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ABSTRACT 18 

 19 

Somatic copy number alterations drive aberrant gene expression in cancer cells. In tumors 20 

with high levels of chromosomal instability, subclonal copy number alterations (CNAs) are a 21 

prevalent feature which often result in heterogeneous cancer cell populations with distinct 22 

phenotypes1. However, the extent to which subclonal CNAs contribute to clone-specific 23 

phenotypes remains poorly understood, in part due to the lack of methods to quantify how 24 

CNAs influence gene expression at a subclone level. We developed TreeAlign, which 25 

computationally integrates independently sampled single-cell DNA and RNA sequencing data 26 

from the same cell population and explicitly models gene dosage effects from subclonal 27 

alterations. We show through quantitative benchmarking data and application to human 28 

cancer data with single cell DNA and RNA libraries that TreeAlign accurately encodes clone-29 

specific transcriptional effects of subclonal CNAs, the impact of allelic imbalance on allele-30 

specific transcription, and obviates the need to arbitrarily define genotypic clones from a 31 

phylogenetic tree a priori. Combined, these advances lead to highly granular definitions of 32 

clones with distinct copy-number driven expression programs with increased resolution and 33 

accuracy over competing methods. The resulting improvement in assignment of transcriptional 34 

phenotypes to genomic clones enables clone-clone gene expression comparisons and explicit 35 

inference of genes that are mechanistically altered through CNAs, and identification of 36 

expression programs that are genomically independent. Our approach sets the stage for 37 

dissecting the relative contribution of fixed genomic alterations and dynamic epigenetic 38 

processes on gene expression programs in cancer.   39 
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INTRODUCTION 40 

 41 

Genomic instability is a hallmark of human cancer which leads to copy number alterations 42 

(CNAs) in cancer cell genomes, and extensive intra-tumor heterogeneity1–3. It is well 43 

established that CNAs of driver oncogenes and tumor suppressors are causal determinants 44 

that change the fitness of cancer cells4,5, leading to clonal expansions, clone-clone variation6 45 

and tumor evolution. Recent reports on the extent of cell-to-cell variation of CNAs in tumors 46 

(including in well understood oncogenes)1 raises the critical question of how granular 47 

subpopulations are phenotypically impacted by subclonal CNAs. Importantly, phenotypic 48 

impact of subclonal CNAs can have cell intrinsic effects and act as cell-extrinsic determinants 49 

of the tumor microenvironment7, further illustrating the importance of dissecting how CNAs 50 

modulate intra-tumor heterogeneity.  51 

 52 

Previous studies using bulk sequencing techniques have investigated the association between 53 

clonal CNAs and gene expression8–11. The expression level of a gene can be influenced by 54 

copy-number dosage effects reflected by the significant positive correlation between gene 55 

expression and the underlying copy number (CN)12. However, gene dosage effects are not 56 

deterministic and may be subject to compensatory mechanisms, rendering the impact of CNAs 57 

on expression as highly variable across the genome. Transcriptional adaptive mechanisms13 58 

including epigenetic modifications and downstream transcriptional regulation, can modulate 59 

copy number dosage effects14–16, further obscuring the direct impact of gene dosage. For 60 

example, the expression of certain immune response pathways often exhibit both CNA-61 

dependent and CNA-independent expression8.  62 

 63 

Theoretically, measuring single cell RNA and DNA data should elucidate how genotypes 64 

translate to phenotypes at single cell resolution. Technologies that sequence both RNA and 65 

DNA modalities from the same cell would be ideal for linking genomic alterations to 66 
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transcriptional changes in tumor evolution. However, pioneering technologies17,18 have had 67 

limited throughput, lower quality and are still not mature enough for large-scale profiling of 68 

cancer cells. Sequencing single cell RNA or DNA independently allows more cells to be 69 

profiled and reveals a more comprehensive view of the cell populations, but requires 70 

computational integration of the two data modalities.  71 

 72 

Several computational methods have been proposed for joint analysis of single cell DNA and 73 

RNA data. CloneAlign19 is a probabilistic framework to assign transcriptional profiles to 74 

genomic subclones based on the assumption that the expression level of a gene is 75 

proportional to its underlying copy number. More recent methods SCATrEx20 and CCNMF21 76 

are also based on this assumption but use different methods to model the similarity between 77 

copy number profiles and gene expression patterns. However, these methods do not consider 78 

the possibility that transcriptional effects of copy number could be variable between genes and 79 

therefore lack the specificity to decipher genes that may be subject to dosage effects from 80 

those that are independent of CNAs. In addition, these methods require using predefined 81 

subclones from scDNA data as input which may propagate errors of uninformative subclones 82 

or may miss more granular gene dosage effects. More importantly, the revelation of 83 

phenotypic plasticity as a driver of genetically independent transcription in cancer cells22–24 84 

motivates the need to disentangle genetic from epigenetic cell-to-cell variation. No available 85 

methods directly model dosage effects of subclonal CNAs, which is critical to infer which genes 86 

are deterministically modulated by subclonal CNAs and which genes are independent of 87 

CNAs. Moreover, recent advances have illuminated the extent to which allele-specific copy 88 

number alterations can mark clonal haplotypes both in DNA-based1 and RNA-based25 single 89 

cell analysis, illustrating  both a methodological gap and analytical opportunity for integration. 90 

 91 

In this study, we address the questions of how subclonal CNAs drive phenotypic divergence 92 

and evolution in cancer cells, and quantitatively encode (allele specific) copy number dosage 93 

effects in this process. We present a new method, TreeAlign, to enumerate and define CNA-94 
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driven clone-specific phenotypes, and also a statistical framework to compare the 95 

transcriptional readouts of genomically defined clones. TreeAlign is a Bayesian probabilistic 96 

model that maps gene expression profiles from scRNA to phylogenies from scDNA which i) 97 

obviates the need to identify clones a priori from a tree, ii) explicitly models dosage effects of 98 

each gene and iii) models allele-specific CNAs to better resolve clonal mappings.  99 

 100 

Through extensive simulation, we demonstrate that the TreeAlign outperforms alternative 101 

approaches in terms of clone assignment and gene dosage effect prediction. Applying 102 

