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Abstract
Background: Despite the current trend towards large epidemiological studies of unrelated
individuals, linkage studies in families are still thoroughly being utilized as tools for disease gene
mapping. The use of the single-nucleotide-polymorphisms (SNP) array technology in genotyping of
family data has the potential to provide more informative linkage data. Nevertheless, SNP array
data are not immune to genotyping error which, as has been suggested in the past, could
dramatically affect the evidence for linkage especially in selective designs such as affected sib pair
(ASP) designs. The influence of genotyping error on selective designs for continuous traits has not
been assessed yet.

Results: We use the identity-by-descent (IBD) regression-based paradigm for linkage testing to
analytically quantify the effect of simple genotyping error models under specific selection schemes
for sibling pairs. We show, for example, that in extremely concordant (EC) designs, genotyping
error leads to decreased power whereas it leads to increased type I error in extremely discordant
(ED) designs. Perhaps surprisingly, the effect of genotyping error on inference is most severe in
designs where selection is least extreme. We suggest a genomic control for genotyping errors via
a simple modification of the intercept in the regression for linkage.

Conclusion: This study extends earlier findings: genotyping error can substantially affect type I
error and power in selective designs for continuous traits. Designs involving both EC and ED sib
pairs are fairly immune to genotyping error. When those designs are not feasible the simple
genomic control strategy that we suggest offers the potential to deliver more robust inference,
especially if genotyping is carried out by SNP array technology.

Background
Linkage analysis of family data have been extensively used
in the past in the search for genetic determinants. Nowa-
days, investigators favor large epidemiological studies of

unrelated individuals, however several family datasets are
currently being re-analyzed and/or pooled (e.g. [1]). The
persistance of interest for linkage is partly triggered by the
advent of single-nucleotide-polymorphisms (SNP) array
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genotyping technology in the field, indeed SNP arrays
hold the promise of more reliable linkage maps [2,3].
Although less prone to genotyping error than microsatel-
lites when viewed as singlepoint markers, SNP arrays
heavily rely on multipoint algorithms for accurate deter-
mination of the identical by descent (IBD) status of alle-
les. The gain in singlepoint reliability might therefore be
annihilated by the propagation of errors across the many
SNPs required to infer IBD status.

In the search for genetic determinants of complex traits by
linkage, the use of selective designs appears to be an effi-
cient way to gain adequate power for detection of typically
small gene effects. A few authors have shown by simula-
tion that the impact of genotyping error on evidence for
linkage could be particularly severe in affected sib-pair
(ASP) designs [4-6], virtually masking most of the evi-
dence for linkage. The impact of error on quantitative
traits appears to be less dramatic in random samples,
however it is unclear whether the same dramatic power
losses hold in selected samples.

A method of choice is now emerging for the analysis of
quantitative traits arising from selected sib pairs. This
method is essentially a regression through the origin of
excess identical by descent (IBD) sharing on a function of
the trait value, whose slope is an estimate of the linkage
parameter. It was first proposed by Sham et al. [7] and
turns out to be equivalent to a score test [8]. In a numeri-
cal comparison of methods for selected samples, Skatkie-
wicz et al. [9] and Cuenco et al. [10] showed that this
method had good properties in finite samples for extreme
proband ascertained sib-pair and discordant sib-pair
designs. By use of simple genotyping error models (popu-
lation frequency error model and false homozygosity model),
we show analytically what effects such error generating
processes (occurring at rate  per sib pair) induce for an ide-
alized fully informative marker. It is shown that it results
in a reduction of the slope estimate (i.e. of the estimated

linkage parameter) by a factor 1 -  whether sib pairs are

selected or not. Since the genotyping error rate  is typically
small, the previous effect on the linkage test is minimal. In
addition to this slope effect, the regression's intercept is
modified and this may have a much more sizable effect on
the test for linkage depending on the sampling scheme
used to select sib pairs. Surprisingly, this simple result
allows us to predict that in extremely concordant (EC) sib
pairs designs and in ASP designs, the effect of genotyping
error will be milder as the selection becomes more
extreme. In extreme discordant (ED) designs, the effect
can in theory be either increased type I error or decreased

