 20:5n−3) plus docosahexaenoic acid (DHA, 22:6n−3) was, in all 3 dietary treatments,
lower than 30 mg/100 g meat threshold to claim meat as a source of omega-3 [4].

It has previously been shown [45] that PUFA and vitamin E concentrations are neg-
atively associated in the muscle tissue systems of live lambs on a between animal basis,
and this relationship did not differ between sheep fed on pasture to sheep fed on pasture
supplemented with grain. We suggest, more broadly, that the carcass fatness of an animal
could be negatively related to the amount of vitamin E in the muscle. An explanation for
such a relationship is that vitamin E in the muscle tissue systems is used to prevent essential
fatty acids from oxidation, and high levels of essential fats in the muscle tissues can only
be maintained by utilizing vitamin E that is already present in the muscles. Our previous
report showed [50] that the carcass fatness of lambs in the current feeding experiment was
greater in the diets with camelina hay or camelina meal than in the control diet. Thus, an
explanation of the lower muscle vitamin E in the sheep fed the CAHP and CAMP, than in
the sheep fed CONP, is that extra muscle vitamin E had been utilized in the live animal to
protect the essential fat.

5. Conclusions

In this study, lamb and yearling meat produced from sheep supplemented with
camelina meal, camelina hay or a grain/hay-based diet had a muscle vitamin E concentra-
tion between 0.8 and 1.0 mg/kg. When the meat produced was stored for 45 or 90 days
under semi-frozen conditions, this low vitamin E concentration resulted in increased lipid
oxidation during 72 h retail display and reduced retail colour stability. These findings rein-
force the importance of sheep meat having a vitamin E concentration about 3–3.5 mg/kg
muscle to maintain meat colour during retail display, and to avoid off-flavour development
of cooked meat due to lipid oxidation, especially for meat stored under semi-frozen condi-
tions for extended periods. This study also confirmed that sheep diets supplemented with
camelina meal improved the total omega-3 fatty acid and the ratio of omega-6/omega-3
fatty acid in lamb and yearling meat. This beneficial change in omega-3 fatty acid concen-
tration and omega-6/omega-3 ratio was not observed in lamb and yearling meat produced
from sheep supplemented with camelina hay when compared with meat from lambs fed
the control diet.
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