TreeAlign to both primary tumors and cancer cell lines, we characterized the phenotypic 103 

differences between tumor subclones, investigated the contribution of subclonal CNAs to 104 

clone-specific gene expression patterns in cancer cells and identify common expression 105 

programs which are altered by subconal CNAs. 106 

RESULTS 107 

 108 

TreeAlign: a probabilistic graphical model for clone assignment and dosage effect 109 

inference 110 

 111 

We developed TreeAlign, a probabilistic graphical model of scRNA transcriptional profiles 112 

mapped to a scDNA-derived phylogenetic tree (Fig.1). The model jointly infers clone 113 

assignments, clone-specific copy number dosage effects and optionally, models clone-specific 114 

allelic transcriptional effects. The TreeAlign framework assumes that there exists a subset of 115 

genes whose expression is positively correlated with the underlying copy number. For each 116 

gene, the correlation between subclonal CNAs and gene expression is modeled by 𝑘, where 117 

𝑘 ∈ {0, 1} (Fig. 1c) is a switching indicator variable such that the probability 𝑝(𝑘 = 1) 118 

represents the probability of a gene with clone-specific copy number dosage effects. As such, 119 

genes without dosage effects will have low 𝑝(𝑘) and will not contribute to the clone assigning 120 
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process. To infer clone assignments and 𝑝(𝑘), TreeAlign requires three inputs: 1, a cell × gene 121 

matrix of raw read counts from scRNA-seq, 2. a cell × gene copy number matrix estimated 122 

from scDNA-data and 3. A phylogenetic tree (or optionally, predetermined clone labels) for 123 

scDNA profiles. TreeAlign can either assign expression profiles to predefined clone labels, 124 

similar to CloneAlign19 or operate on a phylogenetic tree directly and assign cells to clades of 125 

the phylogeny (Fig. 1a). When TreeAlign takes a phylogenetic tree as input, it applies a 126 

Bayesian hierarchical model recursively starting from the root of the phylogenetic tree and 127 

computes the probability that expression profiles in scRNA can be mapped to a subtree. When 128 

the genomic or phenotypic differences between two subtrees become too small to allow 129 

confident assignment of expression profiles, TreeAlign will stop its recursion and return the 130 

resulting subtrees.  131 

 132 

In addition to aberrant gene expression levels, allele-specific CNAs also lead to allele-specific 133 

expression imbalance which is detectable in scRNA data26,27 (Fig. 1b). In particular, genomic 134 

segments harboring loss of heterozygosity deterministically leads to mono-allelic expression 135 

of genes in the segment. To exploit how allelic imbalance modulates allele specific expression, 136 

we extended TreeAlign to model both total CN and allelic imbalance data (Fig. 1c, Extended 137 

Data Fig. 1). Given the B allele frequencies (BAFs) estimated from scDNA data haplotype 138 

blocks using SIGNALS1 and allele-specific expression at corresponding heterozygous SNPs 139 

in scRNA data, the allele-specific model contributes to clone assignment and infers the 140 

probability of the allele assignment 𝑝(𝑎 = 1) , 𝑎 ∈ {0,1}which indicates whether the SNP is on 141 

allele B or not.  142 

 143 

The software for TreeAlign (https://github.com/AlexHelloWorld/TreeAlign) is implemented in 144 

Python using Pyro and is publicly available. Our implementation allows users to run the total 145 

CN model, allele-specific model and integrated model by providing different inputs. See 146 

Methods for additional mathematical, inference and implementation details.   147 

 148 
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Performance of TreeAlign on simulated data 149 

 150 

We first evaluated TreeAlign on synthetic datasets, quantifying the effect of three main 151 

parameters in the input data: number of cells (100 - 5000), number of genes (100 - 1000) and 152 

proportions of genes with dosage effects (10%-100%). Simulations were performed using the 153 

generative model of CloneAlign19. We compared the performance of assigning expression 154 

profiles to ground truth predefined clones between TreeAlign, CloneAlign and InferCNV28. 155 

InferCNV was originally developed for inferring CNAs from gene expression data, but has also 156 

been repurposed for clone assignment in some studies29. InferCNV analysis in this context 157 

acts as a way of inferring clone assignment without the benefit of the scDNA data. Compared 158 

to CloneAlign and InferCNV, TreeAlign performed significantly better in terms of clone 159 

assignment accuracy especially in the regime where fewer genes exhibit dosage effects (Fig. 160 

2a, Extended Data Table 1). For example, in the regime of 60% of genes with dosage effects 161 

(1000 cells, 500 genes), TreeAlign achieved clone assignment accuracy of 91.1%, compared 162 

to CloneAlign with 75.1% accuracy. The improvement in clone assignment accuracy was 163 

consistent across all cell number and gene dosage effect simulation scenarios (Extended 164 

Data Fig. 2a). We also tested performance with phylogenetic tree inputs to evaluate if 165 

TreeAlign could achieve similar results on tree input compared to pre-defined clone input. 166 

Similar to the ‘clone’ regime, these simulations varied the proportion of genes with gene 167 

dosage effects in 10% increments. TreeAlign was able to assign expression profiles back to 168 

the corresponding clades of the phylogeny with similar accuracies compared to the clone input 169 

in regimes with >40% genes with dosage effects (Fig. 2b, Extended Data Fig. 2b). Together 170 

these evaluations reflect that the model effectively obviates a priori tree cutting without paying 171 

a penalty in accurate clone mapping. 172 

 173 

We also evaluated the accuracy of predicting dosage effects for each gene in the input 174 

datasets. We compared the simulated and predicted (using 𝑝(𝑘) as an estimate) frequency of 175 
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genes with CN dosage effects. For high expression genes, simulated and predicted 176 

frequencies were highly concordant (Fig. 2c). For datasets with >=50% of genes with dosage 177 

effects, the mean area under the receiver-operator curve (AUC) was >=0.99 for genes with 178 

relatively high expression level (genes in top 40% in terms of normalized expression levels) 179 

(Extended Data Fig. 3). This establishes 𝑝(𝑘) as an accurate representation of gene dosage 180 

effects and the ability to distinguish genes with dosage effects from those without dosage 181 

effects. 182 

 183 

TreeAlign assigns HGSC expression profiles to phylogeny accurately 184 

 185 

We next investigated TreeAlign’s performance on real-world patient derived data from high 186 

grade serous ovarian cancer (HGSC). We first applied TreeAlign on single cell sequencing 187 

data from a HGSC patient (patient 022)7. Tumor samples were obtained from both left and 188 

right adnexa sites of the patient. scDNA (n = 1050 cells) and scRNA (n = 4134 cells) data were 189 

generated through Direct Library Preparation (DLP+)30 and 10X genomics single-cell RNA-190 

seq31 respectively. 3579 (86.6%) ovarian cancer cells profiled by scRNA were assigned to 4 191 

subclones identified by scDNA-seq. The expression profiles of clone C and D are overlapped 192 

on the UMAP embedding, while separated from the profiles of clone A and clone B, which 193 

