
Research Article
Similarities in Gene Expression Profiles during In Vitro Aging
of Primary Human Embryonic Lung and Foreskin Fibroblasts

Shiva Marthandan,1 Steffen Priebe,2 Mario Baumgart,1 Marco Groth,1

Alessandro Cellerino,1,3 Reinhard Guthke,2 Peter Hemmerich,1 and Stephan Diekmann1

1Leibniz-Institute for Age Research-Fritz Lipmann Institute e.V. (FLI), 07745 Jena, Germany
2Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute e.V. (HKI), 07745 Jena, Germany
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Replicative senescence is of fundamental importance for the process of cellular aging, since it is a property of most of our somatic
cells. Here, we elucidated this process by comparing gene expression changes, measured by RNA-seq, in fibroblasts originating
from two different tissues, embryonic lung (MRC-5) and foreskin (HFF), at five different time points during their transition
into senescence. Although the expression patterns of both fibroblast cell lines can be clearly distinguished, the similar differential
expression of an ensemble of genes was found to correlate well with their transition into senescence, with only a minority of genes
being cell line specific. Clustering-based approaches further revealed common signatures between the cell lines. Investigation of the
mRNA expression levels at various time points during the lifespan of either of the fibroblasts resulted in a number of monotonically
up- and downregulated genes which clearly showed a novel strong link to aging and senescence related processes which might be
functional. In terms of expression profiles of differentially expressed geneswith age, commongenes identifiedhere have the potential
to rule the transition into senescence of embryonic lung and foreskin fibroblasts irrespective of their different cellular origin.

1. Introduction

Cellular senescence is a terminal phase observed towards
the end of a primary human fibroblast cell population after
numerous cell divisions; it is considered to be the cellular
aging process. Cellular senescence occurs either naturally
or stress induced; that is, cells stop dividing after a finite
number of cell divisions (termed “replicative senescence”),
reaching the final cell cycle arrested state called the “Hayflick
limit” [1]. The process of senescence is associated with a
number of phenotypes; in general, the integrity and function
of tissues decline, resulting in the body being susceptible
to diseases associated with age [2, 3]. Key factors driving
cellular senescence are induced increase in Cyclin depen-
dent kinase inhibitors (CDKIs) [4], oxidative stress [5], and
DNA damage [6, 7]. In senescence, despite their viability
and active metabolism, cells are resistant to mitogenic or
apoptotic stimuli [8, 9]. On the one hand, cellular senescence

results in irreversible growth arrest, limiting the proliferation
of damaged cells susceptible to neoplastic transformation
resulting in a decreased incidence of cancer. However, on the
other hand, senescence results in in vivo aging, weakening
the function and renewal of stem cells [10]. Markers are
able to identify cellular senescence in vitro and in vivo:
enlarged cell morphology, increase in amount of cellular
debris, changes in chromatin structure, increase in Cyclin
dependent kinase inhibitors (CDKIs) expression, presence
of senescence associated secretory phenotype (SASP), and
senescence associated ß-galactosidase (SA ß-Gal) [11–13].
DNA damage response and the p53-p21 and p16-pRb path-
ways are crucial for senescence induction [14], together with
additional pathways including telomere uncapping, DNA
damage (UV, ionizing radiation, and chemicals), cytoskeletal
genes, the interferon pathway, nutrient imbalances, onco-
genic activities, and oxidative stress [7, 15, 16]. In primates,
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the percentage of senescent skin fibroblasts increases with
age in vivo [17]. Here, we therefore used primary human
fibroblasts [9, 13, 18] as our model system.

Recently, we identified individual gene expression pat-
terns during replicative senescence among five fibroblast cell
lines of different cell origins [13]. In this study, we deter-
mined mRNA expression changes during different stages
of their lifespan in two fibroblast cell lines of different cell
origin. We analyzed the transcriptome, determined by RNA-
seq, at five separate population doublings (PDs) between
young and senescent embryonic lung (MRC-5) and foreskin
(HFF) fibroblasts. Using both molecular and systems biology
approach, we studied the growth pattern of the two fibroblast
cell lines in detail. By comparing fibroblasts from two differ-
ent origins we were able to determine either mRNA changes
specific for one of the cell lines or common transcriptomic
patterns which underlie the process of replicative senescence.

2. Materials and Methods

2.1. Cell Lines. Primary human fibroblasts (MRC-5, primary
cells, 14-week-gestation male, fibroblasts from normal lung,
normal diploid karyotype) were obtained from ATCC (LGC
Standards GmbH,Wesel, Germany). Human foreskin fibrob-
lasts (HFFs; primary cells, fibroblasts from foreskin, normal
diploid karyotype) cells were kind gifts of T. Stamminger
(University of Erlangen [19]).

2.2. Cell Culture. Primary human fibroblast cells were cul-
tured in Dulbeccos Modified Eagle’s Low Glucose Medium
(DMEM) with L-glutamine (PAA Laboratories, Pasching,
Austria), supplemented with 10% fetal bovine serum (FBS)
(PAA Laboratories) under normal air conditions in a 9.5%
CO
2
atmosphere at 37∘C. The cells were subcultured by

removing the remaining medium followed by washing in
1x PBS (pH 7.4) (PAA Laboratories) and detachment using
trypsin/EDTA (PAA Laboratories). Primary fibroblasts were
subcultured in a 1 : 4 (= 2 population doublings (PDs)) or 1 : 2
(= 1 PD) ratio. For stock purposes, cryoconservation of the
cell lines at various PDs was undertaken in cryoconserving
medium (DMEM + 10% FBS + 5% DMSO). Cells were
immediately frozen at −80∘C and stored for two to three days.
Afterwards, cells were transferred to liquid nitrogen for long
time storage. Refreezing and rethawing was not performed to
avoid premature senescence [20].