power depending on the definition of discordance, the
genotyping error rate and the true linkage effect; in prac-
tice however, for small quantitative trait locus (QTL)
effects, the result will be an increased type I error. We
argue that the basic error generating mechanisms assumed
provide reasonable approximations of real-life situations.
In the next section, we first describe some common error-
generating processes and quantify their effect on IBD shar-
ing in an idealized situation where marker information is
complete. We then briefly sketch the inverse regression
approach to linkage, we show analytically what the effect
of genotyping error is on this regression and quantify the
subsequent bias, power and type I error in common selec-
tive designs. We argue that under certain assumptions
regarding the error model, one can easily implement a
linkage test that incorporates a genomic control for geno-
typing error. Finally, we discuss some assumptions made
in our study and the practical relevance of our findings. In
particular, we argue that our results generalize to situa-
tions where marker information is incomplete and that
the smaller error rates observed in SNP chip array com-
pared to microsatellites offer no protection against bias in
analysis.

Results
Genotyping error models
We consider two mechanisms for the generation of errors
in marker data, namely the population frequency error model
and the false homozygosity model. In those two models, we
consider a single marker with m alleles and further assume
that a maximum of one allelic error per sib pair can be
made and that this happens with probability . This restric-
tion to 'one error per sib pair' is just a first order approxi-
mation, for small , of a process where all four alleles
would be allowed to be independently erroneous and
does not restrict the generalizability of our results.

The population frequency error model re-assigns the errone-
ous allele (chosen at random among the four forming the
sib-pair genotype) to one of the possible m alleles with
probability equal to population allele frequency. One
mathematical advantage of this model is that the marginal
distribution of alleles and genotypes is unaltered. The false
homozygosity model keeps homozygotes unchanged but re-
assigns heterozygotes to homozygotes with alleles equal
to one of the two original alleles chosen according to
probabilities proportional to population allele frequen-
cies.

To our knowledge, false homozygosity is a common type of
error: fairly rare alleles go un-reported in samples. The
population frequency error model provides an approximation
to a process whereby alleles are misread. Errors at the two
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alleles of a marker's genotype might be correlated, we do
not consider this type of process in details here although
the effect on linkage will be qualitatively the same as in
the two other models. We refer the reader to Sobel et al.
[11] for a detailed exposé on genotyping error mecha-
nisms. Note that the two models that we have chosen
have been used in the past in order to identify potential
genotyping errors [4,11].

Impact on IBD sharing
Let's denote by π the proportion of alleles shared identical
by descent (IBD) at a certain locus by two siblings. Tests
for linkage are based on the IBD sharing distribution and
although errors as described earlier are made at the geno-
type level (G is read as G), the effect of errors on linkage
will be entirely mediated via the distortion of the IBD dis-
tribution (the true IBD status π of two siblings may be
incorrectly inferred as π). We are therefore interested in
deriving the probability distribution P(π|π), this is done
by conditioning on both the true and observed genotypes
as follows:

Let us consider the case of complete information. This can
be conceptualized by means of an idealized marker whose
number of alleles is infinite, in particular identity by state
(IBS) status is equivalent to IBD status. The unordered
genotypes of a sib pair can be partitioned into seven exclu-
sive classes denoted ii/ii, ii/ij, ii/jj, ii/jk, ij/ij, ij/ik and ij/kl
depending on the number of homozygous sibs in the pair
and the number of distinct alleles in the sib-pair genotype.
Sharing 0 alleles IBD corresponds to a sib-pair genotype of
the ij/kl class, should an error occur according to the pop-
ulation frequency error model then one of the four alleles
would be transformed into yet another type (since the
number of alleles is infinite, the probability that the new
allele is read as one of i, j, k or l tends to 0), therefore the
sib pair genotype will remain in the ij/kl class and the

observed IBD status π will still be 0. For the same starting
genotype, an error according to the false homozygosity

model produces an ii/jk class and π also equals 0 therefore

P(π = 0|π = 0) = 1 whatever the genotyping error mecha-
nism considered previously. The same line of reasoning

leads to P(π = 0.5|π = 0.5) = 1 - , P(π = 0|π = 0.5) = ,

P(π = 1.0|π = 1.0) = 1 - , P(π = 0.5|π = 1.0) = . Those results
can be summarized by the transition matrix below, where

the (i, j) element is equal to P(π = (j - 1)/2|π = (i - 1)/2)