coincides with the shorter phylogenetic distance between clone C and D (Fig. 3a). The 194 

separation of cells by assigned clones on the expression-based UMAP also suggests that the 195 

genetic subclones possess distinct transcriptional phenotypes.  196 

 197 

We confirmed the clone assignment accuracy of TreeAlign by comparing the clonal 198 

frequencies estimated by RNA and DNA data (Fig. 3b). As both scRNA and scDNA data were 199 

generated by sampling from the same populations of cells, the clonal frequency estimated by 200 

the two methods should be consistent. Clonal frequencies in the left and right adnexa sample 201 
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from the two modalities were significantly correlated (R = 0.99, P = 9 × 10!"). In addition, copy 202 

number alterations inferred for scRNA cells using InferCNV28 were concordant with the scDNA 203 

based CNA of the clones to which scRNA cells were assigned (Fig. 3d). For example, notable 204 

clone specific copy number changes can be seen in both scDNA and scRNA on chromosome 205 

X in clone A. Clone B specific amplification on 3q, Clone C and Clone D specific amplification 206 

on 16p can also be observed in both scDNA and scRNA. By comparing the RNA-derived copy 207 

number profiles with scDNA data, we noticed that inferring copy number from RNA data is not 208 

always accurate. For example, the inferred profiles missed the focal amplification on 209 

chromosome 18. We also held out genes from chromosome 9 and chromosome 12 and re-210 

ran TreeAlign with the remaining genes. 98.8% cells were assigned consistently as compared 211 

to results using the full dataset. Clone level gene expression on chromosome 9 and 12 was 212 

consistent with the corresponding copy numbers (Fig. 3c). These results demonstrated a proof 213 

of principle that TreeAlign can properly integrate scRNA and scDNA datasets and highlighted 214 

that scDNA-seq can provide valuable information on CNAs and tumor subclonal structures 215 

which would be difficult to detect with expression data only.  216 

 217 

We also applied TreeAlign to previously published data from a gastric cell line NCI-N87 218 

generated by 10x genomics single-cell CNV and 10x scRNA assays32. TreeAlign assigned 219 

3212 cells from scRNA to three clones identified in scDNA. The clonal frequencies estimated 220 

by both assays were closely aligned (Extended Data Fig. 4). As for the patient 022 data, the 221 

scRNA cells showed subclonal copy number similar to the scDNA clones to which they were 222 

assigned, thus illustrating that TreeAlign also performs well with 10x scDNA data. 223 

 224 

Incorporating allele specific expression increases clone assignment resolution 225 

 226 
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We next investigated the extent to which accurate clone assignment solely based on allele 227 

specific expression could be performed. We inferred allele specific copy number and BAF 228 

using scDNA data from patient 022 with SIGNALS1. The allele specific heat map (Fig. 4a) 229 

revealed characteristic patterns of clonal loss of heterozygosity in whole chromosomes (e.g. 230 

chr 6,13, 14, 17) but also subclonal losses (e.g. chr 9q in clone A and parallel losses on chr 5 231 

across multiple subclones). With the allele-specific model, we assigned cells from scRNA to 232 

clone A as identified by scDNA in patient 022. Clone assignments were consistent between 233 

the allele specific model and the total CN model with 87% cells concordant. The clone-specific 234 

BAF estimated from scRNA accurately reflected scDNA (Extended Data Fig. 6a), with the 235 

exception of SNPs on chromosome X which showed allelic imbalance in scRNA but not in 236 

scDNA due to X-inactivation. The predicted allele assignments of SNPs from the allele-specific 237 

model were also consistent with haplotype phasing from scDNA (AUC=0.84) (Fig. 4f). These 238 

results suggest that allelic imbalance information can be effectively exploited for clonal 239 

mapping. 240 

 241 

We then applied the integrated model utilizing both total CN and allele-specific information on 242 

data from patient 022. Relative to the total CN model, the integrated model mapped scRNA 243 

cells to smaller subclones (Fig. 4a). Specifically we note when considering allele specificity, 244 

Clone B was subdivided into two subclones (B.1 and B.2). Clone B.1 had an additional deletion 245 

at 16q leading to LOH and a gain of 10q leading to allelic imbalance, whereas Clone B.2 had 246 

an amplification at 11q with increased BAF (Fig. 4a). Clone D was further divided into four 247 

subclones (D.1, D.2, D.3 and D.4). Clone D.1 and clone D.2 both had a deletion on 248 

chromosome 5, but the deletion events occurred on different alleles in the two subclones with 249 

different breakpoints, each of which was distinct from the 5q deletion on Clone B, indicative 250 

that parallel evolution is indeed reflected in transcription with the allele specific model (Fig. 251 

4b). We also estimated BAF for each of the subclones assigned from the scRNA data. 252 

Subclonal BAF estimated with scRNA and scDNA data were significantly correlated (0.25 < R 253 

< 0.53 for each subclone, P < 2.2 × 10-22) (Fig. 4e; Extended Data Fig. 6c), consistent with 254 
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more accurate clone assignment. With integrated TreeAlign, we also achieved better 255 

performance for predicting allele assignments of SNPs compared to the allele-specific model 256 

(Fig. 4f). We note that recent identifications of parallel allelic-specific alterations whereby 257 

maternal and paternal alleles are independently lost or gained in different cells26,27,33 would 258 

further complicate clonal mapping, if allele specificity is not taken into account. Here we show 259 

that mono-alleleic expression of maternal and paternal alleles is consistent with coincident 260 

maternal and paternal allelic loss in different clones (Fig. 4b). The allele-specific TreeAlign 261 

model correctly assigns cells at this level of granularity that would otherwise be missed. 262 

 263 

We compared the performance of total CN, allele-specific and integrated TreeAlign using 264 

subsampled datasets of patient 022 and evaluating against results from the full dataset. All 265 

three models were robust to reduced numbers of cells (Fig. 4h, Extended Data Table 2). The 266 

integrated model performed significantly better when fewer genomic regions were included in 267 

the input suggesting it is more robust when there are few copy number differences between 268 

subclones (Fig. 4g), and the allele-specific model without total CN is inferior, as expected.  269 

 270 

Inferring copy number dosage effects in human cancer data 271 

 272 

We next compared the integrated model to the total CN model on a recently published cohort 273 

of cell lines and primary tumors with scDNA and scRNA matched data from Funnell et al.1 We 274 

applied TreeAlign on data previously collected from patient derived xenografts of TNBC (n = 275 

2), HGSC (n = 7), and from primary ovarian cancer (n = 1). In addition we tested the model on 276 