A vial of each of the two fibroblast cell lines (MRC-5
and HFF) was obtained and maintained in culture from an
early PD. On obtaining enough stock on confluent growth of
the fibroblasts in 75 cm2 flasks, cells were subcultured into
three separate 75 cm2 flasks and were passaged until they
were senescent in culture. At five different time points of the
fibroblast’s span in culture (MRC-5 = PDs 32, 42, 52, 62, and
72 and HFFs = PDs 16, 26, 46, 64, and 74), the total RNA was
extracted and used for high-throughput sequencing.

2.3. Detection of Senescence Associated ß-Galactosidase (SA ß-
Gal). The SA 𝛽-Gal assay was performed as described by [11]

at each of the five PDs in both MRC-5 and HFF. Paired two-
sample type 2 Student’s 𝑡-tests assuming equal variances were
done to examine the values obtained from SA ß-Gal assay for
statistical significance [9].

2.4. Western Blotting. The protocol was carried out as
explained in [9, 21].The optimal concentration of all primary
antibodies was estimated in primary human fibroblasts.
Primary antibodies are as follows: anti-p21 mouse antibody
(OP64; Calbiochem; dilution 1 : 200), anti-p15 rabbit anti-
body (4822; Cell Signaling Technology; 1 : 250), anti-p16
mouse antibody (550834; BD Pharmingen; 1 : 200), anti-
p27 rabbit antibody (sc-528; Santa Cruz; 1 : 200), anti-Cyclin
B1 mouse antibody (CCNB1; ab72; Abcam; 1 : 1000), anti-
Eg5 rabbit antibody (KIF11; ab61199; Abcam; 1 : 500), anti-
Histone H1.2 rabbit antibody (HIST1H1C; ab17677; Abcam;
1 : 1000), anti-ID3 mouse antibody (ab55269; Abcam; 1 : 100),
anti-Cathepsin K rabbit antibody (CTSK; ab19027; Abcam;
1 : 50), anti-DKK3 goat antibody (ab2459; Abcam; 1 : 5000),
anti-TMEM47 rabbit antibody (SAB1104840; SIGMA-Ald-
rich; 1 : 250), anti-IGFBP7 rabbit antibody (ab74169; Abcam;
1 : 500), anti-IGFBP2 rabbit antibody (ab91404; Abcam; 1 :
500), anti-MMP3 rabbit antibody (ab53015; Abcam; 1 : 200),
anti-Thymosin beta 10 rabbit antibody (TMSB10; ab14338;
Abcam; 1 : 10000), anti-Egr1 mouse antibody (ab55160; Ab-
cam; 1 : 100), anti-RPS23 mouse antibody (ab57644; Abcam;
1 : 200), anti-LIF mouse antibody (SAB1406083; SIGMA-
Aldrich; 1 : 100), anti-FBL rabbit antibody (SAB1101099;
SIGMA-Aldrich; 1 : 500), anti-Id1 rabbit antibody (ab52998;
Abcam; 1 : 500), anti-IL11 rabbit antibody (ab76589; Abcam;
1 : 500), anti-CLDN11 rabbit antibody (HPA013166; SIGMA-
Life Sciences; 1 : 50), anti-NADH Dehydrogenase subunit 6
rabbit antibody (MT-ND6; ab81212; Abcam; 1 : 1000), anti-
MT-ND5 rabbit antibody (ab83985; Abcam; 1 : 500), anti-
Granulin rabbit antibody (GRN; ab108608; Abcam; 1 : 1000),
anti-Cyclin D1 rabbit antibody (CCND1; 2922; Cell Signaling;
1 : 500), anti-Cyclin D2 mouse antibody (CCND2; ab3085;
Abcam; 1 : 500), anti-Cyclin A2 rabbit antibody (CCNA2;
NBP1-31330; Novus Biologicals; 1 : 1000), anti-Wnt16 rabbit
antibody (ab109437; Abcam; 1 : 500), anti-Cystatin C rabbit
antibody (CST3; ab109508; Abcam; 1 : 10000), anti-MOXD1
mouse antibody (SAB1409086; SIGMA-Aldrich; 1 : 200), anti-
PERP rabbit antibody (ab5986; Abcam; 1 : 500) and anti-
tubulin mouse antibody (T-9026; SIGMA-Aldrich; 1 : 5000).
After development of film in the Western Blots procedure,
intensity of the signals was quantified using Metamorph
software [22]. The signal intensity values were examined for
statistical significance using unpaired two-tailed two-sample
Student’s 𝑡-tests assuming unequal variances.

2.5. RNA Extraction. Total RNA was isolated using Qiazol
(Qiagen) according to the manufacturer’s protocol, with
modifications as explained in [9].

2.6. Quantitative Real-Time PCR. Real-time PCR was per-
formed using CFX384 thermocycler Biorad and Quantitect
PCR system (Qiagen) as described earlier in [23]. Three
reference genes (GAPDH, ACTB, and RAB10) were used for
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Figure 1: Heatmap showing Spearman correlation values computed for all expressed genes and all 30 samples sequences for this study. The
histogram on top left denotes the distribution of the correlation values as well as the colors for each value.The dendrograms on top and left of
the histogram are identical but show different colors at their leaves: top: color denotes the cell line (blue: HFF; red: MRC-5); left: color denotes
the PD (bright to dark → young to old). Samples are clustered first according to cell line and second according to PD. Highest correlations
were found between the three replicates (light areas on the main diagonal).

normalization of the CT values. Since our RNA-seq results
revealed a stable expression of RAB10 for both cell lines
across the PDs, it was selected as reference gene. An unpaired
two-tailed two-sample Student’s 𝑡-tests assuming unequal
variances was used for examination for statistical significance
based on the ΔCT values.

