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ABSTRACT 
Missense de novo variants (DNVs) and missense somatic variants contribute to 
neurodevelopmental disorders (NDDs) and cancer, respectively. Proteins with statistical 
enrichment based on analyses of these variants exhibit convergence in the differing NDD and 
cancer phenotypes. Herein, the question of why some of the same proteins are identified in both 
phenotypes is examined through investigation of clustering of missense variation at the protein 
level. Our hypothesis is that missense variation is present in different protein locations in the two 
phenotypes leading to the distinct phenotypic outcomes. We tested this hypothesis in 1D protein 
space using our software CLUMP. Furthermore, we newly developed 3D-CLUMP that uses 3D 
protein structures to spatially test clustering of missense variation for proteome-wide significance. 
We examined missense DNVs in 39,883 parent-child sequenced trios with NDDs and missense 
somatic variants from 10,543 sequenced tumors covering five TCGA cancer types and two 
COSMIC pan-cancer aggregates of tissue types. There were 57 proteins with proteome-wide 
significant missense variation clustering in NDDs when compared to cancers and 79 proteins with 
proteome-wide significant missense clustering in cancers compared to NDDs. While our main 
objective was to identify differences in patterns of missense variation, we also identified a novel 
NDD protein BLTP2. Overall, our study is innovative, provides new insights into differential 
missense variation in NDDs and cancer at the protein-level, and contributes necessary information 
toward building a framework for thinking about prognostic and therapeutic aspects of these 
proteins. 
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INTRODUCTION 
Neurodevelopmental disorders (NDDs) affect ~1% of the population and include autism, 
developmental delay, epilepsy, and intellectual disability. There have been several studies that 
have identified genetic contributions to NDDs including common variants (1), rare inherited 
variants (2, 3), and de novo variants (DNVs) (4-43). In particular, the study of DNVs through 
enrichment at the gene-level (44) has identified >300 genes involved in NDDs (36, 43). The initial 
discoveries were genes with high-impact 
likely gene-disruptive (LGD) DNVs (e.g., 
stop-gain, splice-site acceptor, splice-site 
donor, frameshift) (22, 45). The estimation 
of gene discovery from DNVs suggests a 
plateau at ~30,000 parent-child sequenced 
trios for LGD DNVs and for 
bioinformatically predicted severe 
missense DNVs a plateau at ~10,000 
parent-child sequenced trios. However, 
where the plateau will be for gene discovery 
for the broader class of missense DNVs 
contributing to NDDs has been difficult to 
determine as they are harder to interpret 
than LGD DNVs (36). This highlights the 
importance for the development of 
computational and statistical tools to study 
this class of variation. Identification of 
relevant missense DNVs is critical for 
prognostics, functional testing, and future 
therapeutic strategies. 
 
It is generally accepted that recurrent 
missense variants at a single amino acid 
residue position or in close proximity in a 
protein is a signature of strong positive 
selection (46). This hypothesis has 
motivated the search for clusters of driver 
mutations in cancers, both in one-
dimensional gene or protein sequence and 
three-dimensional protein structures (47-
50). While clusters of driver mutations have 
primarily been associated with oncogenes (51), we have previously shown that these clusters occur 
in both oncogenes and tumor suppressor genes (50). Furthermore, we developed the software 
CLUMP to compare clustering of germline variants in autosomal dominant vs. recessive 
Mendelian diseases and we identified more clustering of missense variants in autosomal dominant 
than autosomal recessive diseases (52). Application of CLUMP to NDDs has identified proteins 
with clustering of missense DNVs (53), and other groups have utilized other strategies to assess 
clustering of missense DNVs in NDDs at the gene or protein level (43, 54, 55).  
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Figure 1: Schematic of Examples of the CLUMP and
3D-CLUMP Methods. A) Two proteins are shown: one
where there is more clustering in NDDs (Top) and one
where there is more clustering in cancer (Bottom). B) Our
AlphaFold prediction for NP_002065.1 (used as an
example only) is shown in this image where variants are
placed to exemplify more clustering in NDDs (Left) and
more clustering in cancer (Right).
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In this study, we 1) apply the original CLUMP method to perform case-control testing to examine 
clustering in 1D protein space (Figure 1A), 2) and develop a new method called 3D-CLUMP to 
perform case-control testing to examine clustering in three-dimensional (3D) protein structure 
(Figure 1B). Both strategies are advantageous because they do not use a priori information about 
domains or known regions of functional importance within a protein.  
 
As syndromic and 
genome-wide 
significant NDD 
genes have been 
identified, there has 
been an interesting 
observation that 
some of these genes 
are also implicated in 
cancers. Initial 
examples included 
PTEN in Cowden 
syndrome and NF1 
in 
Neurofibromatosis I 
(56, 57). More recent 
examples include CHD8 in autism and in gastrointestinal cancers (45). However, for the majority 
of genes it remains unclear whether the specific variants identified in NDDs will later lead to 
cancer or not. In 2016, a forum paper by Crawley et al. (57) described an overlap of genes involved 
in both autism and cancer. They noted the centering of these genes on molecular pathways involved 
in gene regulation (e.g., chromatin, transcription, signaling). This was further examined in a review 
paper by Nussinov et al. in 2022 (58). Understanding why some of the same genes are involved in 
both NDDs and cancer is essential for prognostics and future therapeutics. In this study, we test 
the hypothesis that some genes involved in both NDDs, and cancer exhibit differential missense 
DNV clustering in the two phenotypes. To test this hypothesis, we aggregated NDD DNVs from 
the literature (37, 43) and cancer somatic variants from The Cancer Genome Atlas (TCGA) and 
Catalog Of Somatic Mutations in Cancer (COSMIC) databases and tested them using our existing 
(i.e., CLUMP (52) and our newly developed (3D-CLUMP) clustering tools.  
 
In this study, our objectives are to identify 1) proteins which exhibit missense clustering in NDDs 
and not cancer and 2) proteins that exhibit missense clustering in cancer and not NDDs. This work 
involves the development of a new computational tool of broader use to the research community 
for assessing clustering of missense variation in 3D protein structures and provides novel insights 
into variation involved in cancer and NDDs with potential prognostic and therapeutic implications. 
 
MATERIALS AND METHODS 
Annotation of Variant Data 
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Figure 2: Variant Data Types in This Study. A) NDD data consisted of 39,883
parent-child sequenced trios (the lightning bolt is used to exemplify DNVs which, by
definition, are only found in children). B) Cancer data consisted of 10,543 individuals
from the TCGA and COSMIC databases.
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We aggregated DNV data from 39,883 parent-child sequenced NDD trios (37, 43) (Figure 2A). 
The DNVs were annotated with VEP (59) to RefSeq protein isoforms. Somatic variants (Figure 
2B) were downloaded from TCGA at https://gdc.cancer.gov/about-data/publications/mc3-2017 
for the following cancer types: Breast Cancer (BRCA), Colon Adenocarcinoma (COAD), Lung 
Adenocarcinoma (LUAD), PRAD (Prostate Adenocarcinoma), and Ovarian Cancer (OV). Somatic 
variants were also downloaded from the COSMIC database at 
https://cancer.sanger.ac.uk/cosmic/download in which multiple tissue types were aggregated in the 
categories of CNS (Central Nervous System) or GI (Gastrointestinal Track).  CNS tissue types: 
Aqueduct of Sylvius, Basal ganglia, Brain Brainstem, Caudate nucleus, Cerebral cortex, Cerebral 
hemisphere, Cerebrum Chiasm, Choroid plexus, Cingulate gyrus , Cingulum, Corpus callosum, 
Diencephalon, Extra-central nervous system, Filum Foramen of Monro, Fourth ventricle, Frontal 
lobe, 
Frontobasal, 
Frontoparietal, 
Frontotemporal, 
Hypothalamus, 
Infratentorial, 
Intraventricular, 
Lateral 
ventricle, 
Lateral ventricle 
trigone, Left 
hemisphere, 
Medulla, 
Medullo 
cerebellar, 
Meninges, 
Midbrain, 
Middle 
cerebellar 
peduncle, 
Middle frontal 
gyrus, NS, 
Occipital lobe, 
Optic nerve, 
Optic pathway, 
Paracentral 
Parietal lobe, 
Parietooccipital, 
Parietotemporal, 
Periventricular, 
Pineal gland, 
Posterior fossa, 
Precentral gyrus, 
Sella turcica, 
Sellar suprasellar, Septum pellucidum, Spinal cord, Subcorticoparamedial, Superior frontal gyrus, 
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Figure 3: Chicago Plots for the 3D-CLUMP Results in the COSMIC Datasets. A)
Chicago plot for 3D-CLUMP results in the NDD versus COSMIC CNS analyses.
B) Chicago plot for 3D-CLUMP results in the NDD versus COSMIC GI analyses. For
both A and B proteins that exhibit significant clustering in NDDs are shown on the top
above the significance line and proteins that exhibit significant clustering in cancer are
shown on the bottom below the significance line. Proteins are placed based on the
genomic coordinates of the genes that encode them and all significant proteins are
labeled on the plots.
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Supratentorial, Tectum, Tegmentum, Temporal lobe, Temporobasal, Temporooccipital, 
Temporoparietal, Thalamus, Third ventricle, Trigone. GI tissue types: Large_intestine, 
Small_intestine, Gastrointestinal track undetermined site, Esophagus, and Stomach. The somatic 
variants were also annotated 
with VEP to RefSeq protein 
isoforms.  
 
Application of Case-Control 
CLUMP 
To assess clustering in 1D 
protein space, CLUMP was 
utilized for comparison of 
NDDs and cancer. CLUMP 
was run to compare 
missense variation 
identified in individuals 
with NDDs to missense 
variants identified in each 
cancer type, respectively. 
For this analysis, CLUMP 
was run in the case-control 
implementation using a -m 
value of 6 to denote >5 
missense variants required 
in each dataset and a -z value 
of 10,000,000 to signify a 
permutation of 10 million 
for significance testing. This 
permutation level allows for 
proteome-wide significance 
testing in the dataset. 
 