184-hTERT (n = 6) cell lines engineered to induce genomic instability from a diploid 277 

background with CRISPR loss of function of TP53 combined with BRCA1 or BRCA2. Both 278 

integrated and total CN TreeAlign were run on matched DLP+ and 10x scRNA-seq data. In 279 

this analysis, we investigated the impact of 𝑝(𝑘) on interpretability of genotype-phenotype 280 

linking. As expected, the integrated model characterized more clones (Fig. 5b) and achieved 281 
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a lower number of cells not confidently assigned to a subclone (Fig. 5c). For cells that were 282 

assigned confidently by the integrated model but not the total CN model, their InferCNV 283 

corrected expression showed higher correlation coefficient with the CN profiles of subclones 284 

assigned by the integrated model compared to random subclones (Fig. 5d; Extended Data 285 

Fig. 7), implying better performance of the integrated model. 286 

 287 

For high expression genes (top 40% in terms of normalized expression levels) located in clone 288 

specific copy number (CSCN) regions, 77.3% had 𝑝(𝑘) > 0.5 suggesting their expression is 289 

dependent on copy number (Extended Data Fig. 8a, b, c). When we summarized 𝑝(𝑘) by 290 

genomic locations, we noticed that genes located at the same CSCN region had more 291 

consistent 𝑝(𝑘). Notably, 𝑝(𝑘) of genes in a contiguous region exhibited significantly lower 292 

variation compared to randomly sampled genes across different regions (Fig. 5a, e). This is 293 

consistent with multiple genes in a CNA transcriptionally impacted by a singular genomic 294 

event. In addition to broad regions of the genome, we note that subclonal high-level 295 

amplifications affecting known oncogenes have been identified previously1. Using TreeAlign, 296 

we also identified subclonal amplifications of oncogenes accompanied by consistent changes 297 

in gene expression. For example, in SA1096 and OV2295, subclonal upregulation of MYC 298 

expression coincides with the clone-specific MYC amplification with 𝑝(𝑘) > 0.8 (Extended 299 

Data Fig. 9a). To investigate whether MYC pathway activation was also impacted by non-300 

CNA driven effects, we performed pathway enrichment on genes with low 𝑝(𝑘) and found 301 

genes in the Hallmark MYC Target V1 gene set34 in OV2295, SA1052 and SA610. Combined 302 

with HLAMP results, this suggests the pathway can be regulated by both CN dosage effects 303 

and other (potentially non-genomic) effects at the subclonal level (Extended Data Fig. 9b, c), 304 

further highlighting the importance of p(k) for interpreting the mechanism of gene 305 

dysregulation. 306 

 307 
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Clone-specific transcriptional profiles highlight clonal divergence in immune pathways 308 

 309 

We next sought to interpret clone-specific transcriptional phenotypes and phenotypic 310 

divergence during clonal evolution from TreeAlign mappings. For patient 022, differential 311 

expression and gene set enrichment analysis identified genes and pathways upregulated in 312 

each clone (Fig. 6a, b). In total, we found 1346 genes significantly upregulated (adjusted P < 313 

0.05, MAST35) in at least one of the subclones in patient 022. 52.1% (701) of these genes 314 

were not located in CSCN regions, while 47.9% (645) genes were located within CSCN 315 

regions. For 90.7% (585/645) of genes in CSCN regions, 𝑝(𝑘) was > 0.5, reflecting probable 316 

gene dosage effects.  317 

 318 

Immune related pathways such as IFN-α and IFN-γ response were differentially expressed, 319 

and with increased relative expression in clone A (Fig. 6c, Extended Data Fig. 11e and 320 

Extended Data Table 3). Clone A contains cells from both right and left adnexa, thus 321 

dysregulation of these pathways cannot be simply explained by the microenvironment of clone 322 

A. Differential expression of immune related pathways was also found between more closely 323 

related subclones. Compared to clone B.2, clone B.1 also has enriched expression in IFN-α 324 

and IFN-γ signaling pathways and downregulation in MYC targets V1 and G2M checkpoint 325 

gene sets (Extended Data Fig. 10a; Extended Data Fig. 11b). Clone D.4, compared to other 326 

clone D subclones, had down-regulated TNF-α signaling via NFκB (Extended Data Fig. 10b, 327 

f; Extended Data Fig. 11c). Seeking to explain the relative contribution of subclonal CNAs to 328 

differentially expressed pathways, we analyzed the proportion of differentially expressed 329 

genes found in subclonal CNAs for each pathway. Only 17.4% (4/23) of differentially 330 

expressed genes in the Allograft Rejection gene set are in CSCN regions compared to 61.5% 331 

(24/39) in the MYC Targets V1 gene set highlighting the distinct impact of subclonal CNA 332 

between pathways (Extended Data Fig. 10h).  333 

 334 
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We conducted a similar analysis on data from Funnell et al. Differential expression analysis 335 

revealed varying proportions of DE genes located in CSCN regions ranging from 1.3% to 336 

63.9%, indicating that transcriptional heterogeneity due to cis-acting subclonal CNAs varied 337 

across tumors (Fig. 6d, e). In addition to pathways such as KRAS signaling and EMT which 338 

are known to be important in these tumors, IFN-α and IFN-γ response pathways also show 339 

frequent variable expression between subclones of primary TNBC and HGSC (Fig. 6f). IFN 340 

signaling has important immune modulatory effects, and has been previously linked to immune 341 

evasion and resistance to immunotherapy36. The recurrent differential expression of immune 342 

related pathways between subclones suggests their importance in clonal divergence in these 343 

cancers of genomic instability. 344 

DISCUSSION 345 

TreeAlign establishes a probabilistic framework for integration of scRNA and scDNA data and 346 

inference of dosage effects of subclonal CNAs. TreeAlign achieves high accuracy of assigning 347 

single cell expression profiles to genetic subclones and was built to operate on phylogenetic 348 

trees directly, therefore informing phenotypically divergent subclones during the recursive 349 

clone assignment process. In addition to scRNA and scDNA integration, TreeAlign also 350 

disentangles the in cis dosage effects of subclonal CNAs which highlights highly regulated 351 

pathways in clonal evolution. The model has improved flexibility allowing either total or allelic 352 

copy number or both to be used as input. With additional allele-specific information, TreeAlign 353 

has improved prediction accuracy and model robustness and is able to identify more refined 354 

clonal structure.  355 

 356 

We expect potential extensions of TreeAlign for integration of other single cell data modalities 357 

such as single-cell epigenetic data. Current methods for integration of scRNA and scATAC 358 