2.7. RNA Sequencing. For quality check, total RNA was ana-
lyzed using Agilent Bioanalyzer 2100 (Agilent Technologies)
andRNA6000NanoKit (Agilent) to ensure appropriate RNA
quality in terms of degradation. The RNA integrity number
(RIN) varies between 8 and 10 with an average of around
9.65. Total RNA was used for Illumina library preparation
and next-generation sequencing [24]. About 2.5 𝜇g total RNA
was used for indexed library preparation using Illumina’s
TruSeq RNASample PrepKit v2 following themanufacturer’s
instruction. Libraries were pooled and sequenced (4 samples
per lane) using a HiSeq2000 (Illumina) in single read mode
with 50 cycles using sequencing chemistry v3. Sequencing
resulted in approximately 43 million reads with a length of
50 bp (base pairs) per sample. Readswere extracted in FASTQ
format using CASAVA v1.8.2 (Illumina).

2.8. RNA-seq Data Analysis. Raw sequencing data were
received in FASTQ format. Read mapping was performed
using Tophat 2.0.6 [25] and the human genome references
assembly GRCh37.66 (http://feb2012.archive.ensembl.org).
The resulting SAM alignment files were processed using
featureCounts v1.4.3-p1 [26] and the respective GTF gene
annotation, obtained from the Ensembl database [27]. Gene
counts were further processed using the R programming
language [28] and normalized to RPKMvalues. RPKMvalues
were computed using exon lengths provided by feature-
Counts and the sum of all mapped reads per sample.

2.9. Sample Clustering and Analysis of Variance. Spearman
correlation between all samples was computed in order to
examine the variance and the relationship of global gene
expression across the samples, using genes with raw counts
larger than zero. Correlation values were visualized using
a heatmap (Figure 1). Additionally, principal component
analysis (PCA) was applied using the log 2 RPKM values
for genes with raw counts larger than zero. Results were
visualized in a three-dimensional scatterplot (Figure 2).
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Figure 2: 3D PCA plot for 30 samples (2 cell lines, 5 different PDs, triplicates). Both cell lines are clearly separated by PC2.The effect of aging
is partly explained by PC1 and PC3. Colors: yellow to blue: young to old MRC-5 cells; green to red: young to old HFF cells.

2.10. Detection of Differential Expression. The Bioconductor
packages DESeq 1.10.4 [29] and edgeR 3.4.2 [30] were used
to identify differentially expressed genes. Both packages
provide statistics for determining of differential expression
in digital gene expression data using a model based on
the negative binomial distribution. The nonnormalized gene
counts have been used here, since both packages include
internal normalization procedures. The resulting 𝑝 values
were adjusted using Benjamini and Hochberg’s approach for
controlling the false discovery rate (FDR) [31]. Genes with an
adjusted𝑝 value< 0.05 found by both packages were assigned
as differentially expressed. Since large sets of DEGwere found
more strict selection cutoffs have been used: adjusted 𝑝 value
< 0.01 (by both packages) and absolute log 2 fold-changes > 1.
See Supplemental Table 1 in SupplementaryMaterial available
online at http://dx.doi.org/10.1155/2015/731938 for complete
test results.

2.11. Comparison of RNA-seq with qRT-PCR and Protein
Expression. Correlation analysis was performed using all
15 samples (3 replicates for each of the 5 PDs) for MRC-
5 and HFF, respectively. Spearman correlation coefficients
were estimated using the RPKM values (RNA-seq data) and
2−ΔCT values (qRT-PCR data). For comparison of RNA-seq
with Western Blot data, only the first and the last PD were
used. Log 2 fold-changes were calculated based on RPKM
values (RNA-seq data), 2−ΔΔCT ratios (rRT-PCR), and protein
expression ratios (Western Blots).

2.12. Clustering of Expression Profiles. Genes were clustered
according to their temporal profiles using a fuzzy 𝑐-means
algorithm. We used the function cmeans from the package
e1071 1.6-2 of the R programming language. Parameters were
defined as 𝑚 = 1.2, iter.max = 500, d.obj.fun = 10−8. The
number of trials for the fuzzy algorithm was set to 30.
The optimum number of clusters was determined using a
combination of several cluster validation indexes as described
by [32]. See Supplemental Table 2 for detailed assignment of
the genes to clusters.

2.13. Functional Enrichment Analysis. Singular gene set
enrichment analysis was performed using FungiFun2 [33]
for selected sets of genes based on the clustering results.
Although FungiFun2 is mainly suited for fungal gene enrich-
ment analysis annotation for human genes is included as
well and was recently updated. Default parameters were used
while significant Gene Ontology (GO) terms and KEGG
pathways were selected according to FDR corrected 𝑝 values
< 0.05. Complete lists of GO-terms and KEGG pathways are
available from Supplemental Table 3. The list of GO-terms
was further summarized using TreeMaps of the REVIGO
online tool [34]. Default parameters and GO term with
adjusted 𝑝 values were used as input.