AlphaFold Structure 
Prediction for Proteins with 
Missense Variation 
We downloaded the RefSeq 
protein fasta file 

(https://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/GRCh38_latest/refseq_identifiers/GRC
h38_latest_protein.faa.gz) from NCBI on May 18, 2021. For each protein, we extracted the protein 
sequence in fasta format from the RefSeq file. To generate a 3D protein structure for the protein, 
the protein fasta file was used as input to the AlphaFold (60) version 2.2.0 program. The following 
reference databases were used: Reduced BFD, MGnify (2018_12), Uniclust30 (2018_08), 
UniRef90 (2022_01), and PDB70 (2020-04-01). The AlphaFold program generates an MSA using 
the reduced_dbs setting, model generation produces 5 models with 3 recycles each and AMBER 
relaxation. The models are ranked by pLDDT, and the best scoring structure is chosen as the final 

Figure 4: Examples of Proteins with Proteome-Wide Significant Clustering of Missense Variants.
Subfigures A to E are significant in NDDs and subfigures F to H are significant in cancer. Red are variants

seen in individuals with NDDs. Numbers are shown next to some residues to indicate the number of

individuals. Blue are seen in individuals with cancer. Black are seen in both. The intensity of the color is scaled

by the number of individuals with missense variants at the residue. A) NDD versus BRCA SMARCA2

(NP_620614), B) NDD versus CNS PPP2R5D (NP_851307), C) NDD versus COAD TRAF7 (NP_115647), D)

NDD versus LUAD KIF1A (NP_004312), E) NDD versus COAD GRIN1 (NP_067544), F) NDD versus CNS

PIK3CA (NP_006209), G) NDD versus GI GNAS (NP_000507), H) NDD versus PRAD SPOP (NP_003554).
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structure. Post-AlphaFold structure generation, each structure was deposited under accession “ma-
tur-clump” in ModelArchive. Proteins requiring >700 GB of memory were unable to be run 
through AlphaFold on our server.  
 
The 3D-CLUMP Method 
Development of 3D-CLUMP as a strategy to assess clustering of variation in 3D protein structures 
required modification of the method we originally developed for 1D clustering called CLUMP 
(52). As in the CLUMP method, 3D-CLUMP uses a partitioning around medoids (PAM) strategy 
specifically using the pamk function from the R package fpc (https://cran.r-
project.org/web/packages/fpc/index.html) to identify clusters in the data. The advantage of 
integrating pamk in 3D-CLUMP is that it iteratively identifies the optimal number of clusters k in 
the data to find the optimal k*. This is helpful as the users of the program may not know the optimal 
k for their dataset. The pamk function identifies both the number of clusters and estimates the 
‘medoid’ that best represents each cluster. Importantly, in 3D-CLUMP the medoid is represented 
in 3D-space consisting of x,y,z coordinates on the 3D protein structure. The final 3D-CLUMP 
score (Sp) for a protein p is calculated as follows: 
 

𝑆! =	$
"∗

$%&

$
'!

(%&

𝑙𝑛 	'𝑚𝑖𝑛$*∑( (𝑚$ 	− 	𝑋$())	 + 1	2	

𝑛$
	,		

 
where k* is the optimal k for the protein, ni is the number of variants in cluster i, mi is the position 
of the medoid in the i cluster, and Xij is the position of variant j in the i cluster. If all variants cluster 
at the exact same location as the medoid, this will yield optimal clustering and will result in a score 
of 0. In 3D-CLUMP, lower scores show maximal clustering of the variants. 
 
To calculate a p-value for the test, we generate a null distribution of 𝛥𝑆!∅ values, which is 
𝑆!+,'-.,/0 	− 	𝑆!+1020. The 𝛥𝑆!∅ values are calculated 10,000,000 times to enable testing for 
proteome-wide (i.e., genome-wide correction for 19,008 genes) significance. We use a Bonferroni 
corrected p-value of 3.35

&6,338
	= 	 2.63	 × 	109: as the threshold for proteome-wide significance.  

 
Application of Case-Control 3D-CLUMP 
To assess clustering in 3D protein space, 3D-CLUMP was utilized for comparison of NDDs and 
cancer. 3D-CLUMP was run to compare missense variation identified in individuals with NDDs 
to missense variants identified in each cancer type, respectively. For this analysis, 3D-CLUMP 
was run in the case-control implementation using a -m value of 6 to denote >5 missense variants 
required in each dataset and a -z value of 10,000,000 to signify a permutation of 10 million for 
significance testing. This permutation level allows for proteome-wide significance testing in the 
dataset. 
 
Plotting of Variant Data 
Missense variants were visualized on 3D structures using the R package NGLVieweR 
(https://cran.r-project.org/web/packages/NGLVieweR/vignettes/NGLVieweR.html). Missense 
variants identified in individuals with NDDs were colored red in the plots and missense variants 
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identified in individuals with cancer were colored blue in the plots. The intensity of the color 
corresponds to the number of individuals with DNVs at the specific amino acid residue. 
 
RESULTS 
Proteins Exhibiting Clustering in 1D Protein Space 
For each of the seven cancer types, testing for significance of clustering in 1D space was done 
with CLUMP. For the comparison to BRCA, we identified two proteins reaching significance in 
NDDs (ADCY5, SETD2) and one protein reaching significance in cancer (PIK3CA). For the 
comparison to 
COAD, we 
identified four 
proteins reaching 
significance in 
NDDs (ALG13, 
CREBBP, PACS1, 
UPF1) and no 
protein reaching 
significance in 
cancer. For the 
comparison to 
LUAD, we 
identified 9 
proteins reaching 
significance in 
NDDs (ADCY5, 
ALG13, CREBBP, 
EBF3, FOXP1, 
ITPR1, PPP2R1A, 
PPP2R5D, TRIO) 
and no protein 
reaching 
significance in 
cancer. For the 
comparison to 
PRAD, we 
identified one 
protein reaching 
significance in 
NDDs 
(DYNC1H1) and 
no protein reaching 
significance in 
cancer. For the 
comparison to OV, 
we did not identify 
any proteins 

A
NDD, TCGA BRCA

B
NDD, TCGA COAD

C D E

F G

NDD, TCGA LUAD NDD, TCGA PRAD NDD, TCGA OV

NDD, COSMIC CNS NDD, COSMIC GI

Figure 5: Discovery is Greater with 3D Structures. Shown are proteins exhibiting 
proteome-wide significance for clustering in either NDDs or the specified cancer type using 
the 3D-CLUMP and/or CLUMP methods. 
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reaching significance in either NDDs or cancer. For the comparison to COSMIC CNS, we 
identified one protein reaching significance in NDDs (PPP2R5D) and 17 protein reaching 
significance in cancer (ATP8A1, BAHCC1, DMD, FAM186A, IGSF10, KALRN, KANK1, 
KDM3B, MADD, MUC6, NEB, NWD2, PLXNB2, SRRM2, TBCEL-TECTA, TRPM7, UNC80). 
For the comparison to COSMIC GI, we identified six proteins reaching significance in NDDs 
(ARID1B, COG4, DYNC1H1, PTPN11, TRIO, TRPM3) and five protein reaching significance in 
cancer (GNAS, KALRN, 
MUC19, PIK3CA, 
SPTA1).  
 
Metrics of AlphaFold 
Structures 
Summary metrics of the 
AlphaFold structures 
generated for the dataset 
include a pLDDT of 69.79 ± 
21.56 (mean ± standard 
deviation). Across the 
dataset, there was a 
negative correlation 
between the mean pLDDT 
value and the standard 
deviation pLDDT values (r 
= -0.33, p < 2.2 × 10-16), a 
negative correlation 
between the protein length 
and the mean pLDDT 
values (r = -0.31, p < 2.2 × 
10-16), and a positive 
correlation between the 
protein length and the 
standard deviation pLDDT 
values (r = 0.21, p < 2.2 × 
10-16). While the 
correlations were 
significant they were not 
strong. Observation of the 
data revealed there was an 
apparent inverse U-shape to 
the data when comparing 
the standard deviation 
pLDDT to the mean 
pLDDT. To test this we fit 
the standard deviation and mean to a model using the following formula in R: 
 

𝑚𝑜𝑑𝑒𝑙 = 𝑙𝑚(𝑠𝑑𝐿𝐷𝐷𝑇	~	𝑚𝑒𝑎𝑛𝐿𝐷𝐷𝑇	 + 𝐼(𝑚𝑒𝑎𝑛𝐿𝐷𝐷𝑇")	

Figure 6: Protein-Protein Interaction Enrichment of Proteins with Significant Missense Clustering. A)
PPI network of proteins with proteome-wide significant clustering in NDDs (number of nodes = 57, number of

edges = 123, expected number of edges = 41, p < 1 x 10-16). B) PPI network of proteins with proteome-wide

significant clustering in cancer (number of nodes = 78, number of edges = 51, expected number of edges = 33,

p = 2.5 x 10-3).

A
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This model fit the data well with an adjusted 𝑟) 	= 0.61 and a p < 2.2 × 10-16. This result shows 
that structures with good predictions overall (i.e., high mean pLDDT scores) tend to have lower 
standard deviation for their pLDDT scores and structures with bad predictions overall (i.e., low 
mean pLDDT scores) tend to have lower standard deviation for their pLDDT scores. In short, 
really good structures are good overall and really bad structures are bad overall. There are then 
several structures with decent structures but lots of variability in how consistent they are in pLDDT 
overall. 
 
Proteins Exhibiting Clustering in 3D Protein Space 
For each of the seven cancer types, testing for significance of clustering in 3D space was done 
with 3D-CLUMP (Figure 3, Figure 4). For the comparison to BRCA, we identified 15 proteins 
reaching significance in NDDs (ALG13, ATP1A3, BLTP2, BRAF, CACNA1A, CDK13, 
DDX3X, HDAC4, MAPK8IP3, PACS1, SCN3A, SCN8A, SETBP1, SMARCA2, TCF4) and one 
protein reaching significance in cancer (PIK3CA). For the comparison to COAD, we identified 23 
proteins reaching significance in NDDs (ACTL6B, ALG13, ATP1A3, ATP6V0A1, BLTP2, 
COG4, CSNK2A1, DDX23, DHX30, DYRK1A, GRIN1, HECW2, KCNK3, KCNQ3, KCNT2, 
KIF1A, MECP2, MEF2C, PACS1, PTPN11, SCN2A, SMARCA2, TRAF7) and no protein 
reaching significance in cancer. For the comparison to LUAD, we identified 22 proteins reaching 
significance in NDDs (ACTL6B, ALG13, ATP6V0A1, BLTP2, FBXW7, FGFR2, FOXP1, 
KCNQ3, KCNT2, KIF1A, MECP2, MEF2C, PPP2R1A, PPP2R5D, PTPN11, SCN2A, SCN8A, 
SMAD4, SMARCA2, TCF4, TFE3, TRIP12) and one protein reaching significance in cancer 
(KIDINS220). For the comparison to PRAD, we identified two proteins reaching significance in 
NDDs (KIF1A, SMAD4) and one protein reaching significance in cancer (SPOP). For the 
comparison to OV, we identified three proteins reaching significance in NDDs (BLTP2, SCN2A, 
SCN3A) and no protein reaching significance in cancer. For the comparison to COSMIC CNS, we 
identified six proteins reaching significance in NDDs (ALG13, CDK13, FBXW7, HDAC4, 
PPP2R5D, SMARCA2) and 54 proteins reaching significance in cancer (ABCA3, ABCA7, 
AGAP1, AGAP2, ANK2, ATP1A2, ATP8A1, CABIN1, CACNA1B, CIC, CLASP1, COQ8A, 
CTBP2, DICER1, DIDO1, DOCK7, EPHB4, ESYT1, FAM83H, FLII, HELZ, KANK1, 
KIDINS220, KIF19, KMT2E, LAMB1, MADD, MAST2, MPDZ, MYO16, NCOR1, NWD2, 
PCDH15, PCNX3, PHRF1, PIK3CA, PKDREJ, PLXNB2, PTPRS, PTPRZ1, RALGAPA1, 
SCN1A, SCRIB, SLX4, SNRNP200, STAT1, TCF20, TRIM41, TRIP12, TRPM7, USH2A, VCP, 
ZC3H13, ZSWIM6). For the comparison to COSMIC GI, we identified 18 proteins reaching 
significance in NDDs (ALG13, ATP1A3, BLTP2, CDK13, DHDDS, DHX30, FGFR3, HDAC4, 
HK1, KCNK3, KCNT1, KCNT2, KIF1A, MAPK8IP3, NAA10, PTPN11, SMARCA2, SOS1) and 
13 protein reaching significance in cancer (ABCA8, ABHD16A, CSPP1, GNAS, KANK1, 
NLRP13, PIK3CA, PTEN, TP73, TTLL10, ZFYVE28, ZHX3, ZNF438).  
 