data are primarily based on nearest neighbor graphs or other distance metrics to match similar 359 

cells across multimodal datasets37. The advantage of TreeAlign is that it estimates how well 360 
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the expression of a gene matches with the given biological assumption, hence it is more 361 

interpretable and provides explanations for gene expression variations.  362 

 363 

The emergence of more single cell multimodal datasets enable future studies to further reveal 364 

how genotypes translate to phenotypes and how ongoing mutational processes drive clonal 365 

diversification and evolution in cancer cells. It remains an open question whether the CN-366 

expression relation is consistent across tumors and whether application at scale can reveal 367 

phenotypic consequences of copy number alterations at subclonal resolution. Furthermore, 368 

as TreeAlign also integrates allele-specific CN and expression, it would be interesting to 369 

investigate patterns of LOH and allele-specific expression on a subclone level as modulators 370 

of germline alterations and bi-allelic inactivation to better understand these events in the 371 

context of tumor heterogeneity and clonal evolution. We expect that concepts introduced in 372 

TreeAlign will facilitate the integration of single cell multimodal datasets and the interpretation 373 

of associations between modalities.  374 

 375 

In conclusion, we anticipate that studying how copy number alterations impact gene 376 

expression programs in cancer applies broadly to different questions in cancer biology 377 

including etiology, tumor evolution, drug resistance and metastasis. In these settings, 378 

TreeAlign provides a flexible and scalable method for explaining gene expression with 379 

subclonal CNAs as a quantitative framework to arrive at mechanistic hypotheses from 380 

multimodal single cell data. Our approach provides a new tool to disentangle the relative 381 

contribution of fixed genomic alterations and other dynamic processes on gene expression 382 

programs in cancer.  383 

 384 

  385 
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METHODS 482 

 483 

The TreeAlign Model 484 

 485 

Model description and inference 486 

 487 

The TreeAlign model is a probabilistic graphical model as shown in Fig. 1c. Here we describe 488 

the model in detail and how the model is fit to data. Let 𝑋 be a cell×gene expression matrix of 489 

raw counts from scRNA-seq for 𝑁 cells and 𝐺 genes. Let 𝜆 be a gene×clone copy number 490 

matrix for 𝐺 genes and 𝐶 clones. To assign cells from the expression matrix to a clone in copy 491 

number matrix, we use a categorical vector 𝑧 = {𝑧!} which indicates the clone to which a cell 492 

should be assigned 493 

 494 
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𝑧! = 𝑐 if cell 𝑛 is assigned to clone 𝑐 (eq 1) 495 

 496 

To indicate whether the expression of a gene 𝐺 is dependent on underlying copy number, we 497 

introduce another indicator vector 𝑘 = {𝑘"} 498 

 499 

𝑘" = 1 if expression of gene 𝑔 is dependent on copy number (eq 2) 500 

 501 

Our assumption is that 𝑦!" - the expected expression of gene 𝑔 in cell 𝑛 - will be proportional 502 

to the copy number of gene 𝑔 in clone 𝑐 to which cell 𝑛 is assigned, if expression of gene 𝑔 is 503 

dependent on copy number as indicated by 𝑘". Based on this assumption, our model is: 504 

 505 

𝐸[𝑥!"|𝑧! = 𝑐] = [$!"×&!#×'!($!$×(*+'!)×-%&⋅(!
)
]

∑*!+,$ [$!+"×&!+#×'!+($!+$×(*+'!+)×-%&⋅(!+
)
]
 (eq 3) 506 

 507 

where 𝜇"0 is the per-copy expression of gene 𝑔 if the expression is dependent on copy number 508 

while 𝜇"* is the expression of gene 𝑔 if its expression is independent of copy number. The 509 

intuition is when 𝑘" = 1, we expect the expression of 𝑔 is proportional to its copy number; 510 

when 𝑘" = 0, the expression of 𝑔 is not dependent on the underlying copy number. The inner 511 

product 𝜓! ⋅ 𝑤"1 introduces noise into the model to avoid overfitting. We specified a softplus-512 

Normal prior over the per-copy expression 𝜇"0 and 𝜇"*. Multinomial likelihood was used to 513 

model the raw count from scRNA with a mean given by (eq 3). Detailed definitions and 514 

distribution assumptions of random variables and data are described in Extended Data Fig. 1. 515 

 516 

Inference is performed using stochastic variational inference in the Pyro package. We 517 

generate the variational distributions using the AutoDelta function  which uses Delta 518 

distributions to construct a MAP guide over the latent space. Optimization is performed using 519 
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the Adam optimizer. By default, we set a learning rate of 0.1 and the convergence is 520 

determined when the relative change in ELBO is lower than 10-5 by default. 521 

 522 

Incorporating phylogeny as input 523 

 524 

In addition to the gene×clone copy number matrix, TreeAlign can also take the cell×gene copy 525 

number matrix from scDNA directly along with the phylogenetic tree constructed from this 526 

matrix as input. Starting from the root of the phylogeny, TreeAlign summarizes the copy 527 

number of gene 𝑔 for each clade by taking the mode of copy number, and assigns cells from 528 

scRNA to clade-level CN profiles. This process is repeated recursively from the root of the 529 

phylogeny to smaller clades until: i) TreeAlign can no longer assign cells consistently in 530 

multiple runs (less than 70% cells have consistent assignments between runs by default), or 531 

ii) the number of genes located in CSCN regions becomes too small (100 genes in CSCN 532 

regions by default), or iii) Limited number of cells remain in scDNA or scRNA (100 by default). 533 

By default, TreeAlign also ignores subclades with less than 20 cells in scDNA. Some scRNA 534 

cells may remain unassigned to the scDNA phylogenetic tree. For a single cell, if the clone 535 

assignment probability 𝜋2 < 0.8 or clone assignments are not consistent in 70% of repeated 536 

runs, the cell will be denoted as unassigned. This feature is important to the model because 537 

there might be incomplete sampling of a given tumor, leading to a subclone only appearing in 538 

one of the two data modalities. Note, all parameters are fully configurable at run time by the 539 

user. 540 

 541 

Incorporating allele-specific information 542 

 543 

To use allele specific copy number information for clone assignment, we set up a separate 544 

model - allele-specific TreeAlign which only takes in allele specific information. The input to 545 

allele-specific TreeAlign includes single cell level B allele frequencies at heterozygous SNPs 546 

estimated from scDNA-data and read counts of reference allele and alternative allele of these 547 
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SNPs from scRNA-data. The underlying assumption is that the allelic imbalance in the genome 548 

is positively correlated to the imbalanced expression from reference allele and alternative 549 

allele as observed with scRNA-seq. To indicate whether the B allele defined with scDNA-data 550 

is the reference allele in gene expression data, we introduce an optional indicator variable 𝑎". 551 