2.14. Monotonically Expressed Genes. In order to identify
genes that change their expression levels monotonically with
age, we calculated the Spearman correlation coefficient 𝑐(𝑖)
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of each gene’s temporal profile with the linearly increasing
curve 𝑓(𝑥) = 𝑥. In order to incorporate the replicates at
each time point, we repeated the calculations by randomly
sampling over the replicates at each time point and by calcu-
lating an average correlation coefficient from the resampled
curves afterwards. 𝑝 values 𝑝(𝑖) were computed using the
R base function cor.test. We used the calculated correlation
coefficient 𝑐(𝑖) of gene 𝑖 with the linear increasing curve as a
criterion to split the genes into the following three groups:
if 𝑐(𝑖) > 0 and 𝑝(𝑖) < 0.05, we considered a gene to be
monotonically increasingwith age, if 𝑐(𝑖) < 0 and𝑝(𝑖) < 0.05,
the gene was considered to be monotonically decreasing with
age, and if 𝑝(𝑖) > 0.05, the expression of the corresponding
gene was considered nonuniformly [35]. See Supplemental
Table 4 for detailed test results.

2.15. Functional Association Networks. Gene symbols were
used as input for functional association network creation
using the STRINGdatabase [36], Cognoscente [37], andGen-
eMANIA [38] online tools. For STRING we used “multiple
names” input and selected “Homo sapiens” as organism. In
Cognoscente we selected “Human” and “Radius = 0 with
intermediates” as input parameters in addition to the list of
genes. The GeneMANIA network was created using default
settings. The resulting networks are shown in Figure 9 and
Supplemental Figure 6.

3. Results and Discussion

We studied the growth of two primary human fibroblast
cell lines, MRC-5 and HFF, throughout their span in culture
from an early PD until they achieved senescence at late PDs.
Analysis of their growth behaviour (Supplemental Figure 1A)
and their entry into senescence (Supplemental Figure 1B),
measured by the induction of SA 𝛽-Gal, revealed a cell line
specific transition into senescence of these two fibroblasts
(MRC-5 derived from embryonic lung and HFFs derived
from human foreskin). Fibroblast cell line specific growth has
been observed by us before [13, 39]. Total RNA was extracted
at five different time points of the fibroblasts span in culture
and was subjected to high-throughput RNA sequencing
(RNA-seq).

3.1. Global Expression Profiles Cluster according to Cell Line
and Age. Overall, the RNA-seq data of this study comprise
30 samples: 15 samples for each cell line (HFF and MRC-5),
consisting of five different PDs, each with three biological
replicates. For each sample, mapping and counting resulted
in 56,299 raw gene count expression values (using Ensembl
gene annotation). The largest group of these genes (21,226)
belongs to the group of protein coding genes. For all the 30
samples, 19,237 genes have raw gene counts larger than zero;
these genes were considered for further analysis.

First, we studied primary clustering of the global gene
expression. We therefore created a heatmap showing the
Spearman correlation for all 30 samples using the nonzero
genes (Figure 1). In this heatmap, both cell lines were clearly
separated. In eight out of ten cases, the three values of the

Table 1: Number of DEG across different PD in MRC-5 and HFF
for two significance criteria. See Supplemental Table 1 for detailed
test results.

Comparison
Number of
DEG (FDR <

0.05)

Number of DEG (FDR
< 0.01; | log 2FC| > 1)

MRC5: PD 32 to PD 42 2,050 131
MRC5: PD 42 to PD 52 1,248 185
MRC5: PD 52 to PD 62 2,617 773
MRC5: PD 62 to PD 72 4,582 1,516
MRC5: PD 32 to PD 72 8,992 2,117
HFF: PD 16 to PD 26 7,873 1,083
HFF: PD 26 to PD 46 2,228 1,366
HFF: PD 46 to PD 64 15 8
HFF: PD 64 to PD 74 7,002 1,553
HFF: PD 16 to PD 74 12,529 4,651

replicates were clustered together, showing the good quality
of the data and low noise between the replicates. Next,
we applied principal component analysis (PCA) to further
investigate the effect of aging in the individual cell lines.
Figure 2 shows the first three principal components which
explain ∼97% of the variances in a three-dimensional plot.
MRC-5 and HFF again were clearly separated (by PC2) and
the effect of aging was covered by PC1 and PC3, with a larger
separation between young and old HFF compared toMRC-5.
Already at this global level, similarity between both cell lines
is perceptible, since young and senescent samples are grouped
concordantly.

3.2. MRC-5 and HFF Share Common Differentially Expressed
Genes Regulated by Aging. Differentially expressed genes
(DEG) were identified by comparing all consecutive PDs
as well as the first with the last PD in MRC-5 and HFF
cells (10 comparisons; Table 1). Figures 3(a) and 3(c) show the
absolute number of DEG found as well as the intersection
of sets of DEG (indicated by color). Overall, considering
all five comparisons in each cell line, we identified more
DEG in HFF (14,511) compared to MRC-5 (10,517). Due to
the strong effect of aging on gene expression and the large
number of detected DEG, more stringent selection cutoffs
(𝑝 < 0.01 and |log 2 fold-change| > 1) were used beyond the
standard 𝑝 value threshold of 0.05 (Figures 3(b) and 3(d)).
Figure 3 reveals that DEG were not specific for a certain PD
comparison but recurred when later PDs were compared.
MRC-5 andHFF shared a large fraction of DEG; only aminor
fraction of DEG was identified uniquely in one of the cell
lines (bars on the right in Figure 3). This indicates common
processes which occur during aging in both cell lines rather
than cell line specific changes. Most DEG were found when
comparing the first with the last PD, leading to new DEG
which had not previously been detected between consecutive
PDs (orange and turquoise coloured bars in Figure 3). Both
cell lines differed between the absolute number of DEG as
well as the increased percentage of DEG for the first two
transitions in HFF (PD 16 to PD 26; PD 26 to PD 46). In
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Figure 3: Intersection barplot showing the number of DEG between several consecutive PDs in MRC-5 and HFF for two different cutoffs
((a) + (c): FDR < 0.05; (b) + (d): FDR < 0.01 and |log 2-fold-change| > 1). In each plot, identical colors across different bars indicate the same
set of DEG (intersection) while new colors indicate a new set of DEG (from left to right). (a) and (b) indicate genes which were found in
MRC-5 and likewise in HFF. (c) and (d) show the same number of DEG but HFF is listed first in order to show the number of genes which
were found likewise in MRC-5. For instance in (a), the red colored parts of all bars encode DEG found in MRC-5 between PD32 and PD42
while yellow colored parts of bars denote “new” DEG found in HFF between PD16 and PD26.