Greater Statistical Discovery Through Assessment of Clustering in 3D-Structures 
Using the 3D protein structure test (3D-CLUMP), greater significant protein discovery was 
observed in comparison to the 1D test. In every comparison of NDDs and the shown cancer type 
there were more proteins identified with proteome-wide significance in the 3D-CLUMP results 
(Figure 5). The number of proteins identified uniquely as proteome-wide significant in the 3D test 
was between 3 times to 10.5 times more than the number uniquely identified in the 1D test. In 
some instances, the same protein was identified in both the 1D and 3D tests (e.g., PIK3CA in 
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TCGA BRCA, ALG13 in TCGA COAD, PACS1 in TCGA COAD). However, most of the time 
the proteins discovered were unique to the specific test showing a benefit to using 3D structures 
in assessment of clustering of missense variation. 
 
Protein-Protein Interaction Enrichment of Proteins with Significant Missense Clustering 
For the proteins enriched for clustering in NDDs and cancer we tested for enrichment of protein-
protein interactions (PPIs) in STRING-DB (Figure 6). For the proteins with enrichment in NDDs, 
we identified significant PPIs (number of nodes = 57, number of edges = 123, expected number of 
edges = 41, p < 1 x 10-16) with enrichment of proteins involved in the BAF complex and proteins 
that function as channels. In the proteins identified in the cancer analysis, we also so an enrichment 
of PPIs (number of nodes = 78, number of edges = 51, expected number of edges = 33, p = 2.5 x 
10-3) and enrichment of proteins involved in ATP-related activities. 

 
Comparison to Known NDD Genes 
There are 379 NDD genes known to be genome-wide significant for enrichment of DNVs (36, 43). 
We examined what the status of these genes were in this study (Figure 7). There were 50 genes 
that were known to be significant in NDDs and exhibited significant missense DNV clustering in 
NDDs in this study. There were 13 genes that were known to be significant in NDDs and exhibited 
significant missense DNV clustering in cancer in this study. One gene (TRIP12) was found in both 
of these results. TRIP12 was significant in NDDs in the comparison to LUAD and TRIP12 is 
significant in COSMIC CNS in comparison to NDDs. This results in 62 genes exhibiting clustering 
in the known NDD set. The remaining 319 proteins that were not found significant by CLUMP or 
3D-CLUMP either had a small number of independent missense variants (<6) for CLUMP/3D-
CLUMP testing, or were too large to build an AlphaFold structure with our compute memory 

Figure 7: Comparison to Known NDD and Known Cancer Genes. A) Shown is the distribution of protein 
results in our study and comparison to 379 known NDD genes. *TRIP12 is significant in NDDs in comparison to 
LUAD and is significant in COSMIC CNS comparison to NDDs. B) Shown is the distribution of protein results 
in our study and comparison to 299 known Cancer genes

A B
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limitation of 700 GB. There were 135 proteins with <6 independent missense variants and 25 for 
which we could not generate AlphaFold structures. There were 157 proteins that were not 
significant in any of our tests and likely did not harbor any clustered missense variation. 
 
Based on the analyses above, for the 379 known NDD proteins there were 62 (16.4%) with 
clustering based on CLUMP/3D-CLUMP analyses,  and 160 (42.2%) were not testable either 
because they did not have enough missense variants to perform the analyses or a protein structure 
could not be made, and 157 (41.4%) were not significant for clustering by any test.  
 
BLTP2 as a Novel Proteome-
Wide Significant Protein in 
NDDs 
There were seven proteins 
(ACTL6B, BLTP2, DHX30, 
KCNT2, MAPK8IP3, 
SCN3A, SOS1) with 
significant clustering in NDDs 
that were not previously 
genome-wide significant for 
DNVs in NDDs. Six 
(ACTL6B, DHX30, KCNT2, 
MAPK8IP3, SCN3A, SOS1) 
of these proteins have been 
implicated in rare forms of 
NDDs. ACTL6B is involved 
in in “developmental and 
epileptic encephalopathy 76” 
(OMIM #618468) and 
“intellectual developmental 
disorder with severe speech 
and ambulation defects” 
(OMIM #618470). DHX30 is 
involved in 
“neurodevelopmental disorder 
with variable motor and 
speech impairment” (OMIM 
#617804). KCNT2 is involved 
in “developmental and 
epileptic encephalopathy 57” 
(OMIM #617771). 
MAPK8IP3 is involved in 
"neurodevelopmental disorder 
with or without variable brain 
abnormalities" (OMIM #618443). SCN3A is involved in "developmental and epileptic 
encephalopathy 62" (OMIM #617938) and "epilepsy, familial focal, with variable foci 4" OMIM 
#617935). SOS1 is involved in "Noonan syndrome 4" (OMIM #610733).  

Figure 8: Discovery of BLTP2. A) Shown are missense DNVs observed in individuals with NDDs on the
BLTP2 protein structure (NP_001350756.1). This protein had seven amino acid changes with three at amino
acid position 1487 and one each at amino acid positions 605, 705, 1253, and 1483. B) The Arginine at position
1487 is highly conserved across several species. C) The Arginine to Glutamine missense variant is
significantly enriched in NDDs (Fisher’s Exact Test p = 2.96 × 10-3, OR = 29.4). Another missense variant
(Arginine to Tryptophan) was identified at this amino acid position in an independent NDD cohort (SPARK) and
is also enriched in NDDs (Fisher’s Exact Test p = 8.30 × 10-4, OR = 15.2)

3 individuals
1 individual

BLTP2

A B

C * *
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One protein (BLTP2) has not been implicated in NDDs before (Figure 8). BLTP2 was previously 
known as KIAA0100. We identified significant clustering of missense variants in NDDs in this 
protein using our 3D-CLUMP tool. It was significant, with a 3D-CLUMP Score in NDDs (𝑆!+1020) 
of 0.28, in the comparison to BRCA (p = 1 × 10-7), COAD (p = 2 × 10-7), LUAD (p = 5 × 10-7), 
OV (p = 1.2 × 10-6), and COSMIC GI (p < 1 × 10-7). In particular, this protein had seven amino 
acid changes on isoform NP_001350756 with three at amino acid position 1487 and one each at 
amino acid positions 605, 705, 1253, and 1483. Running a conserved domain prediction on the 
protein, we found that the variants at positions 1483 and 1487 are within the Apt1 domain of this 
protein that is predicted to be involved in localization of the protein to the Golgi body. Since there 
were three individuals with a missense variant at amino acid position 1487, we also checked the 
gnomAD database for this variant (17-28619915-C-T). This allele is seen in 3 individuals in our 
study (3 alleles / 79766 total alleles,  allele frequency = 3.76 × 10-5) and is seen in 1 individual 
assessed in gnomAD (1 allele / 780820 total alleles in genome+exome samples,  allele frequency 
= 1.28 × 10-6). This allele is enriched in the NDD cohort (Fisher’s Exact Test p = 2.96 × 10-3, OR 
= 29.4). To further examine missense variants at this position, we examined another publication 
consisting of an independent set of 13,189 individuals with DNVs from whole-exome sequencing 
data from the SPARK autism cohort (42). In this cohort, there was one individual with a missense 
variant at the same amino acid position (17-28619916-G-A) resulting in an Arginine to Tryptophan 
change (1 allele / 26378 alleles, allele frequency = 3.79 × 10-5) and this same variant is seen in 3 
individuals in gnomAD (3 allele of 1613876 total alleles,  allele frequency = 2.48 × 10-6) in 
genome+exome. This allele is also enriched in NDDs (Fisher’s Exact Test p = 8.30 × 10-4, OR = 
15.2). In addition to the enrichment in NDDs, it is relevant to note that the Arginine is also highly 
conserved in several species (Figure 8). 
 
There are few publications characterizing BLTP2 (KIAA0100) (61-71). None of these papers 
implicate BLTP2 in NDDs. However, what is known is that it is a member of the Bridge-Like 
Lipid Transport Protein family. These proteins are important for transfer of lipids and other 
members of the protein family have been implicated in neurodevelopmental and neurodegenerative 
disorders (72, 73). A recent preprint has also indicated a role for BLTP2 in the regulation of 
primary cilia (74); an area of molecular interest in neurodevelopmental disorders (75). 
 
Comparison to Known Cancer Driver Genes 
Estimates of the number of mutation-based cancer driver genes have varied over the years, but a 
commonly used source is the paper from the Cancer Genome Atlas (TCGA) (49). This study 
identified 299 driver genes, of which 259 were the result of consensus predictions of 26 
computational tools. A limited number of these genes met the criteria for analysis in our study, 
given our threshold for independent missense mutations and limitations of our AlphaFold 
modeling described above (Figure 7). Of these genes, 14 were significantly clustered in NDDs 
and 11 were significantly clustered in cancers. There were 199 proteins that were not testable 
because there were not enough missense variants to run the test and 28 could not be tested because 
a structure could not be generated for the protein. There were 47 proteins that were tested and not 
significant. 
 
Based on the analyses above, for the 299 known cancer proteins there were 25 (8.4%) with 
clustering based on CLUMP/3D-CLUMP analyses,  and 227 (75.9%) were not testable either 
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because they did not have enough missense variants to perform the analyses or a protein structure 
could not be made, and 47 (15.7%) were not significant for clustering by any test.  
 