 552 

𝑎" = 1 if B allele defined in scDNA is the reference allele in scRNA 553 

 554 

The integrated TreeAlign model was constructed by combining the total-CN model and the 555 

allele-specific model.  556 

 557 

Benchmarking clone assignment and dosage effect prediction with simulations  558 

 559 

Simulations were performed similarly as described previously19. CloneAlign v.2.0 model was 560 

fit to the MSK-SPECTRUM patient 081 dataset to obtain the empirical estimations of model 561 

parameters. Then we simulated from CloneAlign considering the following scenarios: 1. 562 

Varying proportion (10%, 20%, 30%, …, 90%) of genes with dosage effect. 2. Varying number 563 

of genes (100, 500 and 1000) in CSCN regions. 3. Varying number of cells (100, 1000 and 564 

5000) in scRNA.  565 

 566 

We compared TreeAlign to CloneAlign and InferCNV v.1.3.5 in terms of the performance of 567 

clone assignment. For CloneAlign, we summarized clone-level copy number by calculating the 568 

mode of copy number for each gene and ran CloneAlign with default parameters. For 569 

InferCNV, we used the recommended setting for 10X. 3,200 non-cancer cells were randomly 570 

sampled from the SPECTRUM dataset and used as the set of reference “normal” cells. To 571 

assign clones with InferCNV, we calculated Pearson correlation coefficient between InferCNV 572 

corrected gene expression profile (expr.infercnv.dat) and the clone-level copy number profiles 573 

from scDNA. Cells from scRNA-seq were assigned to the clone according to the highest 574 
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correlation coefficient. Accuracy of clone assignment was computed to compare the 575 

performance of the three methods. We also evaluated the TreeAlign’s performance on 576 

predicting CN dosage effects. We calculated the area under the curve (AUC) using 𝑝(𝑘) output 577 

by TreeAlign. 578 

 579 

MSK SPECTRUM data 580 

 581 

We obtained matched scRNA and scDNA from two HGSC patients (patient 022 and patient 582 

081) from the MSK SPECTRUM cohort7. Samples were collected under Memorial Sloan 583 

Kettering Cancer Center’s institutional IRB protocol 15-200 and 06-107. Single cell 584 

suspensions from surgically excised tissues were generated and flow sorted on CD45 to 585 

separate the immune component as previously described 7. CD45 negative fractions were 586 

then sequenced using the DLP+ platform as previously described 1,30,38.   587 

 588 

Gastric cancer cell line data 589 

 590 

Preprocessed scDNA data and scRNA count matrix of the gastric cancer cell line (NCI-N87)32 591 

were downloaded from SRA (PRJNA498809) and GEO (GSE142750). Copy number calling 592 

for scDNA were performed using the Cellranger-DNA pipeline using default parameters.  593 

 594 

HGSC, TNBC and additional cell line data 595 

 596 

scRNA and scDNA from 7 primary HGSC (SA1093, SA1052, SA1053, SA1181, SA1184, 597 

SA1091, SA1096), 2 primary TNBC (SA1035, SA610), 1 ovarian cancer cell line (OV2295) 598 

and 6 hTERT-184 cell lines (SA039, SA1054, SA1055, SA1188, SA906a, SA906b) were 599 

obtained and processed as described previously1.  600 

 601 
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scDNA data analysis 602 

 603 

scDNA DLP+ data was processed as previously described1,30. Cells with quality score > 0.75 604 

and not in S-phase were retained for downstream analysis. Allele specific copy number was 605 

called using SIGNALS1, which provides allele specific copy number of the from A|B in 500kb 606 

bins across the genome. A and B being the copy number of alleles A and B respectively with 607 

𝑡𝑜𝑡𝑎𝑙	𝐶𝑁 = 𝐴 + 𝐵. As the single cell data is sparse, only a subset of germline SNPs have 608 

coverage in each cell, therefore to produce the input required for TreeAlign (B-Allele 609 

frequencies per SNP per cell), we impute the BAF of each SNP assuming that a SNP will have 610 

the same BAF as the bin in which the SNP resides. 611 

 612 

Clustering and phylogenetic inference 613 

 614 

Clustering and phylogenetic inference of scDNA was performed using UMAP and HDBSCAN 615 

(parameters min_samples = 20, min_cluster_size = 30, cluster_selection_epsilon = 0.2). For 616 

patient 022, we also constructed phylogenetic trees using Sitka38 as previously described.  617 

 618 

Genotyping SNPs in scRNAseq cells 619 

 620 

SNPs identified in scDNA-seq and matched bulk whole genome sequencing were genotyped 621 

in each single cell using cell-snplite39 with default parameters. 622 

 623 

scRNA data analysis 624 

 625 

scRNA data were processed as previously described7. Read alignment and barcode filtering 626 

were performed by CellRanger v.3.1.0. Cancer cell identification was performed with 627 

CellAssign. Principal-component analysis (PCA) was performed on the top 2000 highly 628 

variable features output by function FindVariableFeatures using Seurat v.4.240. UMAP 629 
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embeddings and visualization were generated using the first 20 principal components. 630 

Unsupervised clustering was performed using FindNeighbors function followed by 631 

FindClusters function (resolution = 0.2). 632 

 633 

Differential expression and gene set enrichment analysis 634 

 635 

Differential expression analysis was performed using FindAllMarkers and FindMarkers 636 

function (test.use = "MAST", latent.vars = c("nCount_RNA", "nFeature_RNA")) in Seurat v4.0. 637 

Only G1 cells were used in differential expression analysis to avoid confounding of cycling 638 

cells. Cell cycle phase was annotated with CellCycleScoring function in Seurat. 639 

 640 

We used the fgsea41 v1.24.0 package to conduct gene set enrichment analysis with Hallmark 641 

gene sets (n = 50) downloaded from MSigDB34. We set the following parameters for the gene 642 

set enrichment analysis: nperm = 1000, minSize  = 15, maxSize  = 500. 643 

 644 

Statistical analysis and visualization 645 

 646 

Statistical tests and visualization were performed with R (v.4.2) package ggpubr (v.0.5.0) and 647 

ggplot2 (v.3.4).  648 

 649 

Data availability 650 

Processed data containing input and output of TreeAlign have been deposited in Zenodo 651 

(https://doi.org/10.5281/zenodo.7517412).  652 
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Code availability 653 