MRC-5, most of the changes seemed to occur at late PDs,
while HFF cells indicated larger changes already after early
PDs.This effect is also perceivable by the distances in the PCA
plot (Figure 2).

3.3. High Correlation of RNA-seq with qRT-PCR for Selected
DEG. For validation of the RNA-seq data, qRT-PCR was
applied. Here, triplicates for all five PDs were measured.

Selection of genes was based on the comparison of the
first with the last PD, using the strict DEG criteria (𝑝 <
0.01 and |log 2 fold-change| > 1), resulting in 2,117 DEG
for MRC-5 and 4,651 DEG for HFF (5th and 10th bars in
Figures 3(b) and 3(d)). We further filtered the intersection
of those two gene sets (1,139) according to common differ-
ences in both cell lines. The majority (917) of these DEG
were commonly regulated, either up (385) or down (532),
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Figure 4: Spearman correlation of RNA-seq and qRT-PCR expres-
sion profiles for selected DEG commonly regulated in MRC-5
and HFF. Almost all genes exhibit a positive correlation between
both measurement techniques (exception: EGR1 in MRC-5). With
age, the first four genes (EGR1-ID3) are downregulated (first PD
compared to last PD), while the later are upregulated (CCND1-
WNT16).

showing again the similarity of gene expression changes in
both cell lines. Overall 12 DEG were selected which either
showed strong expression in the RNA-seq data (RPKM > 50;
genes: EGR1, CCND1, CTSK, DKK3, IGFBP7, and TMEM47)
or were proven to have an established role in cell cycle
and senescence pathways (CCNA2, CCNB1, ID3, IGFBP2,
MMP3, and WNT16). The minimal RPKM criterion was
applied to ensure a strong expression signal in at least one
condition for a set of genes. The expression profiles from
both measurement techniques were then confronted using
Spearman rank correlation in each individual cell line. The
results showed high correlation coefficients indicating a good
overlap of bothmeasurement techniques and quality of high-
throughput gene expression analysis (Figure 4). In 17 out of
24 cases, correlationwas larger than 50% (mean correlation of
63%), while only once negative correlation was found (EGR1
in MRC-5).

3.4. Consistent Changes of mRNA and Protein Expression.
Although mRNA expression changes are generally consid-
ered to consequently lead to corresponding changes in pro-
tein levels, correlation between both can be as little as 40%,
as observed in large-scale proteome- and transcriptome-
profiling experiments [40]. We thus asked if the detected
changes of strongly altered DEG correlated with correspond-
ing protein expression levels. Triplicates of the first and
last PD were selected for comparison. Gene selection was
performed as described above, either by strong expression
in RNA-seq (RPKM > 35) or by functional relation to cell
cycle and senescence pathways. Overall, 28 DEG (16 down-
and 12 upregulated DEG) were selected (the genesmentioned
above, validated by qRT-PCR, were included in this set).
The results of this comparison showed consistent changes,
in terms of their direction of regulation, between mRNA
expression, measured by RNA-seq, and protein expression,

measured by Western Blots, for all selected genes (Figures
5 and 6). 44 out of the 56 protein fold-changes exhibited
significant differences between young and old PDs.

3.5. Common Genes Ruling the Transition into Senescence
in MRC-5 and HFF. Then, we asked if common cellular
markers are involved in the transition into senescence. We
thus studied the genes most differentially expressed with
age commonly in MRC-5 and HFF fibroblasts. We noticed
that a large number of genes among the most differen-
tially expressed genes belonged to the secretory pheno-
type (Figure 8(a), as explained in Section 3.7). The list of
genes included CTSK, normally stimulated by inflammatory
cytokines released after tissue injury [41], GRN, a previously
functionally validated gene responsible for wound healing
[42], CST3, associated with sarcopenia [43], and PERP, a
p53 apoptosis effector, the mRNA expression level of which
is upregulated in human mesenchymal stem cells [44]. We
detected significant upregulation of IGFBP2whichwas found
upregulated with senescence in retinal pigment epithelial
cells [45, 46] and BJ fibroblasts [47]. ID1, ID3, CCNA2, and
CCNB1 showed significant downregulation with age in our
study for both human fibroblasts. Downregulation of ID1 and
ID3 expression with senescence was detected in BJ foreskin,
WS1 fetal skin, and LF1 lung human fibroblasts [48] and
of CCNA2 in IMR-90 and WI-38 [49]. Targeting CCNB1
expression inhibits proliferation of breast cancer cells [50].
The list of most differentially expressed genes also included
IGFBP7 andMMP3which encode protein receptors predom-
inantly located on the cell surface. Both IGFBP7 and MMP3
are upregulated with senescence in human melanocytes [51–
54]. Recently we found that overexpression of recombinant
IGFBP7 proteins induced premature senescence in early PD
MRC-5 fibroblasts [13].