62 potential proteome-wide significant genes in cancers not discovered by TCGA 
Of the remaining genes, eleven in the Bailey list and 68 not in the list were found to have proteome-
wide significant differential clustering in one of our cohorts (COSMIC-CNS, COSMIC-GI, 
TCGA-LUAD, TCGA-BRCA, or TCGA-PRAD) when compared to NDD variants based on 
CLUMP/3D-CLUMP analyses. Six of the 68 genes not on the Bailey list had been proposed as a 
driver in the literature, with an additional 11 proposed as prognostic or as a therapeutic target in a 
particular cancer type. Two genes were paralogs of drivers on the Bailey list. 
 
Proteins Requiring Careful Consideration for Prognostics and Therapeutics 
There were 220 known NDD proteins that we could test for missense clustering in NDDs or cancer 
(see above, Figure 7). Of these, 50 were proteome-wide significant for clustering in NDDs. 
However, there were 13 (5.9%) that were proteome-wide significant for clustering in cancer 
(AGAP2, ANK2, CLASP1, GNAS, KIDINS220, KMT2E, PIK3CA, PTEN, SCN1A, SRRM2, 
TCF20, TRIP12, UNC80). These proteins will need to be specially considered when thinking 
about functional, prognostic, and therapeutic aspects of the variants within them in different 
phenotypes. Likewise, there were 72 known cancer proteins that we could test for missense 
clustering in NDDs or cancer (see above, Figure 7). Of these, 11 were proteome-wide significant 
for clustering in cancer. However, there were 14 (19.4%) that were proteome-wide significant for 
clustering in NDDs (BRAF, CACNA1A, CREBBP, DDX3X, FBXW7, FGFR2, FGFR3, KIF1A, 
PPP2R1A, PTPN11, SETBP1, SETD2, SMAD4, SOS1). These proteins will also need to be 
specially considered when thinking about functional, prognostic, and therapeutic aspects of the 
variants within them in different phenotypes.  
 
DISCUSSION 
An outstanding question in the genomics of NDDs is why are several genes identified in NDDs 
also identified in cancer? In particular, genes identified in both are involved in molecular processes 
including chromatin remodeling and transcription (58). Other interesting observations include 
microcephaly and macrocephaly as a result of variation in some genes in NDDs. This has been 
compared to the cellular proliferation and differentiation related processes in cancer. Another area 
of interest has been in genome maintenance (57). Several hypotheses have been put forward for 
the overlap in genes (58). 
 
In this study, we explore the hypothesis that genes with missense variants in NDDs and cancer 
have a different variant pattern in NDDs and in cancer. Three main options were considered at the 
protein-level including clustering of missense variants in NDDs and not in cancer, clustering of 
missense variants in cancer and not in NDDs, and no clustering of missense variants in NDDs or 
cancer. Since we focused on clustering of missense variation at the level of each protein, we 
utilized two strategies including examination of clustering on the 1D protein structure and 
clustering on the 3D protein structure. Our existing method CLUMP (52) was utilized to look for 
proteome-wide significance of clustering in 1D in a case-control design. We also developed the 
computational tool 3D-CLUMP that can perform proteome-wide significant case-control analysis 
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in three-dimensional protein structure space. This computational tool is open-source, available on 
GitHub (https://github.com/TNTurnerLab/3D-CLUMP), and will be beneficial to others wanting 
to test for clustering of variants on 3D protein structures in these and other phenotypes. As part of 
this work, we also generated AlphaFold structures for >4000 proteins with enough missense 
variation to be tested in our study. These structures were deposited in ModelArchive 
(https://www.modelarchive.org/doi/10.5452/ma-tur-clump) and will also be beneficial as a 
resource to the research community. We showed in this study in the comparison of CLUMP (1D) 
and 3D-CLUMP that using 3D structures boosts our power for discovery of proteins with 
clustering of missense variation. 
 
Several outcomes of our study are novel and intriguing with regard to missense variants in NDDs 
and cancer. By comparing missense variants in NDDs to those in cancer, we identified proteins 
where there was significant clustering of missense variants in NDDs, proteins where there was 
significant clustering of missense variants in cancer, and proteins with no clustering in NDDs or 
cancer. This is an important discovery because it points to specific proteins where there are 
differences in the patterns of missense variation in the two phenotypes. This is another important 
resource for researchers studying the two phenotypes and will provide important information 
relevant in functional assessment of variation and in prognostics. While many of the genes we 
identified in NDDs have been identified in more broad searches looking at DNV enrichment of 
likely-gene disrupting variation and missense variation irrespective of clustering (36, 43), we did 
also identify one new proteome-wide significant protein (BLTP2) for NDDs. Overall, our work 
provides novel insights into patterns of missense variation in NDDs and cancer. 
 
There are a few caveats to our study. One caveat is that there are some proteins where we do not 
have enough missense variants to perform the statistical test, and this is something that will be 
approachable with increased sample sizes in both NDDs and cancer. Another caveat is regarding 
the protein structures themselves. For some proteins, the protein isoform may not be supported by 
experimental evidence, the structure could not be made, or for some a high confidence structure 
could not be made. Finally, our statistical test does not currently identify when the proteins have 
clustered missense variants in both NDDs and cancer but the highly clustered regions are different 
in the two phenotypes. Potential future work would address each of these caveats to provide further 
insights into this question. One other interesting future direction is to explore the clustering of 
missense variants with regard to PPIs. We showed an enrichment of these and careful consideration 
of clusters at the interfaces of these PPIs would be useful. 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302238doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302238
http://creativecommons.org/licenses/by-nc-nd/4.0/


ACKNOWLEDGMENTS 
This work was supported by grants from the National Institutes of Health (R01MH126933 to 
T.N.T., R00MH117165 to T.N.T., P50HD103525 to T.N.T. as a Member and Scientific Liaison 
in the Washington University in St. Louis Intellectual and Developmental Disabilities Research 
Center), the ITCR program at the National Cancer Institute (U24CA258393 to R.K.), the Simons 
Foundation (Award #734069 to T.N.T.), and funds from the Washington University in St. Louis 
McDonnell Center for Cellular and Molecular Neurobiology to T.N.T. Thank you also to Dan 
Western for his participation on the project during his rotation in the Turner Laboratory. 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302238doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302238
http://creativecommons.org/licenses/by-nc-nd/4.0/


CRedIT AUTHOR STATEMENT REGARDING AUTHOR CONTRIBUTIONS 
Jeffrey K. Ng: Methodology, Software, Formal analysis, Investigation, Data Curation, Writing - 
Original Draft, Writing - Review & Editing, Visualization. Yilin Chen: Methodology, Software, 
Formal analysis, Investigation, Data Curation, Writing - Original Draft, Writing - Review & 
Editing, Visualization. Titilope M. Akinwe: Methodology, Formal analysis, Investigation, Data 
Curation, Writing - Original Draft, Writing - Review & Editing, Visualization. Hillary B. Heins: 
Formal analysis, Writing - Review & Editing. Elvisa Mehinovic: Formal analysis, Writing - 
Review & Editing. Yoonhoo Chang: Formal analysis, Writing - Review & Editing. Zachary 
Payne: Formal analysis, Writing - Review & Editing. Juana G. Manuel: Visualization, Writing 
- Review & Editing. Rachel Karchin: Methodology, Software, Formal analysis, Investigation, 
Resources, Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization, 
Supervision, Project administration, Funding acquisition. Tychele N. Turner: Conceptualization, 
Methodology, Software, Formal analysis, Investigation, Resources, Data Curation, Writing - 
Original Draft, Writing - Review & Editing, Visualization, Supervision, Project administration, 
Funding acquisition. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302238doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302238
http://creativecommons.org/licenses/by-nc-nd/4.0/


DATA AND SOFTWARE AVAILABILITY STATEMENT 
The AlphaFold structures for this project have been deposited in ModelArchive under accession number 
“ma-tur-clump” at https://www.modelarchive.org/doi/10.5452/ma-tur-clump. The code for this paper is 
available at: 
 
CLUMP: https://github.com/KarchinLab/CLUMP 
3D-CLUMP: https://github.com/TNTurnerLab/3D-CLUMP 
AlphaFold Structure and 3D Protein Plot Generation: 
https://github.com/TNTurnerLab/clustering_in_cancer_vs_ndd_paper 
 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302238doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302238
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 
1. Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB, Mahajan M, Manaa D, 
Pawitan Y, Reichert J, Ripke S, Sandin S. Most genetic risk for autism resides with common 
variation. Nature genetics. 2014;46(8):881-5. doi: 10.1038/ng.3039. PubMed PMID: 25038753. 
2. Krumm N, Turner TN, Baker C, Vives L, Mohajeri K, Witherspoon K, Raja A, Coe BP, 
Stessman HA, He ZX, Leal SM, Bernier R, Eichler EE. Excess of rare, inherited truncating 
mutations in autism. Nature genetics. 2015;47(6):582-8. Epub 2015/05/12. doi: 10.1038/ng.3303. 
PubMed PMID: 25961944; PMCID: PMC4449286. 
3. Wilfert AB, Turner TN, Murali SC, Hsieh P, Sulovari A, Wang T, Coe BP, Guo H, 
Hoekzema K, Bakken TE, Winterkorn LH, Evani US, Byrska-Bishop M, Earl RK, Bernier RA, 
Zody MC, Eichler EE. Recent ultra-rare inherited variants implicate new autism candidate risk 
genes. Nature genetics. 2021;53(8):1125-34. Epub 2021/07/28. doi: 10.1038/s41588-021-00899-
8. PubMed PMID: 34312540; PMCID: PMC8459613. 
4. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, 
Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, 
Lehtimaki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, 
Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M. Strong 
association of de novo copy number mutations with autism. Science (New York, NY). 
2007;316(5823):445-9. Epub 2007/03/17. doi: 10.1126/science.1138659. PubMed PMID: 
17363630; PMCID: Pmc2993504. 
5. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, Shago M, Moessner R, 
Pinto D, Ren Y, Thiruvahindrapduram B, Fiebig A, Schreiber S, Friedman J, Ketelaars CE, Vos 
YJ, Ficicioglu C, Kirkpatrick S, Nicolson R, Sloman L, Summers A, Gibbons CA, Teebi A, 
Chitayat D, Weksberg R, Thompson A, Vardy C, Crosbie V, Luscombe S, Baatjes R, 
Zwaigenbaum L, Roberts W, Fernandez B, Szatmari P, Scherer SW. Structural variation of 
chromosomes in autism spectrum disorder. American journal of human genetics. 2008;82(2):477-
88. Epub 2008/02/07. doi: 10.1016/j.ajhg.2007.12.009. PubMed PMID: 18252227; PMCID: 
Pmc2426913. 
6. Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D. Rare de novo variants 
associated with autism implicate a large functional network of genes involved in formation and 
function of synapses. Neuron. 2011;70(5):898-907. Epub 2011/06/11. doi: 
10.1016/j.neuron.2011.05.021. PubMed PMID: 21658583; PMCID: Pmc3607702. 
7. Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D, Chu SH, 
Moreau MP, Gupta AR, Thomson SA, Mason CE, Bilguvar K, Celestino-Soper PB, Choi M, 
Crawford EL, Davis L, Wright NR, Dhodapkar RM, DiCola M, DiLullo NM, Fernandez TV, 
Fielding-Singh V, Fishman DO, Frahm S, Garagaloyan R, Goh GS, Kammela S, Klei L, Lowe JK, 
Lund SC, McGrew AD, Meyer KA, Moffat WJ, Murdoch JD, O'Roak BJ, Ober GT, Pottenger RS, 
Raubeson MJ, Song Y, Wang Q, Yaspan BL, Yu TW, Yurkiewicz IR, Beaudet AL, Cantor RM, 
Curland M, Grice DE, Gunel M, Lifton RP, Mane SM, Martin DM, Shaw CA, Sheldon M, 
Tischfield JA, Walsh CA, Morrow EM, Ledbetter DH, Fombonne E, Lord C, Martin CL, Brooks 
AI, Sutcliffe JS, Cook EH, Jr., Geschwind D, Roeder K, Devlin B, State MW. Multiple recurrent 
de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly 
associated with autism. Neuron. 2011;70(5):863-85. Epub 2011/06/11. doi: 
10.1016/j.neuron.2011.05.002. PubMed PMID: 21658581. 
8. O'Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, Karakoc E, Mackenzie 
AP, Ng SB, Baker C, Rieder MJ, Nickerson DA, Bernier R, Fisher SE, Shendure J, Eichler EE. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302238doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302238
http://creativecommons.org/licenses/by-nc-nd/4.0/


Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. 
Nature genetics. 2011;43(6):585-9. Epub 2011/05/17. doi: 10.1038/ng.835. PubMed PMID: 
21572417; PMCID: PMC3115696. 
9. Levy D, Ronemus M, Yamrom B, Lee YH, Leotta A, Kendall J, Marks S, Lakshmi B, Pai 
D, Ye K, Buja A, Krieger A, Yoon S, Troge J, Rodgers L, Iossifov I, Wigler M. Rare de novo and 
transmitted copy-number variation in autistic spectrum disorders. Neuron. 2011;70(5):886-97. 
Epub 2011/06/11. doi: 10.1016/j.neuron.2011.05.015. PubMed PMID: 21658582. 
10. Girirajan S, Brkanac Z, Coe BP, Baker C, Vives L, Vu TH, Shafer N, Bernier R, Ferrero 
GB, Silengo M, Warren ST, Moreno CS, Fichera M, Romano C, Raskind WH, Eichler EE. 
Relative burden of large CNVs on a range of neurodevelopmental phenotypes. PLoS genetics. 
2011;7(11):e1002334. Epub 2011/11/22. doi: 10.1371/journal.pgen.1002334. PubMed PMID: 
22102821; PMCID: Pmc3213131. 
11. O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, Levy R, Ko A, Lee C, 
Smith JD, Turner EH, Stanaway IB, Vernot B, Malig M, Baker C, Reilly B, Akey JM, Borenstein 
E, Rieder MJ, Nickerson DA, Bernier R, Shendure J, Eichler EE. Sporadic autism exomes reveal 
a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246-50. 
Epub 2012/04/13. doi: 10.1038/nature10989. PubMed PMID: 22495309; PMCID: PMC3350576. 
12. Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A, Lin CF, Stevens C, Wang 
LS, Makarov V, Polak P, Yoon S, Maguire J, Crawford EL, Campbell NG, Geller ET, Valladares 
O, Schafer C, Liu H, Zhao T, Cai G, Lihm J, Dannenfelser R, Jabado O, Peralta Z, Nagaswamy 
U, Muzny D, Reid JG, Newsham I, Wu Y, Lewis L, Han Y, Voight BF, Lim E, Rossin E, Kirby 
A, Flannick J, Fromer M, Shakir K, Fennell T, Garimella K, Banks E, Poplin R, Gabriel S, DePristo 
M, Wimbish JR, Boone BE, Levy SE, Betancur C, Sunyaev S, Boerwinkle E, Buxbaum JD, Cook 
EH, Jr., Devlin B, Gibbs RA, Roeder K, Schellenberg GD, Sutcliffe JS, Daly MJ. Patterns and 
rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012;485(7397):242-5. 
Epub 2012/04/13. doi: 10.1038/nature11011. PubMed PMID: 22495311; PMCID: PMC3613847. 
13. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, Ercan-
Sencicek AG, DiLullo NM, Parikshak NN, Stein JL, Walker MF, Ober GT, Teran NA, Song Y, 
El-Fishawy P, Murtha RC, Choi M, Overton JD, Bjornson RD, Carriero NJ, Meyer KA, Bilguvar 
K, Mane SM, Sestan N, Lifton RP, Gunel M, Roeder K, Geschwind DH, Devlin B, State MW. De 
novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 
2012;485(7397):237-41. Epub 2012/04/13. doi: 10.1038/nature10945. PubMed PMID: 22495306; 
PMCID: PMC3667984. 
14. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, Yamrom B, Lee YH, 
Narzisi G, Leotta A, Kendall J, Grabowska E, Ma B, Marks S, Rodgers L, Stepansky A, Troge J, 
Andrews P, Bekritsky M, Pradhan K, Ghiban E, Kramer M, Parla J, Demeter R, Fulton LL, Fulton 
RS, Magrini VJ, Ye K, Darnell JC, Darnell RB, Mardis ER, Wilson RK, Schatz MC, McCombie 
WR, Wigler M. De novo gene disruptions in children on the autistic spectrum. Neuron. 
2012;74(2):285-99. Epub 2012/05/01. doi: 10.1016/j.neuron.2012.04.009. PubMed PMID: 
22542183; PMCID: PMC3619976. 
15. Michaelson JJ, Shi Y, Gujral M, Zheng H, Malhotra D, Jin X, Jian M, Liu G, Greer D, 
Bhandari A, Wu W, Corominas R, Peoples A, Koren A, Gore A, Kang S, Lin GN, Estabillo J, 
Gadomski T, Singh B, Zhang K, Akshoomoff N, Corsello C, McCarroll S, Iakoucheva LM, Li Y, 
Wang J, Sebat J. Whole-genome sequencing in autism identifies hot spots for de novo germline 
mutation. Cell. 2012;151(7):1431-42. Epub 2012/12/25. doi: 10.1016/j.cell.2012.11.019. PubMed 
PMID: 23260136; PMCID: Pmc3712641. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302238doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302238
http://creativecommons.org/licenses/by-nc-nd/4.0/