The code is publicly accessible on a GitHub repository 654 

(https://github.com/AlexHelloWorld/TreeAlign), which implements TreeAlign and describes 655 

how to generate simulated datasets.  656 

Acknowledgements 657 

This project was funded in part by Cycle for Survival supporting Memorial Sloan Kettering 658 

Cancer Center. SPS holds the Nicholls Biondi Chair in Computational Oncology and is a 659 

Susan G. Komen Scholar.  This work was funded in part by the Cancer Research UK Grand 660 

Challenge Program to SPS [C42358/A27460], a National Institutes of Health Center for 661 

Excellence in Genome Sciences grant RM1-HG011014 and the NCI Cancer Center Core 662 

Grant P30-CA008748.  663 

Competing Interests 664 

SPS is a shareholder of Imagia Canexia Health Inc. and is a consultant to AstraZeneca Inc., 665 

outside the scope of this work. 666 

 667 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2023. ; https://doi.org/10.1101/2023.01.10.523464doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523464
http://creativecommons.org/licenses/by-nd/4.0/


Expression count matrix

ce
ll

ce
ll

gene

gene

Copy number matrix with 
phylogenetic tree

Clone assignment

TreeAlign Recursively apply to 
subtrees

gene

Probabilities of gene 
expression depending 
on copy number

ce
ll

gene

a

b

c

⋅

𝑁

𝐺

𝑢

𝑘

𝑦

𝑤

𝜓

𝑧

𝑝(𝑘)

𝜆

𝜋𝐶 𝑥

𝐶

𝑡

𝑟

f 𝑎

𝑏

𝑝(𝑎)

𝐶

𝑆

Total CN model Allele-specific model

Integrated model

b

Fig. 1: Overview of TreeAlign
a, TreeAlign takes raw count data from scRNA-seq, the copy number matrix and the phylogenetic tree from scDNA-seq. By recursively assigning the

expression profiles to phylogenetic subtrees, TreeAlign infers the clone-of-origin of cells identified in scRNA-seq and the dosage effects of clone-specific copy

number alterations. b, Allelic imbalance as measured by B allele frequency can be inferred from DNA-data and RNA-data. We assume a positive correlation

between the two measurements to improve clone assignment. c, Graphical model of TreeAlign.
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a b

c

Fig. 2: Performance of TreeAlign on simulated data
a, Clone assignment accuracy of TreeAlign, CloneAlign and InferCNV on simulated datasets (500 cells, 1000 genes, 3 clones) containing varying proportions

of genes with copy number dosage effects. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Brackets: Wilcoxon signed-rank test. b, Phylogenetic tree (left) of

cells from patient 081 constructed using scDNA-data. Heat map (right) of clone assignment by TreeAlign. Each column shows the assignment of simulated

expression profiles to subtrees of the phylogeny. The bar chart above shows the overall accuracy of clone assignment. c. Scatter plots comparing inferred

gene dosage effect frequencies and the simulated frequencies. Each panel groups genes with similar expression levels from low expression genes (0-10%)

to high expression genes (90-100%). Pearson correlation coefficients (R) and P values for the linear fit are shown.
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e

Fig. 3: TreeAlign assigns HGSC expression profiles to phylogeny accurately
a, UMAP plot of scRNA-data from patient 022 colored by clone labels assigned by TreeAlign. b, Correlation between clone frequencies of patient 022

estimated by scRNA-data (x axis) and scDNA-data (y axis). c, Scaled expression and copy number profiles for regions on chromosome 9 and 12 as a

function of genes ordered by genomic location. d, Single cell phylogenetic tree of patient 022 constructed with scDNA-data (left). Pie charts on the tree

showing how TreeAlign assigns cell expression profiles to subtrees recursively. The pie charts are colored by the proportions of cell expression profiles

assigned to downstream subtrees. The outer ring color of the pie charts denotes the current subtree. Left heat map, total copy number from scDNA; right

heat map, InferCNV corrected expression from scRNA; middle Sankey chart, clone assignments from RNA to DNA. e, Normalized expression of CLDN16 in

clone A and clone B - D.
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Fig. 4: Incorporating allele specific expression increases clone assignment resolution
a, Integrated TreeAlign model assigns expression profiles to phylogeny of patient 022. Left heat map, single cell BAF profiles estimated from scDNA-data

using SIGNALS, annotated with clone labels on the left side (BAF profiles without clone label represent cells ignored by TreeAlign) (Methods). b, BAF

estimated from scRNA in clone D.1 and D.2 at region chr5:72,798,845-135,518,242. c-d, BAF of subclones with (c) scDNA and (d) scRNA. e, Correlation

between BAF estimated with scRNA and BAF estimated with scDNA in patient 022. Annotations at the top indicate the Pearson correlation coefficient (R) and

P value derived from a linear regression. f, ROC curves for predicting 𝑝(𝑎 = 1) with allele-specific TreeAlign and integrated TreeAlign. g, Robustness of clone
assignment to gene subsampling in patient 022. Adjusted rand index was calculated by comparing clone assignments using subsampled datasets to the

complete dataset. h, Robustness of clone assignment to cell subsampling in patient 022.
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b dc e

Fig. 5: Inferring copy number dosage effects in human cancer data
a, Heat map representations of genes in CSCN regions in HGSC sample SA1096. Top heat map: clone-level total copy number from scDNA; bottom heat

map: InferCNV corrected expression profiles from scRNA; bottom track: p(k) estimated by TreeAlign. b, Number of clones characterized by total CN and

integrated model (Wilcoxon signed-rank test). c, Frequencies of unassigned cells (Methods) from total CN and integrated model (Wilcoxon signed-rank test).

d, Distribution of Pearson correlation coefficients (R) between scDNA estimated total copy number and InferCNV corrected expression for unassigned cells

from total CN model. Left, correlation distribution calculated by comparing InferCNV profiles to CN profiles of a random subclone; Right, correlation distribution

calculated by comparing InferCNV profiles to CN profiles of subclones assigned by integrated TreeAlign. c, Variance of p(k) sampled from the same genomic

regions and across regions.
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Fig. 6: Clone-specific transcriptional profiles
highlight clonal divergence in immune pathways

a, Scaled expression of upregulated genes in each

subclone in patient 022, showing genes in rows and

subclones in columns. Genes in the COSMIC Cancer

Gene Census42 are highlighted. b-c, Proportions of

subclonal differentially expressed genes located in

CSCN regions for (b) 184-hTERT cell lines, (c) an

HGSC control cell line and primary tumors. d, UMAP

embedding of expression profiles from patient 022

colored by clone labels assigned by integrated

TreeAlign model. e, Differentially expressed genes

between clone A and other subclones (clone B - D) in

patient 022. f, Pathways with clone-specific expression

patterns in TNBC and HGSC tumors.
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Extended Data Fig. 1