The overall effect of genotyping error is thus to reduce the

observed IBD sharing, indeed E(π|π) = (1 - /2)π and E(π)

=  - /4 while the variance is practically unchanged since

. In selected samples of extremely con-

cordant sib pairs (EC) where linkage is evidenced by an
excess in IBD sharing, it therefore seems logical to expect
a decrease in power. Conversely, in selected samples of
extremely discordant sib pairs (ED) where linkage is evi-
denced by a reduction in IBD sharing, the test might lead
to increased type I error. In the next subsection, we for-
mally quantify this bias in selective samples schemes for
quantitative traits under the usual assumption of a nor-
mal variance components model.

Impact on linkage testing
Regression-based linkage testing
We assume that the sib pair phenotypic data x = (x1, x2)'
have been adjusted for any relevant covariates (e.g. sex,
age, country, ...) and have been standardized so that the
(known) population mean, variance and sib-sib correla-
tion are 0, 1 and ρ respectively. Under the additive vari-
ance components model, x given IBD information p
follows a bivariate normal distribution with zero mean
and variance-covariance matrix given by

where γ ≥ 0 denotes the proportion of total variance
explained by the putative locus. Under this model, an
optimal testing strategy first advocated in [7] (and some-
times referred to as the optimal Haseman-Elston regres-
sion) is to regress (through the origin) excess IBD sharing

π -  on the following C function of the trait values:
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This test turns out to be a score test for the linkage param-
eter γ [8] and is based upon the following approximate
relation which is valid for small locus effects [12]:

where  = var0(π). In a set of sibships indexed by i, an

efficient estimate of the linkage parameter γ is

. It is approximately unbiased E( ) = γ

and has variance var0( ) = 1/  where  is the

corresponding Fisher's information. The test statistic is

given by , it is one-sided, only positive values being

regarded as evidence for linkage. For small QTL effects,

power of this test can be computed as Φ (Φ-1(α) + γ 1/2).

Fisher's information , which depends on sample size
and study design, therefore controls power. In the design
phase of a study,  should be used as a criterion to differ-
entiate between alternative designs rather than sample
size only [12,13].

Impact of genotyping error on regression
By conditioning on the true IBD sharing values, we can
compute P(π|x, γ, ) = ∑πP(π|π) P(π|x, γ), using the transi-
tion probabilities P(π|π) derived earlier, while the P(π|x,
γ)'s are given in [12]. This permits computation of the new
regression line in presence of genotyping error as

As mentioned earlier, the corresponding variance under
the null hypothesis is only slightly altered. The effect of
genotyping error is thus to shrink the regression line by a

factor 1 -  and to shift the intercept by - . If we ignore

genotyping error i.e. we estimate γ using

, this results in a biased estimator

 with .

The resulting testing statistic  would then have

power equal to

Note that taking γ = 0 in this formula gives the type I error
rate. Since  increases with sample size, the impact of
genotyping error on both power and type I error will be
larger as the sample size increases. In terms of Y versus X
regression, the intuition is that the regression through the
origin is not affected by a general shift in the Y-variable
(IBD sharing) if the X-variable (C variable) has average 0,
or takes values far away from 0. The further away the X-
variable C is from 0, the smaller A, hence the smaller the
bias.

Bias and impact on power and type I error

Since  and γ is typically small, the

distortion of the usual linkage test in presence of genotyp-
ing error heavily depends on the design-specific quantity

. Unfortunately, there is little intuition about

the distribution of C (hence about the distribution of A)
in the whole population or in a selected sample. Never-
theless, Monte Carlo simulations can be used to deter-
mine the characteristics of the C and A distributions in the
whole population or for a specific ascertainment scheme.
In random samples and under the variance components
model, C is a score function hence E(C) = 0 therefore its

sample estimate  will be close to 0; one can also check

that its distribution is negatively skewed (unless ρ = 0).
The result is that the bias will be small for random sam-
ples. The same finding would hold for any ascertainment

scheme where  = 0. An optimal selection scheme [12]
that would select sib pairs based on Fisher's information

 (i.e. such that |C| ≥ C0) does not warrant that  = 0

because of the skewness of C. In EC designs (both siblings
have trait values either larger than a positive threshold or

smaller than a negative threshold),  tends to be positive
while it tends to be negative in ED designs (one sibling's
trait value is larger than a positive threshold while the
other sibling's trait value is smaller than a negative thresh-
old), the linkage test will therefore have reduced power in
EC designs and increased type I error in ED designs.