16. de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, Vulto-van 
Silfhout AT, Koolen DA, de Vries P, Gilissen C, del Rosario M, Hoischen A, Scheffer H, de Vries 
BB, Brunner HG, Veltman JA, Vissers LE. Diagnostic exome sequencing in persons with severe 
intellectual disability. The New England journal of medicine. 2012;367(20):1921-9. Epub 
2012/10/05. doi: 10.1056/NEJMoa1206524. PubMed PMID: 23033978. 
17. Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, Albrecht B, 
Bartholdi D, Beygo J, Di Donato N, Dufke A, Cremer K, Hempel M, Horn D, Hoyer J, Joset P, 
Ropke A, Moog U, Riess A, Thiel CT, Tzschach A, Wiesener A, Wohlleber E, Zweier C, Ekici 
AB, Zink AM, Rump A, Meisinger C, Grallert H, Sticht H, Schenck A, Engels H, Rappold G, 
Schrock E, Wieacker P, Riess O, Meitinger T, Reis A, Strom TM. Range of genetic mutations 
associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. 
Lancet. 2012;380(9854):1674-82. Epub 2012/10/02. doi: 10.1016/s0140-6736(12)61480-9. 
PubMed PMID: 23020937. 
18. He X, Sanders SJ, Liu L, De Rubeis S, Lim ET, Sutcliffe JS, Schellenberg GD, Gibbs RA, 
Daly MJ, Buxbaum JD, State MW, Devlin B, Roeder K. Integrated model of de novo and inherited 
genetic variants yields greater power to identify risk genes. PLoS genetics. 2013;9(8):e1003671. 
Epub 2013/08/24. doi: 10.1371/journal.pgen.1003671. PubMed PMID: 23966865; PMCID: 
Pmc3744441. 
19. Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, Epstein MP, Glauser 
T, Goldstein DB, Han Y, Heinzen EL, Hitomi Y, Howell KB, Johnson MR, Kuzniecky R, 
Lowenstein DH, Lu YF, Madou MR, Marson AG, Mefford HC, Esmaeeli Nieh S, O'Brien TJ, 
Ottman R, Petrovski S, Poduri A, Ruzzo EK, Scheffer IE, Sherr EH, Yuskaitis CJ, Abou-Khalil 
B, Alldredge BK, Bautista JF, Berkovic SF, Boro A, Cascino GD, Consalvo D, Crumrine P, 
Devinsky O, Dlugos D, Epstein MP, Fiol M, Fountain NB, French J, Friedman D, Geller EB, 
Glauser T, Glynn S, Haut SR, Hayward J, Helmers SL, Joshi S, Kanner A, Kirsch HE, Knowlton 
RC, Kossoff EH, Kuperman R, Kuzniecky R, Lowenstein DH, McGuire SM, Motika PV, Novotny 
EJ, Ottman R, Paolicchi JM, Parent JM, Park K, Poduri A, Scheffer IE, Shellhaas RA, Sherr EH, 
Shih JJ, Singh R, Sirven J, Smith MC, Sullivan J, Lin Thio L, Venkat A, Vining EP, Von Allmen 
GK, Weisenberg JL, Widdess-Walsh P, Winawer MR. De novo mutations in epileptic 
encephalopathies. Nature. 2013;501(7466):217-21. Epub 2013/08/13. doi: 10.1038/nature12439. 
PubMed PMID: 23934111; PMCID: PMC3773011. 
20. Veeramah KR, Johnstone L, Karafet TM, Wolf D, Sprissler R, Salogiannis J, Barth-Maron 
A, Greenberg ME, Stuhlmann T, Weinert S, Jentsch TJ, Pazzi M, Restifo LL, Talwar D, Erickson 
RP, Hammer MF. Exome sequencing reveals new causal mutations in children with epileptic 
encephalopathies. Epilepsia. 2013;54(7):1270-81. Epub 2013/05/08. doi: 10.1111/epi.12201. 
PubMed PMID: 23647072; PMCID: PMC3700577. 
21. Jiang YH, Yuen RK, Jin X, Wang M, Chen N, Wu X, Ju J, Mei J, Shi Y, He M, Wang G, 
Liang J, Wang Z, Cao D, Carter MT, Chrysler C, Drmic IE, Howe JL, Lau L, Marshall CR, Merico 
D, Nalpathamkalam T, Thiruvahindrapuram B, Thompson A, Uddin M, Walker S, Luo J, 
Anagnostou E, Zwaigenbaum L, Ring RH, Wang J, Lajonchere C, Wang J, Shih A, Szatmari P, 
Yang H, Dawson G, Li Y, Scherer SW. Detection of clinically relevant genetic variants in autism 
spectrum disorder by whole-genome sequencing. American journal of human genetics. 
2013;93(2):249-63. Epub 2013/07/16. doi: 10.1016/j.ajhg.2013.06.012. PubMed PMID: 
23849776; PMCID: Pmc3738824. 
22. Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA, 
Witherspoon KT, Vives L, Patterson KE, Smith JD, Paeper B, Nickerson DA, Dea J, Dong S, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302238doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302238
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gonzalez LE, Mandell JD, Mane SM, Murtha MT, Sullivan CA, Walker MF, Waqar Z, Wei L, 
Willsey AJ, Yamrom B, Lee Y-h, Grabowska E, Dalkic E, Wang Z, Marks S, Andrews P, Leotta 
A, Kendall J, Hakker I, Rosenbaum J, Ma B, Rodgers L, Troge J, Narzisi G, Yoon S, Schatz MC, 
Ye K, McCombie WR, Shendure J, Eichler EE, State MW, Wigler M. The contribution of de novo 
coding mutations to autism spectrum disorder. Nature. 2014. doi: 10.1038/nature13908. PubMed 
PMID: 25363768; PMCID: PMC4313871  
23. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, Kou Y, Liu L, 
Fromer M, Walker S, Singh T, Klei L, Kosmicki J, Shih-Chen F, Aleksic B, Biscaldi M, Bolton 
PF, Brownfeld JM, Cai J, Campbell NG, Carracedo A, Chahrour MH, Chiocchetti AG, Coon H, 
Crawford EL, Curran SR, Dawson G, Duketis E, Fernandez BA, Gallagher L, Geller E, Guter SJ, 
Hill RS, Ionita-Laza J, Jimenz Gonzalez P, Kilpinen H, Klauck SM, Kolevzon A, Lee I, Lei I, Lei 
J, Lehtimaki T, Lin CF, Ma'ayan A, Marshall CR, McInnes AL, Neale B, Owen MJ, Ozaki N, 
Parellada M, Parr JR, Purcell S, Puura K, Rajagopalan D, Rehnstrom K, Reichenberg A, Sabo A, 
Sachse M, Sanders SJ, Schafer C, Schulte-Ruther M, Skuse D, Stevens C, Szatmari P, Tammimies 
K, Valladares O, Voran A, Li-San W, Weiss LA, Willsey AJ, Yu TW, Yuen RK, Cook EH, Freitag 
CM, Gill M, Hultman CM, Lehner T, Palotie A, Schellenberg GD, Sklar P, State MW, Sutcliffe 
JS, Walsh CA, Scherer SW, Zwick ME, Barett JC, Cutler DJ, Roeder K, Devlin B, Daly MJ, 
Buxbaum JD. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 
2014;515(7526):209-15. Epub 2014/11/05. doi: 10.1038/nature13772. PubMed PMID: 25363760. 
24. Dong S, Walker MF, Carriero NJ, DiCola M, Willsey AJ, Ye AY, Waqar Z, Gonzalez LE, 
Overton JD, Frahm S, Keaney JF, 3rd, Teran NA, Dea J, Mandell JD, Hus Bal V, Sullivan CA, 
DiLullo NM, Khalil RO, Gockley J, Yuksel Z, Sertel SM, Ercan-Sencicek AG, Gupta AR, Mane 
SM, Sheldon M, Brooks AI, Roeder K, Devlin B, State MW, Wei L, Sanders SJ. De novo 
insertions and deletions of predominantly paternal origin are associated with autism spectrum 
disorder. Cell reports. 2014;9(1):16-23. Epub 2014/10/07. doi: 10.1016/j.celrep.2014.08.068. 
PubMed PMID: 25284784; PMCID: Pmc4194132. 
25. Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BW, Willemsen MH, 
Kwint M, Janssen IM, Hoischen A, Schenck A, Leach R, Klein R, Tearle R, Bo T, Pfundt R, 
Yntema HG, de Vries BB, Kleefstra T, Brunner HG, Vissers LE, Veltman JA. Genome sequencing 
identifies major causes of severe intellectual disability. Nature. 2014;511(7509):344-7. Epub 
2014/06/05. doi: 10.1038/nature13394. PubMed PMID: 24896178. 
26. Yuen RK, Thiruvahindrapuram B, Merico D, Walker S, Tammimies K, Hoang N, Chrysler 
C, Nalpathamkalam T, Pellecchia G, Liu Y, Gazzellone MJ, D'Abate L, Deneault E, Howe JL, Liu 
RS, Thompson A, Zarrei M, Uddin M, Marshall CR, Ring RH, Zwaigenbaum L, Ray PN, 
Weksberg R, Carter MT, Fernandez BA, Roberts W, Szatmari P, Scherer SW. Whole-genome 
sequencing of quartet families with autism spectrum disorder. Nature medicine. 2015;21(2):185-
91. Epub 2015/01/27. doi: 10.1038/nm.3792. PubMed PMID: 25621899. 
27. Turner TN, Hormozdiari F, Duyzend MH, McClymont SA, Hook PW, Iossifov I, Raja A, 
Baker C, Hoekzema K, Stessman HA, Zody MC, Nelson BJ, Huddleston J, Sandstrom R, Smith 
JD, Hanna D, Swanson JM, Faustman EM, Bamshad MJ, Stamatoyannopoulos J, Nickerson DA, 
McCallion AS, Darnell R, Eichler EE. Genome Sequencing of Autism-Affected Families Reveals 
Disruption of Putative Noncoding Regulatory DNA. American journal of human genetics. 
2016;98(1):58-74. Epub 2016/01/11. doi: 10.1016/j.ajhg.2015.11.023. PubMed PMID: 26749308; 
PMCID: PMC4716689. 
28. Brandler WM, Antaki D, Gujral M, Noor A, Rosanio G, Chapman TR, Barrera DJ, Lin 
GN, Malhotra D, Watts AC, Wong LC, Estabillo JA, Gadomski TE, Hong O, Fajardo KV, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302238doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302238
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bhandari A, Owen R, Baughn M, Yuan J, Solomon T, Moyzis AG, Maile MS, Sanders SJ, Reiner 
GE, Vaux KK, Strom CM, Zhang K, Muotri AR, Akshoomoff N, Leal SM, Pierce K, Courchesne 
E, Iakoucheva LM, Corsello C, Sebat J. Frequency and Complexity of De Novo Structural 
Mutation in Autism. American journal of human genetics. 2016;98(4):667-79. Epub 2016/03/29. 
doi: 10.1016/j.ajhg.2016.02.018. PubMed PMID: 27018473; PMCID: PMC4833290. 
29. Yuen RK, Merico D, Cao H, Pellecchia G, Alipanahi B, Thiruvahindrapuram B, Tong X, 
Sun Y, Cao D, Zhang T, Wu X, Jin X, Zhou Z, Liu X, Nalpathamkalam T, Walker S, Howe JL, 
Wang Z, MacDonald JR, Chan A, D'Abate L, Deneault E, Siu MT, Tammimies K, Uddin M, Zarrei 
M, Wang M, Li Y, Wang J, Wang J, Yang H, Bookman M, Bingham J, Gross SS, Loy D, Pletcher 
M, Marshall CR, Anagnostou E, Zwaigenbaum L, Weksberg R, Fernandez BA, Roberts W, 
Szatmari P, Glazer D, Frey BJ, Ring RH, Xu X, Scherer SW. Genome-wide characteristics of de 
novo mutations in autism. NPJ genomic medicine. 2016;1:160271-1602710. Epub 2016/08/16. 
doi: 10.1038/npjgenmed.2016.27. PubMed PMID: 27525107; PMCID: PMC4980121. 
30. Hashimoto R, Nakazawa T, Tsurusaki Y, Yasuda Y, Nagayasu K, Matsumura K, 
Kawashima H, Yamamori H, Fujimoto M, Ohi K, Umeda-Yano S, Fukunaga M, Fujino H, Kasai 
A, Hayata-Takano A, Shintani N, Takeda M, Matsumoto N, Hashimoto H. Whole-exome 
sequencing and neurite outgrowth analysis in autism spectrum disorder. Journal of human genetics. 
2016;61(3):199-206. Epub 2015/11/20. doi: 10.1038/jhg.2015.141. PubMed PMID: 26582266; 
PMCID: PMC4819764. 
31. DDD. Prevalence and architecture of de novo mutations in developmental disorders. 
Nature. 2017;542(7642):433-8. Epub 2017/01/31. doi: 10.1038/nature21062. PubMed PMID: 
28135719. 
32. Yuen RK, Merico D, Bookman M, L Howe J, Thiruvahindrapuram B, Patel RV, Whitney 
J, Deflaux N, Bingham J, Wang Z, Pellecchia G, Buchanan JA, Walker S, Marshall CR, Uddin M, 
Zarrei M, Deneault E, D'Abate L, Chan AJS, Koyanagi S, Paton T, Pereira SL, Hoang N, Engchuan 
W, Higginbotham EJ, Ho K, Lamoureux S, Li W, MacDonald JR, Nalpathamkalam T, Sung 
WWL, Tsoi FJ, Wei J, Xu L, Tasse A-M, Kirby E, Van Etten W, Twigger S, Roberts W, Drmic I, 
Jilderda S, Modi BM, Kellam B, Szego M, Cytrynbaum C, Weksberg R, Zwaigenbaum L, 
Woodbury-Smith M, Brian J, Senman L, Iaboni A, Doyle-Thomas K, Thompson A, Chrysler C, 
Leef J, Savion-Lemieux T, Smith IM, Liu X, Nicolson R, Seifer V, Fedele A, Cook EH, Dager S, 
Estes A, Gallagher L, Malow BA, Parr JR, Spence SJ, Vorstman J, Frey BJ, Robinson JT, Strug 
LJ, Fernandez BA, Elsabbagh M, Carter MT, Hallmayer J, Knoppers BM, Anagnostou E, Szatmari 
P, Ring RH, Glazer D, Pletcher MT, Scherer SW. Whole genome sequencing resource identifies 
18 new candidate genes for autism spectrum disorder. Nature neuroscience. 2017;20(4):602-11. 
doi: 10.1038/nn.4524. 
33. Short PJ, McRae JF, Gallone G, Sifrim A, Won H, Geschwind DH, Wright CF, Firth HV, 
FitzPatrick DR, Barrett JC, Hurles ME. De novo mutations in regulatory elements in 
neurodevelopmental disorders. Nature. 2018;555(7698):611-6. Epub 2018/03/22. doi: 
10.1038/nature25983. PubMed PMID: 29562236; PMCID: PMC5912909. 
34. Guo H, Wang T, Wu H, Long M, Coe BP, Li H, Xun G, Ou J, Chen B, Duan G, Bai T, 
Zhao N, Shen Y, Li Y, Wang Y, Zhang Y, Baker C, Liu Y, Pang N, Huang L, Han L, Jia X, Liu 
C, Ni H, Yang X, Xia L, Chen J, Shen L, Li Y, Zhao R, Zhao W, Peng J, Pan Q, Long Z, Su W, 
Tan J, Du X, Ke X, Yao M, Hu Z, Zou X, Zhao J, Bernier RA, Eichler EE, Xia K. Inherited and 
multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial 
model. Molecular autism. 2018;9:64. Epub 2018/12/20. doi: 10.1186/s13229-018-0247-z. 
PubMed PMID: 30564305; PMCID: PMC6293633. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302238doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302238
http://creativecommons.org/licenses/by-nc-nd/4.0/