Among the genes significantly upregulated with age
in both MRC-5 and HFFs we identified DKK3, having a
role in Wnt signaling [55–57]. DKK3 has tumor suppressor
activity in breast cancer patients [58] and in papillary thyroid
carcinoma [57]. However, we had failed to demonstrate an
induction of premature senescence in early PD HFFs on
overexpression of recombinant DKK3 proteins [13]. Though
not significantly differentially expressed with age in MRC-5
fibroblasts, one of the genes which were most significantly
upregulated with age inHFFs was the SFRP4 gene, an antago-
nist forWnt signalling [59]. SFRP4 acts as a tumor suppressor
in gastric carcinoma [60] and epithelial ovarian cancer cell
lines [61]. In a separate study, we functionally validated the
expression of SFRP4 in early PD HFF and MRC-5 fibroblasts
by treating them separately with human recombinant SFRP4
protein. This treatment resulted in premature senescence
induction inHFFs but not in early PDMRC-5 fibroblasts [13].
Here, induction of SFRP4mRNAexpressionwas not detected
by RNA-seq, explaining the lack of premature senescence
induction in early PD MRC-5 fibroblasts. SFRP4 expression
thus showed cell line specific differences.

3.6. Clustering of the Expression Profiles Shows Similar Pattern
in Both Cell Lines. We found many differentially expressed
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Figure 5: Comparison of expression changes between young and old MRC-5 and HFF fibroblasts measured by RNA-seq, qRT-PCR, and
Western Blots. (a) Four genes commonly downregulated and (b) 8 genes commonly upregulated in both cell lines. (a, b)The colors of the bars
indicate the measurement technique (blue: RNA-seq; green: qRT-PCR; red: Western Blots/protein expression). Solid colored bars represent
MRC-5while shaded boxes represent HFF cells.The height of the bars corresponds to the logarithmic fold-change (FC) of expression between
the first and the last PD investigated here (RNA-seq: log 2 RPKMFC; qRT-PCR: log 2−ΔΔCT; protein: log 2 expression ratio). Error bars indicate
standard deviation from themean. Changes statistically different comparing young and old PD (RNA-seq:DESeq; rRT-PCR/Protein: Student’s
𝑡-test; 𝑛 = 3) are indicated with an asterisk: ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, and ∗∗∗𝑝 < 0.001. (c) The blots show the protein expression levels in
MRC-5 andHFF cells at young compared to old PDs.The up- or downregulation was signified by the presence or absence of bands inWestern
Blots.

genes commonly regulated in bothMRC-5 andHFF.Next, we
asked if both cell lines exhibit common temporal expression
profiles rather than showing different effects for the same
set of genes. Therefore, we applied fuzzy 𝑐-means clustering
comparing the expression profiles of both cell lines. We used
1,803 genes found to be differentially regulated between the
four consecutive PDs and between the first and the last PD
in both cell lines, according to the strict cutoffs as shown in

Figures 3(b) and 3(d) (FDR < 0.01; |log 2 fold-change| > 1).
Using several cluster validation indexes, an optimal number
of five clusters were estimated, and each selected DEG was
assigned to one out of these five groups (Figure 7). The
majority of DEG exhibits similar temporal expression profiles
in MRC-5 and HFF. 811 DEG were upregulated (clusters 3
and 5) and 722 are downregulated (clusters 2 and 4). Stronger
differences between both cell lines were found for genes
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Figure 6: Comparison of expression changes between young and old MRC-5 and HFF fibroblasts measured with RNA-seq and Western
Blots. (a) 8 genes commonly downregulated and (b) 8 genes commonly upregulated in both cell lines. (a, b) The colors of the bars indicate
the measurement technique (blue: RNA-seq; red: Western Blots/protein expression). Solid colored bars represent MRC-5 while shaded boxes
represent HFF cells. The height of the bars corresponds to the logarithmic fold-change (FC) of expression between the first and the last PD
investigated here (RNA-seq: log 2 RPKM FC; protein: log 2 expression ratio). Error bars indicate standard deviation from the mean. Changes
statistically different comparing young and old PD (RNA-seq: DESeq; rRT-PCR/Protein: Student’s 𝑡-test; 𝑛 = 3) are indicated with an asterix:
∗
𝑝

< 0.05, ∗∗𝑝 < 0.01, and ∗∗∗𝑝 < 0.001. (c) The blots show the protein expression levels in MRC-5 and HFF cells at young compared to old
PDs. The up- or downregulation was signified by the presence or absence of bands in Western Blots.

grouped in clusters 1 and 4. Interestingly, most genes follow a
monotonic profile (either up or down) while only few genes
exhibit a parabolic-like shape. Clusters 1 and 3 show major
changes inMRC-5 between the second to last and the last PD,
while cluster 4 groups genes with large differences between
the first and the second PD in HFF. This effect was already
observed when comparing DEG between the consecutive
PDs (see DEG section above). Figure 7 summarizes the gene
expression profiles by showing only the scaled and centred
mean and standard deviation of the DEG clustered. In most
of the cases, the absolute expression values were different
between both cell lines (indicated by the dashed horizontal
lines) but the trends of the actual changes across the five
PDs were similar. For instance, cluster 3 contains genes
which show larger mean expression values forMRC-5 but are

upregulated with increasing PDs in both cell lines (vice versa
in cluster 2).