In the left-hand side of Table 1, we have computed the val-

ues of A and  for the three selective schemes considered.

The designs are indexed by the sib-sib correlation ρ and
the degree of selection. One obvious way to correct for the
shift in the intercept induced by genotyping error would
be to leave the regression unconstrained, this would cor-
rect for most of the bias. Unfortunately, in selected
designs where the variance of C is reduced, this results in
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a very inefficient estimator of the linkage parameter γ. The
right-hand side of Table 1 displays the variance of the
linkage parameter estimates in constrained

( ) and unconstrained

( ) regressions. Efficiency

losses of unconstrained versus constrained regressions in
EC and ED designs are unacceptably large even for mod-
erately extreme selection schemes.

In Table 2, we report the power and type I error for realis-
tic genotyping error rates [14] equal to 0.005 and 0.01 for
the same designs as in Table 2. The equivalent sample size
used corresponds to samples with Fisher's information
equal to 2500 which provides 90% power to detect a QTL
explaining 10% of the total variance in absence of geno-
typing error (pointwise nominal error rate = 10-4). The
most visible impact is on type I error rates in ED design
which is up to 7 times its nominal value. The  design
that combines EC and ED sib pairs appears to be fairly
immune to genotyping error while EC designs do not
incur power losses greater than 20%. Finally, those com-
putations confirm the intuition expressed earlier that the

effect of genotyping error is less severe in more extreme
selection schemes.

Genomic control for genotyping error
As we have seen in previous sections, the main effect of
genotyping error is to modify the intercept in the regres-
sion used to test for linkage. Although an unconstrained
regression would correct most of the bias due to genotyp-
ing error, the inefficiency of this strategy makes it imprac-
tical. In order to obtain an efficient and robust inference,
it therefore seems natural to try and constrain the regres-
sion through its correct origin a. In this section, we pro-
pose a completely data-driven strategy for doing this.

At any position, the sample mean IBD sharing has vari-
ance 1/8n where n is the number of sib pairs available. If
we knew that the position is unlinked or if the sample of
sib pairs was random then the deviation of this mean

from  would provide an estimate of the intercept a in

the linkage regression.

Unfortunately, detection of a position-specific intercept
corresponding to typical error rates would require a sam-
ple size of order 104, a number that is almost never

var ( ) /con γ = ∑1 2Cii

var ( ) / ( )uncon γ = −∑1 2C Cii



1
2

Table 1: Bias in selective designs

A varcon varuncon

Selection ρ EC ED EC ED EC ED EC ED

1% 0.1 0.27 -0.23 -0.07 3.45 -3.93 -1.61 0.08 0.06 0.04 1.13 0.68 0.05
0.2 0.29 -0.21 -0.13 3.28 -4.25 -3.19 0.09 0.05 0.04 1.46 0.52 0.07
0.3 0.30 -0.19 -0.15 3.15 -4.72 -4.63 0.10 0.04 0.03 1.82 0.38 0.10
0.4 0.31 -0.17 -0.14 3.06 -5.29 -6.00 0.10 0.03 0.02 2.27 0.27 0.17
0.5 0.32 -0.14 -0.12 3.01 -6.10 -7.44 0.11 0.02 0.02 2.38 0.18 0.23
0.6 0.31 -0.12 -0.10 3.02 -7.33 -9.33 0.10 0.02 0.01 1.92 0.12 0.19