Extended Data Fig. 1: Random variables and data in TreeAlign

Descriptions and prior distributions of random variables and data in TreeAlign model.
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Extended Data Fig. 2: Clone assignment accuracy of TreeAlign in simulated datasets

a, Accuracy of clone assignment for TreeAlign, CloneAlign and InferCNV in simulated scRNA datasets as a

function of varying proportions of genes with CN dosage effects. Panels represent datasets with different numbers

of cells and genes. b, Phylogenetic trees (left) constructed with scDNA-data from SPECTRUM-OV-081 along with

Heat maps (right) showing clone assignment of simulated datasets by TreeAlign.
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Extended Data Fig. 3: Dosage effect prediction of TreeAlign in simulated datasets

a, AUC of CN dosage effect 𝑝(𝑘) predicted by TreeAlign as a function of gene expression level.

Panels represent simulated datasets with varying gene dosage effect frequencies.

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2023. ; https://doi.org/10.1101/2023.01.10.523464doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523464
http://creativecommons.org/licenses/by-nd/4.0/


a b c

d e

Extended Data Fig. 4: TreeAlign assigns expression profiles of NCI-N87 to phylogeny

a, UMAP plot of scRNA-data from gastric cell line NCI-N87 colored by clone labels assigned by total CN

TreeAlign. b, Clone frequencies of NCI-N87 estimated by scRNA-data (x axis) and scDNA-data (y axis). c, Scaled

expression and copy number profiles for regions on chromosome 1 and 19 as a function of genes ordered by

genomic locations. d, Phylogenetic tree constructed with scDNA-data. e, Phylogenetic tree constructed with

scDNA-data along with pie charts showing how TreeAlign assigns cell expression profiles to subtrees recursively.

The pie charts are colored by the proportions of cell expression profiles assigned to downstream subtrees. The

outer ring color of the pie charts indicates the current subtree. Heat maps of copy number profiles from scDNA

(left) and InferCNV corrected expression profiles from scRNA (right). The Sankey chart in the middle shows clone

assignment from expression profiles to copy number based clones by total CN TreeAlign.
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a

b

Extended Data Fig. 5: TreeAlign assigns expression profiles of patient 022 to phylogeny

constructed with Sitka38

a, Phylogenetic tree constructed with scDNA-data using Sitka. Pie charts illustrate how TreeAlign assigns

cell expression profiles to subtrees recursively. b, Heat maps of copy number profiles from scDNA (left) and

InferCNV corrected expression profiles from scRNA (right). The Sankey chart in the middle shows clone

assignment from expression profiles to CN-based clones characterized with Sitka.
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a

b

c

Extended Data Fig. 6

Extended Data Fig. 6: Allele-specific information

contributes to clone assignment

a, BAF of heterozygous SNPs estimated from scRNA-

data and scDNA-data for clone A and other clones (clone

B - C) in patient 022 (ordered by gene location along

chromosome). b, violin plot of BAF in SPECTRUM-OV-

022 (Wilcoxon signed-rank test). b, Confusion matrix

comparing clone assignment between total CN TreeAlign

and integrated TreeAlign for patient 022. c, Correlation

between BAF estimated with scRNA and DNA in patient

022 subclones (Wilcoxon signed-rank test).
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Extended Data Fig. 7

Extended Data Fig. 7: Integrated TreeAlign has improved clone assignment performance compared to

total CN TreeAlign

Distribution of Pearson correlation coefficients (R) between scDNA estimated total copy number and InferCNV

corrected expression for unassigned cells from total CN model. Left, correlation distribution calculated by

comparing InferCNV profiles to CN profiles of a random subclone; Right, correlation distribution calculated by

comparing InferCNV profiles to CN profiles of subclones assigned by integrated TreeAlign. Each panel

represents results from a tumor sample/cell line.
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Extended Data Fig. 8:

Distribution of 𝒑(𝒌) in tumors

and cell lines

a, Distribution of 𝒑(𝒌) hTERT-

184 cell lines. b, Distribution of

𝒑(𝒌) in ovarian cancer control

cell line OV2295, primary

HGSC and TNBC tumors. c,

Distribution of 𝒑(𝒌) across

primary tumors and cell lines in

(a) and (b). d, Distribution of

𝒑(𝒌) in patient 022. e, Variance

of 𝒑(𝒌) of the same gene

between patients compared to

variance of randomly shuffled

𝒑(𝒌) . f, 𝒑(𝒌)distribution as a

function of gene essentiality43 in

gene groups with different

expression levels. Only high

expression genes (top 40%)

are shown. g, 𝒑(𝒌) distribution

between genes located in

amplifications and deletions.

Only high expression genes

(top 40%) are shown.
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b

c

a

Extended Data Fig. 9

Extended Data Fig. 9: Gene

set enrichment analysis of

low 𝒑(𝒌) genes

c, Example of genes with

high level amplifications and

high CN dosage effects. b,

Dot plot showing significantly

enriched pathways in low

𝒑(𝒌) genes. b, Significantly

enriched pathways in low

𝒑(𝒌) genes from all primary

tumors and cell lines. 𝒑(𝒌)

from all samples were

combined before performing

gene set enrichment analysis.
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Extended Data Fig. 10: Differentially expressed genes between subclones in patient 022
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Extended Data Fig. 10: Differentially expressed genes between subclones in patient 022

a, UMAP plot of expression profiles of clone B.1 and B.2 in patient 022. b, UMAP plot of expression profiles of clone

D.1, D.2, D.3 and D.4 in patient 022 colored by clone assignments. c, UMAP plot of expression profiles of clone D in

patient 022 colored by Louvain unsupervised clustering. d, UMAP plot of expression profiles of clone D in patient

022 colored by cell cycle phase. e, Differentially expressed genes between clone A and clone B - D. f, Differentially

expressed genes between cells in clone B.1 and B.2. g, Differentially expressed genes between cells in clone D.4

and D.1 - D.3. h, Frequencies of DE genes in CSCN regions summarized by Hallmark pathways.
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a

b

c

Extended Data Fig. 11:

Examples of enriched and

depleted pathways in

patient 022 subclones

a, Enriched and depleted

pathways in clone A

compared to other clones in

patient 022. b, Enriched and

depleted pathways in clone

B.1 compared to clone B.2. c,

Enriched and depleted

pathways in clone D.4

compared to the rest of cells

in clone D.
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