3.7. Identification of Functional Categories Significantly En-
riched for Genes with Common Expression Profiles. Next,
we deduced the main biological processes driven by the
differentially expressed gene sets obtained from the clus-
ter analysis. Using gene set enrichment analysis, for each
of the five clusters significant GO categories and KEGG
pathways could be identified. The results indicated a
strong connection of upregulated genes (grouped in clus-
ters 3 and 5) to “extracellular space” (GO:0005615) and
“membrane” (GO:0016020) components (Figure 8(a)). Cor-
responding KEGG pathways, found for these genes, were
for example, “ECM-receptor interaction” (hsa04512) and
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“ABC transporters” (hsa02010; see Supplemental Table 3).
ABC proteins transport various molecules across extra- and
intracellular membranes and are involved in aging and age-
related diseases [62]. Cluster 3 shows stronger upregulation
at late PD for MRC-5 cells while HFF cells are upreg-
ulated more clearly in cluster 5 (see above). Comparing
the GO-terms found for these single clusters, we found
links of the stronger upregulation in MRC-5 with “inte-
gral component of plasma membrane” (GO:0005887) and
the “Golgi apparatus” (GO:0005794), while “sarcolemma”
(GO:0042383) and “nucleosome” (GO:0000786) were more
specific for upregulation in HFF (Supplemental Figure 2).
The structure of the secretion regulating Golgi complex is
altered in senescent cells [63]. While our results indicate
cell line specific differences during replicative senescence,
the GO-term comparison revealed that in both cell lines
many genes were similarly upregulated. A large set of GO-
terms associated with upregulated genes were related to the
senescence associated secretory phenotype [64].

Downregulated genes (grouped in clusters 2 and 4)
were associated to strongly enriched GO processes related
to, for example, “cell cycle” (GO:0007049), “cell divi-
sion” (GO:0051301) and “DNA replication” (GO:0006260)
(Figure 8(b)). Here, differences between both cell lines are
more obvious. After a slight initial gain, expression in MRC-
5 cells declined strongly between PD 46 and PD 64. In
HFFs, strong decline already started after PD32without larger
changes for late PD (Figure 7; cluster 4). Most of these cell
cycle related genes, which account for the above-mentioned
profiles, are related to the cellular component “nucleoplasm”
(GO:0005654). Associated GO-terms for cluster 2, which
depicts moderate downregulation, were more widespread
and covered processes like “positive regulation of nitric oxide
biosynthetic process” (GO:0045429), “endoderm formation”
(GO:0001706), and “response to cAMP” (GO:0051591; Sup-
plemental Figure 3).

Cluster 1 showed the largest differences between both cell
lines. While, in MRC-5, genes are downregulated strongly
at the last PD, no clear up- or downregulation is observed
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Table 2: Number of genes whose expression values are monoton-
ically up- and downregulated, respectively, for MRC-5 and HFF
cells. Note that monotonic behaviour does not necessarily include
differential expression. See Supplemental Table 4 for complete test
results.

Class MRC-5 HFF
Monotonically upregulated 47 423
Monotonically downregulated 132 465
Nonuniformly (not significant) 19,058 18,349

for HFF. Significantly enriched GO-terms associated to these
genes were, for example, “vasculogenesis” (GO:0001570),
“response to lipopolysaccharide” (GO:0032496), and “cell
adhesion” (GO:0007155) (Supplemental Figure 4).

3.8. Monotonically Regulated Genes in MRC-5 and HFF Are
Connected in Functional Association Networks. Since senes-
cence is a continuous cellular process, it can be hypothesized
that genes possessing key relevance for senescence change
their expression values monotonically over time, while genes
with irregular temporal expression patterns might be asso-
ciated with response to environmental conditions, with the
circadian rhythm or other processes.

Amongst others, continuous increasing and decreasing
profiles were found by the clustering analysis. In addition to
this nonbiased approach, we intended to identify genes with
a strong monotonic behaviour across the PDs investigated
here. We calculated the Spearman correlation coefficient
of each gene’s temporal profile with a linearly increasing
sequence. Replicates for each PD were incorporated by
a random sampling approach. Subsequently, we classified
genes into three classes according to their behaviour with
age: (a) monotonically upregulated genes, (b) monotonically
downregulated genes, and (c) nonuniformly regulated genes
(Table 2).

More monotonically up- and downregulated genes were
found for HFFs compared to MRC-5 (888 versus 179). Only
a small subset of these genes were commonly regulated in
both cell lines (9 up and 14 down) but even less genes
showed an opposite monotonic expression profiles (8; see
Supplemental Figure 5 and Supplemental Table 4). The
23 commonly monotonically up- or downregulated genes
were studied in more detail. Since in both cell lines the
regulation of these genes strongly correlated with an increase
of senescence, they might play an essential role in cellular
aging and may rule common regulatory process. We used
several online resources in order to find potential or validated
interactions between these genes.The STRING database [36]
only provides the interactions between four out of all the 23
genes (Supplemental Figure 6A). Using Cognoscente [37],
17 out of 23 genes were connected within one interaction
graph (Supplemental Figure 6B). More interactions could be
found using GeneMANIA [38], leading to a network which
is widely connected by coexpression and common pathways