10% 0.1 0.47 -0.40 -0.06 1.71 -1.87 -0.40 0.28 0.22 0.14 1.48 0.88 0.14
0.2 0.50 -0.36 -0.11 1.66 -1.99 -0.81 0.30 0.18 0.13 1.84 0.66 0.14
0.3 0.52 -0.32 -0.14 1.64 -2.14 -1.30 0.32 0.15 0.11 2.20 0.48 0.13
0.4 0.53 -0.28 -0.16 1.63 -2.35 -1.86 0.32 0.12 0.09 2.37 0.35 0.12
0.5 0.52 -0.24 -0.17 1.64 -2.61 -2.61 0.31 0.09 0.06 2.05 0.23 0.11
0.6 0.47 -0.19 -0.15 1.68 -3.01 -3.64 0.28 0.06 0.04 1.33 0.15 0.10

30% 0.1 0.65 -0.53 -0.04 0.96 -1.01 -0.11 0.68 0.52 0.31 1.80 1.12 0.32
0.2 0.69 -0.46 -0.07 0.95 -1.03 -0.23 0.73 0.44 0.29 2.15 0.85 0.29
0.3 0.71 -0.39 -0.09 0.96 -1.06 -0.36 0.74 0.37 0.25 2.33 0.63 0.26
0.4 0.69 -0.32 -0.11 0.97 -1.13 -0.52 0.71 0.28 0.20 2.17 0.45 0.21
0.5 0.62 -0.25 -0.11 1.00 -1.22 -0.73 0.62 0.21 0.15 1.64 0.30 0.16
0.6 0.50 -0.19 -0.10 1.05 -1.35 -1.01 0.47 0.14 0.10 0.98 0.19 0.11

Left-hand side: Values of A,  quantities influencing the effect of genotyping error for a variety of selective designs indexed by degree of Selection 

and sib-sib trait correlation ρ) – Right-hand side: Comparison of efficiency in constrained and unconstrained regressions – See text for definitions of 

A, , varcon and varuncon

C

   

C

C
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reached in linkage studies. In order to obtain an intercept

estimate  with sufficient precision, it is therefore essen-
tial to combine information across positions. The value of
IBD sharing at positions outside of the neighborhood of
influencing loci (those positions are subsequently referred
to as unlinked) across the genome may serve as control in
the test for linkage, this concept of genomic control has
been used to make the analysis of association studies
more robust [15].

Let's assume that the proportions of alleles shared IBD π
is computed at a series of approximately regular positions

indexed by t across the whole genome. Let yt be the sample

mean (among families) excess IBD at position t i.e.

. Under the variance components model

and for small QTL effect γ, equation (3) implies that

In random samples or in any sample where  � 0, taking
the average of yt across positions provides an estimate of a.

â

yt t≡ −π † 0 5.

E y
a t

a
b

C tt( )
, ,

,
 

if position  is unlinked

if position  is+
8
γ   linked.

⎧
⎨
⎪

⎩⎪

C

Table 2: Impact of genotyping error (rate = ) on type I error and power

Error rate Selection ρ EC ED

Power Type I Error × 10-4 Power Type I Error × 10-4 Power Type I Error × 10-4

0.005 1% 0.1 0.87 0.6 0.92 1.6 0.90 1.1
0.2 0.87 0.6 0.92 1.5 0.91 1.3
0.3 0.87 0.5 0.91 1.5 0.91 1.3
0.4 0.87 0.5 0.91 1.4 0.91 1.3
0.5 0.87 0.5 0.91 1.4 0.91 1.3
0.6 0.87 0.5 0.91 1.3 0.91 1.2

10% 0.1 0.85 0.4 0.93 2.2 0.90 1.1
0.2 0.85 0.4 0.93 2.0 0.91 1.2
0.3 0.84 0.3 0.92 1.9 0.91 1.3
0.4 0.84 0.3 0.92 1.7 0.91 1.4
0.5 0.84 0.3 0.92 1.6 0.91 1.4
0.6 0.85 0.4 0.91 1.5 0.91 1.3

30% 0.1 0.83 0.3 0.94 2.8 0.90 1.1
0.2 0.82 0.2 0.93 2.4 0.90 1.1
0.3 0.82 0.2 0.93 2.1 0.91 1.2
0.4 0.82 0.2 0.92 1.9 0.91 1.2
0.5 0.83 0.3 0.92 1.6 0.91 1.2
0.6 0.85 0.4 0.91 1.5 0.91 1.2