35. An JY, Lin K, Zhu L, Werling DM, Dong S, Brand H, Wang HZ, Zhao X, Schwartz GB, 
Collins RL, Currall BB, Dastmalchi C, Dea J, Duhn C, Gilson MC, Klei L, Liang L, Markenscoff-
Papadimitriou E, Pochareddy S, Ahituv N, Buxbaum JD, Coon H, Daly MJ, Kim YS, Marth GT, 
Neale BM, Quinlan AR, Rubenstein JL, Sestan N, State MW, Willsey AJ, Talkowski ME, Devlin 
B, Roeder K, Sanders SJ. Genome-wide de novo risk score implicates promoter variation in autism 
spectrum disorder. Science (New York, NY). 2018;362(6420). Epub 2018/12/14. doi: 
10.1126/science.aat6576. PubMed PMID: 30545852; PMCID: PMC6432922. 
36. Coe BP, Stessman HAF, Sulovari A, Geisheker MR, Bakken TE, Lake AM, Dougherty 
JD, Lein ES, Hormozdiari F, Bernier RA, Eichler EE. Neurodevelopmental disease genes 
implicated by de novo mutation and copy number variation morbidity. Nature genetics. 
2019;51(1):106-16. Epub 2018/12/19. doi: 10.1038/s41588-018-0288-4. PubMed PMID: 
30559488; PMCID: PMC6309590. 
37. Turner TN, Wilfert AB, Bakken TE, Bernier RA, Pepper MR, Zhang Z, Torene RI, Retterer 
K, Eichler EE. Sex-Based Analysis of De Novo Variants in Neurodevelopmental Disorders. 
American journal of human genetics. 2019;105(6):1274-85. Epub 2019/12/02. doi: 
10.1016/j.ajhg.2019.11.003. PubMed PMID: 31785789; PMCID: PMC6904808. 
38. Ruzzo EK, Pérez-Cano L, Jung JY, Wang LK, Kashef-Haghighi D, Hartl C, Singh C, Xu 
J, Hoekstra JN, Leventhal O, Leppä VM, Gandal MJ, Paskov K, Stockham N, Polioudakis D, 
Lowe JK, Prober DA, Geschwind DH, Wall DP. Inherited and De Novo Genetic Risk for Autism 
Impacts Shared Networks. Cell. 2019;178(4):850-66.e26. Epub 2019/08/10. doi: 
10.1016/j.cell.2019.07.015. PubMed PMID: 31398340; PMCID: PMC7102900. 
39. Zhou J, Park CY, Theesfeld CL, Wong AK, Yuan Y, Scheckel C, Fak JJ, Funk J, Yao K, 
Tajima Y, Packer A, Darnell RB, Troyanskaya OG. Whole-genome deep-learning analysis 
identifies contribution of noncoding mutations to autism risk. Nature genetics. 2019;51(6):973-80. 
Epub 2019/05/28. doi: 10.1038/s41588-019-0420-0. PubMed PMID: 31133750; PMCID: 
PMC6758908. 
40. Wang W, Corominas R, Lin GN. De novo Mutations From Whole Exome Sequencing in 
Neurodevelopmental and Psychiatric Disorders: From Discovery to Application. Front Genet. 
2019;10:258. Epub 2019/04/20. doi: 10.3389/fgene.2019.00258. PubMed PMID: 31001316; 
PMCID: PMC6456656. 
41. Padhi EM, Hayeck TJ, Cheng Z, Chatterjee S, Mannion BJ, Byrska-Bishop M, Willems 
M, Pinson L, Redon S, Benech C, Uguen K, Audebert-Bellanger S, Le Marechal C, Férec C, 
Efthymiou S, Rahman F, Maqbool S, Maroofian R, Houlden H, Musunuri R, Narzisi G, Abhyankar 
A, Hunter RD, Akiyama J, Fries LE, Ng JK, Mehinovic E, Stong N, Allen AS, Dickel DE, Bernier 
RA, Gorkin DU, Pennacchio LA, Zody MC, Turner TN. Coding and noncoding variants in EBF3 
are involved in HADDS and simplex autism. Hum Genomics. 2021;15(1):44. Epub 2021/07/15. 
doi: 10.1186/s40246-021-00342-3. PubMed PMID: 34256850; PMCID: PMC8278787. 
42. Zhou X, Feliciano P, Shu C, Wang T, Astrovskaya I, Hall JB, Obiajulu JU, Wright JR, 
Murali SC, Xu SX, Brueggeman L, Thomas TR, Marchenko O, Fleisch C, Barns SD, Snyder LG, 
Han B, Chang TS, Turner TN, Harvey WT, Nishida A, O'Roak BJ, Geschwind DH, Michaelson 
JJ, Volfovsky N, Eichler EE, Shen Y, Chung WK. Integrating de novo and inherited variants in 
42,607 autism cases identifies mutations in new moderate-risk genes. Nature genetics. 
2022;54(9):1305-19. Epub 2022/08/19. doi: 10.1038/s41588-022-01148-2. PubMed PMID: 
35982159. 
43. Kaplanis J, Samocha KE, Wiel L, Zhang Z, Arvai KJ, Eberhardt RY, Gallone G, Lelieveld 
SH, Martin HC, McRae JF, Short PJ, Torene RI, de Boer E, Danecek P, Gardner EJ, Huang N, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302238doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302238
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lord J, Martincorena I, Pfundt R, Reijnders MRF, Yeung A, Yntema HG, Vissers L, Juusola J, 
Wright CF, Brunner HG, Firth HV, FitzPatrick DR, Barrett JC, Hurles ME, Gilissen C, Retterer 
K. Evidence for 28 genetic disorders discovered by combining healthcare and research data. 
Nature. 2020;586(7831):757-62. Epub 2020/10/16. doi: 10.1038/s41586-020-2832-5. PubMed 
PMID: 33057194; PMCID: PMC7116826. 
44. Ware JS, Samocha KE, Homsy J, Daly MJ. Interpreting de novo variation in human disease 
using denovolyzeR. Current protocols in human genetics. 2015;87:7.25.1-15. Epub 2015/10/07. 
doi: 10.1002/0471142905.hg0725s87. PubMed PMID: 26439716; PMCID: PMC4606471. 
45. Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, Witherspoon K, Gerdts J, 
Baker C, Vulto-van Silfhout AT, Schuurs-Hoeijmakers JH, Fichera M, Bosco P, Buono S, Alberti 
A, Failla P, Peeters H, Steyaert J, Vissers LE, Francescatto L, Mefford HC, Rosenfeld JA, Bakken 
T, O'Roak BJ, Pawlus M, Moon R, Shendure J, Amaral DG, Lein E, Rankin J, Romano C, de Vries 
BB, Katsanis N, Eichler EE. Disruptive CHD8 mutations define a subtype of autism early in 
development. Cell. 2014;158(2):263-76. Epub 2014/07/08. doi: 10.1016/j.cell.2014.06.017. 
PubMed PMID: 24998929; PMCID: PMC4136921. 
46. Zhou T, Enyeart PJ, Wilke CO. Detecting clusters of mutations. PloS one. 
2008;3(11):e3765. Epub 2008/11/20. doi: 10.1371/journal.pone.0003765. PubMed PMID: 
19018282; PMCID: PMC2582452. 
47. Ye J, Pavlicek A, Lunney EA, Rejto PA, Teng CH. Statistical method on nonrandom 
clustering with application to somatic mutations in cancer. BMC bioinformatics. 2010;11:11. Epub 
2010/01/08. doi: 10.1186/1471-2105-11-11. PubMed PMID: 20053295; PMCID: PMC2822753. 
48. Gao J, Chang MT, Johnsen HC, Gao SP, Sylvester BE, Sumer SO, Zhang H, Solit DB, 
Taylor BS, Schultz N, Sander C. 3D clusters of somatic mutations in cancer reveal numerous rare 
mutations as functional targets. Genome medicine. 2017;9(1):4. Epub 2017/01/25. doi: 
10.1186/s13073-016-0393-x. PubMed PMID: 28115009; PMCID: PMC5260099. 
49. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, 
Colaprico A, Wendl MC, Kim J, Reardon B, Ng PK, Jeong KJ, Cao S, Wang Z, Gao J, Gao Q, 
Wang F, Liu EM, Mularoni L, Rubio-Perez C, Nagarajan N, Cortés-Ciriano I, Zhou DC, Liang 
WW, Hess JM, Yellapantula VD, Tamborero D, Gonzalez-Perez A, Suphavilai C, Ko JY, Khurana 
E, Park PJ, Van Allen EM, Liang H, Lawrence MS, Godzik A, Lopez-Bigas N, Stuart J, Wheeler 
D, Getz G, Chen K, Lazar AJ, Mills GB, Karchin R, Ding L. Comprehensive Characterization of 
Cancer Driver Genes and Mutations. Cell. 2018;173(2):371-85.e18. Epub 2018/04/07. doi: 
10.1016/j.cell.2018.02.060. PubMed PMID: 29625053; PMCID: PMC6029450. 
50. Tokheim C, Bhattacharya R, Niknafs N, Gygax DM, Kim R, Ryan M, Masica DL, Karchin 
R. Exome-Scale Discovery of Hotspot Mutation Regions in Human Cancer Using 3D Protein 
Structure. Cancer research. 2016;76(13):3719-31. Epub 2016/05/20. doi: 10.1158/0008-5472.Can-
15-3190. PubMed PMID: 27197156; PMCID: PMC4930736. 
51. Hotspot Mutations Optimize the Oncogenic-Immunogenic Trade-off. Cancer Discov. 
2022;12(7):Of19. Epub 2022/05/21. doi: 10.1158/2159-8290.Cd-rw2022-090. PubMed PMID: 
35593588. 
52. Turner TN, Douville C, Kim D, Stenson PD, Cooper DN, Chakravarti A, Karchin R. 
Proteins linked to autosomal dominant and autosomal recessive disorders harbor characteristic rare 
missense mutation distribution patterns. Human molecular genetics. 2015;24(21):5995-6002. 
Epub 2015/08/08. doi: 10.1093/hmg/ddv309. PubMed PMID: 26246501. 
53. Geisheker MR, Heymann G, Wang T, Coe BP, Turner TN, Stessman HAF, Hoekzema K, 
Kvarnung M, Shaw M, Friend K, Liebelt J, Barnett C, Thompson EM, Haan E, Guo H, Anderlid 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302238doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302238
http://creativecommons.org/licenses/by-nc-nd/4.0/