like, for example, “epithelial cell proliferation” and “extracel-
lular matrix organization” (Figure 9). Both of the latter tools
integrate intermediate genes which were not in the input list.
Hub genes in these networks includedATF7,MAF,UBC, and
ELAVL which are interesting candidates for further studies.
All the four of these genes were functionally associated with
tumorigenesis. Members of the ubiquitin family including
UBC have been associated with tumor progression [65]. In
terms of ATF7, the activating transcription factor family is
associated with cell proliferation and oncogenesis [66]. Both
MAF and ELAV1 have been associated with oncogenesis and
tumor progression [67, 68]. Thus all the four genes had an
association with cell proliferation. Then, we investigated the
biological relevance of the monotonically up- and downreg-
ulated genes in both fibroblast cell lines. The list of mono-
tonically downregulated genes included NLE1, AMMECR1,
FIBCD1, ENPP2, TMTC4, ANPEP, MYC, EFNB3, HCLS1,
FERMT1, FABP5, SPHK1, GOS2, and RPL36A. The genes
monotonically upregulated included LRP10, TMCO3, CAV2,
ADAMTS5, C5orf15, SDC2, ANKH, PCDHB16, and TGFB2.
A number of genes in the above list have been functionally
associated with proliferation.

3.8.1. Monotonically Downregulated Genes. NLE plays a role
in regulating the Notch activity and is involved in embryonic
development in mammals by affecting the CDKN1A and
Wnt pathways [69]. Forced expression of miR-26 inhibits
the growth of stimulated breast cancer cells and tumor in
xenograft models by reducing the mRNA expression levels
of AMMECR1 and other genes [70]. AMMECR1 is asso-
ciated with Alport syndrome, mental retardation, midface
hypoplasia, and elliptocytosis [71]. FIBCD1 (fibrinogen C
domain containing 1) binds to chitin of invading parasites
[72]. FIBCD1 is primarily present in the gastrointestinal
tract of humans; however, their presence in skin has been
highly debated [73, 74]. ENPP2 facilitates cell motility and
progression and is related to the invasion of ductal breast
carcinomas [75]. TMTC4 is a gene contributing to embryonic
brain development; it interacts withWntless, an integral Wnt
regulator [76]. EFNB3, a member of the ephrin gene family,
is associated with neural development [77]. ANPEP is a
well-known marker for acute myeloid leukemia and tumor
invasion; it has a regulatory role in angiogenesis [78, 79].
FERMT1 is overexpressed in colon and lung carcinomas
[80]. The MYC oncogene is associated with cell growth
regulation by driving proliferation via upregulation ofCyclins
and downregulation of p21 [81, 82]. HCLS1 gene which is
monotonically downregulated with age is associated with
antigen receptor signaling and clonal expansion as well as
deletion of lymphoid cells [83]. The FABP5 gene encodes the
fatty acid binding protein in epidermal cells and is upreg-
ulated in psoriatic tissues [84]. SPHK1 has been previously
associated with melanoma progression and angiogenesis
[85, 86]. The GOS2 gene promotes apoptosis by binding to
BCL2, hence preventing the formation of protective BCL2-
BAX; its mRNA and protein levels are downregulated in
type 2 diabetic patients [87, 88]. Thus, almost all genes,
monotonically downregulated with age in both fibroblast cell
lines, are associated with proliferation and cell survival.
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3.8.2. Monotonically Upregulated Genes. LRP10, a negative
regulator of Wnt signalling, was found monotonically upreg-
ulated with age [89]. CAV2 is a scaffolding protein within
the caveolar membrane modulating cancer progression [90].
ADAMTS5 enables the destruction of aggrecan in patients
with arthritic disease which is prevalent with aging [91]. The
ANKH gene, associated with regulation of tissue calcification
and in turn susceptibility to arthritis, is also monotoni-
cally upregulated with age in both fibroblast cell lines [92].
Syndecan-2 protein (SDC2) is upregulated in skin and lung

tissues of patients suffering from (age-associated) systemic
sclerosis and fibrosis [93, 94].mRNAexpression of PCDHB16
is upregulated in patients with (age-associated) Alzheimer’s
disease [95]. TGFB2, also monotonically upregulated with
age in fibroblasts, has suppressive effects on interleukin-2
dependent T cell proliferation and displays effector functions
[96].

In summary, the genes, which we found here monotoni-
cally up- and downregulated with age in both fibroblast cell
lines, have been studied before. In this study, we explicitly
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show for the first time the age-associated regulation of these
genes in primary human fibroblast cells of two different
origins. In a following study we will determine the protein
expression of all age-related genes and functionally validate
the expression of these genes.

4. Conclusion

We studied molecular aspects of cellular aging by determin-
ing the differential expression of genes during the aging of
two primary human fibroblasts, MRC-5 and HFFs. RNA-
seq data analysis encompassed different levels, starting from
the complete set of annotated and expressed genes, pro-
ceeding to different gene subsets and functional categories.
Most of the detected changes were found to be common
in both cell lines, as indicated by the large number of
overlapping DEG and common expression profiles identi-
fied by clustering. We validated the expression patterns for
selected genes, demonstrating an association of almost all
most differentially expressed genes with proliferation or cell
cycle arrest, consistent with previous senescence studies.
Investigating expression changes across five consecutive PDs
and comparing young with senescent cells enabled us to
identify both monotonically up- and downregulated genes
as well as the most differentially expressed genes. Both sets
of genes strongly contributed to the transition into cellular
senescence. Thus, we quantitatively describe similarities in
gene expression profiles during the aging of two fibroblast cell
lines of different origin.

Data Deposition

The RNA-seq data discussed in this publication have been
deposited in NCBIs Gene Expression Omnibus and are
accessible through GEO Series accession number GSE63577.
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