0.01 1% 0.1 0.84 0.3 0.93 2.4 0.91 1.3
0.2 0.83 0.3 0.93 2.2 0.92 1.7
0.3 0.83 0.3 0.93 2.1 0.92 1.8
0.4 0.83 0.3 0.92 1.9 0.92 1.7
0.5 0.83 0.3 0.92 1.7 0.92 1.6
0.6 0.83 0.3 0.92 1.6 0.91 1.5

10% 0.1 0.78 0.1 0.95 4.5 0.91 1.3
0.2 0.78 0.1 0.95 3.9 0.91 1.5
0.3 0.77 0.1 0.94 3.4 0.92 1.7
0.4 0.77 0.1 0.94 2.9 0.92 1.9
0.5 0.77 0.1 0.93 2.5 0.92 1.9
0.6 0.78 0.1 0.93 2.1 0.92 1.8

30% 0.1 0.73 0.1 0.96 7.1 0.90 1.2
0.2 0.71 0.1 0.96 5.6 0.91 1.3
0.3 0.71 0.0 0.95 4.4 0.91 1.4
0.4 0.71 0.1 0.94 3.4 0.91 1.5
0.5 0.74 0.1 0.93 2.6 0.91 1.5
0.6 0.78 0.1 0.93 2.1 0.91 1.5

Impact of genotyping error (rate = ) on power and type I error of linkage test in selective designs (indexed by degree of Selection and sib-sib trait 
correlation ρ) – Nominal error rate = 10-4, QTL effect γ = 0.1 and sample size equivalent to a Fisher's information = 2500 in each design (provides 
90% power in absence of genotyping error)


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In selected samples, we can use a trimmed version of the
mean of y, for example a 20%-trimmed mean of the (yt)t

series (i.e. the mean of the yt values after removing the

20% lowest and and 20% highest values) will provide a

robust genomic estimate  of a. Because a ≤ 0 and  is
positive and negative in EC designs and ED designs

respectively,  could be refined by trimming off only the
20% highest and lowest yt values respectively before tak-

ing the mean. Of course, how much we trim is arbitrary
but 20% can safely be taken as a conservative value for oli-
gogenic traits (Indeed, a 3500 cM genome contains
approximately 70 quasi-independent loci, so a 20% trim-
ming of yt values discards 14 positions (including all

active gene positions if less than 14 genes) from the sam-
ple used to estimate intercept a.). An ad-hoc implementa-
tion of the concept of genomic control is then to plug in

the estimate of the intercept  into the linkage regression
(3). Since most of the bias in the inference is due to the
intercept mis-specification, the precise estimate obtained
by pooling across the genome will eliminate it. The
implicit assumption that we make in this genomic control
approach is that the regression intercept is the same at all
positions, this will be challenged in the next section.

Discussion
Under two basic error models, we were able to predict
quantitatively the consequences of genotyping error on
inference in linkage analysis. In the idealized situation of
complete IBD information, both error models have the
same impact on linkage analysis. As we have seen, the
effect is due to a decrease in IBD sharing. A contrario, an
error process which would increase IBD sharing would
produce opposite results. The true error processes
involved in practice are complicated mixtures of the mod-
els alluded to here. In our experience however, it seems
that processes which lower IBD sharing are predominant.
Because genotyping error tends to decrease the estimated
number of alleles shared IBD, the effect on evidence for
linkage is opposite in EC (reduced power) and ED
(increased type I error) designs, it can be dramatic in typ-
ical designs and paradoxically less severe for more extreme
ascertainment schemes. By analogy, for a dichotomous
trait, this means that the effect of genotyping error is less
severe in ASP designs for rare diseases than for common
diseases. Remarkably, in designs combining both ED and
EC pairs like the  (or EDAC designs), the competing
effects of genotyping error tend to cancel each other out.
We have considered here only three types of basic selec-

tion schemes however the approach can be straightfor-
wardly applied to any arbitrary selection scheme. Under
the widely accepted variance components model, the
important quantity which determines bias, type I error

and power is  and it can be easily estimated by

Monte Carlo simulations. Note that the bias is propor-
tional to the error rate so that Equation (4) can easily be
adapted to different error rates than those considered in
Table 2.