BM, Nordgren A, Lindstrand A, Vandeweyer G, Alberti A, Avola E, Vinci M, Giusto S, Pramparo 
T, Pierce K, Nalabolu S, Michaelson JJ, Sedlacek Z, Santen GWE, Peeters H, Hakonarson H, 
Courchesne E, Romano C, Kooy RF, Bernier RA, Nordenskjold M, Gecz J, Xia K, Zweifel LS, 
Eichler EE. Hotspots of missense mutation identify neurodevelopmental disorder genes and 
functional domains. Nature neuroscience. 2017;20(8):1043-51. Epub 2017/06/20. doi: 
10.1038/nn.4589. PubMed PMID: 28628100; PMCID: PMC5539915. 
54. Lelieveld SH, Wiel L, Venselaar H, Pfundt R, Vriend G, Veltman JA, Brunner HG, Vissers 
L, Gilissen C. Spatial Clustering of de Novo Missense Mutations Identifies Candidate 
Neurodevelopmental Disorder-Associated Genes. American journal of human genetics. 2017. 
Epub 2017/09/05. doi: 10.1016/j.ajhg.2017.08.004. PubMed PMID: 28867141. 
55. Wiel L, Hampstead JE, Venselaar H, Vissers L, Brunner HG, Pfundt R, Vriend G, Veltman 
JA, Gilissen C. De novo mutation hotspots in homologous protein domains identify function-
altering mutations in neurodevelopmental disorders. American journal of human genetics. 
2023;110(1):92-104. Epub 2022/12/24. doi: 10.1016/j.ajhg.2022.12.001. PubMed PMID: 
36563679; PMCID: PMC9892778. 
56. Bewley AF, Akinwe TM, Turner TN, Gutmann DH. Neurofibromatosis-1 Gene Mutational 
Profiles Differ Between Syndromic Disease and Sporadic Cancers. Neurology Genetics. 
2022;8(4):e200003. doi: 10.1212/nxg.0000000000200003. 
57. Crawley JN, Heyer WD, LaSalle JM. Autism and Cancer Share Risk Genes, Pathways, and 
Drug Targets. Trends in genetics : TIG. 2016;32(3):139-46. Epub 2016/02/03. doi: 
10.1016/j.tig.2016.01.001. PubMed PMID: 26830258; PMCID: PMC4769654. 
58. Nussinov R, Tsai CJ, Jang H. How can same-gene mutations promote both cancer and 
developmental disorders? Sci Adv. 2022;8(2):eabm2059. Epub 2022/01/15. doi: 
10.1126/sciadv.abm2059. PubMed PMID: 35030014; PMCID: PMC8759737. 
59. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F. 
The Ensembl variant effect predictor. Genome biology. 2016;17(1):122. Epub 2016/06/09. doi: 
10.1186/s13059-016-0974-4. PubMed PMID: 27268795; PMCID: PMC4893825. 
60. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, 
Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-
Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, 
Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, 
Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with 
AlphaFold. Nature. 2021;596(7873):583-9. Epub 2021/07/16. doi: 10.1038/s41586-021-03819-2. 
PubMed PMID: 34265844; PMCID: PMC8371605 have filed non-provisional patent applications 
16/701,070 and PCT/EP2020/084238, and provisional patent applications 63/107,362, 
63/118,917, 63/118,918, 63/118,921 and 63/118,919, each in the name of DeepMind Technologies 
Limited, each pending, relating to machine learning for predicting protein structures. The other 
authors declare no competing interests. 
61. Cui H, Lan X, Lu S, Zhang F, Zhang W. Bioinformatic prediction and functional 
characterization of human KIAA0100 gene. J Pharm Anal. 2017;7(1):10-8. Epub 2018/02/07. doi: 
10.1016/j.jpha.2016.09.003. PubMed PMID: 29404013; PMCID: PMC5686863. 
62. Wang L, Jin W, Wu X, Liu Y, Gu W. Circ_0000520 interacts with miR-512-5p to 
upregulate KIAA0100 to promote malignant behaviors in lung cancer. Histol Histopathol. 
2023;38(1):73-89. Epub 2022/07/23. doi: 10.14670/hh-18-498. PubMed PMID: 35866672. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302238doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302238
http://creativecommons.org/licenses/by-nc-nd/4.0/


63. Song J, Yang W, Shih Ie M, Zhang Z, Bai J. Identification of BCOX1, a novel gene 
overexpressed in breast cancer. Biochim Biophys Acta. 2006;1760(1):62-9. Epub 2005/11/18. doi: 
10.1016/j.bbagen.2005.09.017. PubMed PMID: 16289875. 
64. Zhong Z, Pannu V, Rosenow M, Stark A, Spetzler D. KIAA0100 Modulates Cancer Cell 
Aggression Behavior of MDA-MB-231 through Microtubule and Heat Shock Proteins. Cancers 
(Basel). 2018;10(6). Epub 2018/06/06. doi: 10.3390/cancers10060180. PubMed PMID: 
29867023; PMCID: PMC6025110. 
65. Cui H, Lan X, Lu S, Zhang F, Zhang W. Preparation of monoclonal antibody against human 
KIAA0100 protein and Northern blot analysis of human KIAA0100 gene. J Pharm Anal. 
2017;7(3):190-5. Epub 2018/02/07. doi: 10.1016/j.jpha.2017.02.001. PubMed PMID: 29404037; 
PMCID: PMC5790689. 
66. Ding YC, Song H, Adamson AW, Schmolze D, Hu D, Huntsman S, Steele L, Patrick CS, 
Tao S, Hernandez N, Adams CD, Fejerman L, Gardner K, Nápoles AM, Pérez-Stable EJ, Weitzel 
JN, Bengtsson H, Huang FW, Neuhausen SL, Ziv E. Profiling the Somatic Mutational Landscape 
of Breast Tumors from Hispanic/Latina Women Reveals Conserved and Unique Characteristics. 
Cancer research. 2023;83(15):2600-13. Epub 2023/05/05. doi: 10.1158/0008-5472.Can-22-2510. 
PubMed PMID: 37145128; PMCID: PMC10390863. 
67. Sharma S, Bollinger KE, Kodeboyina SK, Zhi W, Patton J, Bai S, Edwards B, Ulrich L, 
Bogorad D, Sharma A. Proteomic Alterations in Aqueous Humor From Patients With Primary 
Open Angle Glaucoma. Invest Ophthalmol Vis Sci. 2018;59(6):2635-43. Epub 2018/05/31. doi: 
10.1167/iovs.17-23434. PubMed PMID: 29847670; PMCID: PMC6733532. 
68. Guo J, Wang M, Liu X. MicroRNA-195 suppresses tumor cell proliferation and metastasis 
by directly targeting BCOX1 in prostate carcinoma. J Exp Clin Cancer Res. 2015;34(1):91. Epub 
2015/09/05. doi: 10.1186/s13046-015-0209-7. PubMed PMID: 26338045; PMCID: 
PMC4559360. 
69. Liu T, Zhang XY, He XH, Geng JS, Liu Y, Kong DJ, Shi QY, Liu F, Wei W, Pang D. High 
levels of BCOX1 expression are associated with poor prognosis in patients with invasive ductal 
carcinomas of the breast. PloS one. 2014;9(1):e86952. Epub 2014/02/04. doi: 
10.1371/journal.pone.0086952. PubMed PMID: 24489812; PMCID: PMC3904964. 
70. Zhou FL, Zhang WG, Meng X, Chen G, Wang JL. [Bioinformatic analysis and 
identification for a novel antigen MLAA-22 in acute monocytic leukemia]. Zhongguo Shi Yan 
Xue Ye Xue Za Zhi. 2008;16(3):466-71. Epub 2008/06/14. PubMed PMID: 18549609. 
71. Levine TP. Sequence Analysis and Structural Predictions of Lipid Transfer Bridges in the 
Repeating Beta Groove (RBG) Superfamily Reveal Past and Present Domain Variations Affecting 
Form, Function and Interactions of VPS13, ATG2, SHIP164, Hobbit and Tweek. Contact 
(Thousand Oaks). 2022;5:251525642211343. Epub 2022/12/27. doi: 
10.1177/25152564221134328. PubMed PMID: 36571082; PMCID: PMC7613979. 
72. Hanna M, Guillén-Samander A, De Camilli P. RBG Motif Bridge-Like Lipid Transport 
Proteins: Structure, Functions, and Open Questions. Annu Rev Cell Dev Biol. 2023;39:409-34. 
Epub 2023/07/05. doi: 10.1146/annurev-cellbio-120420-014634. PubMed PMID: 37406299. 
73. Neuman SD, Levine TP, Bashirullah A. A novel superfamily of bridge-like lipid transfer 
proteins. Trends Cell Biol. 2022;32(11):962-74. Epub 2022/05/02. doi: 10.1016/j.tcb.2022.03.011. 
PubMed PMID: 35491307; PMCID: PMC9588498. 
74. Parolek J, Burd CG. Bridge-like lipid transfer protein family member 2 suppresses 
ciliogenesis. bioRxiv. 2023:2023.12.07.570614. doi: 10.1101/2023.12.07.570614. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302238doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302238
http://creativecommons.org/licenses/by-nc-nd/4.0/


75. Karalis V, Donovan KE, Sahin M. Primary Cilia Dysfunction in Neurodevelopmental 
Disorders beyond Ciliopathies. J Dev Biol. 2022;10(4). Epub 2022/12/23. doi: 
10.3390/jdb10040054. PubMed PMID: 36547476; PMCID: PMC9782889. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302238doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302238
http://creativecommons.org/licenses/by-nc-nd/4.0/