Our study used an idealized model where IBD informa-
tion is assumed to be complete. In practice, IBD is uncer-
tain and it is inferred using marker data and multipoint
algorithms as implemented in publicly available software

[16,17], the general effect is to shrink the IBD estimate 
towards 0.5. The linkage regression (2) is changed into

 where 

can be either estimated from the data or by simulations.
The effect of genotyping error is again mediated via the
shift of the intercept in this regression but no general for-
mula can be obtained because it depends in a very com-
plex manner on the whole marker map configuration.
Nevertheless, we can quantify this shift under realistic sce-
narios and compare it to its theoretical value when IBD
information is complete. We simulated two different
marker maps in 1 million sib pairs without parents and
quantified by how much IBD sharing was reduced on
average under the population frequency error model (error
rate = 0.01). The microsatellites map (MS) had 13 equi-
frequent ten-allele markers (heterozygozity = 90%)
located 10 cM apart (spanning the 0–120 cM chromo-
somal region) and the SNP map had 41 equi-frequent
SNPs (heterozygozity = 50%) spanning the 50–70 cM
chromosomal region (this smaller region was chosen to
keep simulation time acceptable). The resulting average
reduction in IBD sharing for an error rate of 0.01 was
measured every 2 cM in the 50–70 cM region, it ranged
from 0.4974 to 0.4976 in the MS map and from 0.4945 to
0.4955 in the SNP map. For these two maps which mimic
the two most widespread genotyping paradigms nowa-
days, those simulations confirm results derived under the
complete marker information assumption with a reduc-
tion in IBD sharing from 0.5 to 0.5 – 0.01/4 = 0.4975. Our
results therefore appear to be applicable to real-life situa-
tions where IBD information is incomplete.

The genomic-control strategy that we have proposed,
although triggered by the specific issue of genotyping
error, potentially offers a general robust method for carry-

â C

â

â



A C C= / 2

π̂

E x x( | , , ) var ( ) ( , )π γ π γ ρ− 1
2 0†   C var ( )0

1
8π <
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ing out linkage analysis. It is nonetheless important to rec-
ognize its limitations. Firstly, if the trait is highly
polygenic with contributing genes scattered across the
genome, the high correlation between linkage positions
will make it impossible to estimate the IBD sharing at null
positions. The genomic control strategy should therefore
only be considered with oligogenic traits. Secondly, the
concept of genomic control relies on the assumption that
the genotyping error rates are similar across markers. For
markers with a similar degree of polymorphism (number
of alleles and frequencies), this assumption might be
acceptable. In a multipoint setting, an additional assump-
tion required to ensure the validity of a genomic control
strategy is that inter-marker distances be approximately
equal. With microsatellite markers, both these assump-
tions might fail resulting in differences in the IBD sharing
reduction across markers. The 'regression-based linkage
testing' view allows one to qualitatively assess how devia-
tion from these assumptions will impact linkage testing.
For example, in ASP or EC designs, wrongly assuming that
IBD is uniformly reduced across markers will result in
inflated type I error at marker positions with low genotyp-
ing error rate compared to other markers. The advent of
SNP chips in linkage mapping holds the promise of regu-
lar marker maps with less variable information content
than in classical microsatellites maps [2,3]. The many
SNPs used are likely to be subject to similar genotyping
error processes, this makes the critical assumption of the
genomic control strategy all the more plausible. Alterna-
tives to this genomic-control strategy are possible and
they also consist in constraining the linkage regression
through a new origin as in the ad-hoc method, the estima-
tion procedure can be adapted to suit particular circum-
stances. Firstly, in random samples, the assumption
regarding exchangeability of positions might be relaxed.
Indeed, the reduction in IBD sharing at each position may
be used as estimates of the position-specific intercepts (a
study sufficiently powered to detect linkage in random
samples should have a huge sample size which would
ensure sufficient precision of the position-specific inter-
cepts). However, it must be stressed that the advantage of
using a genomic control in random samples is limited
because the impact of genotyping error is small in such
designs. Secondly, one could use previous lab data to esti-
mate by how much IBD sharing deviates from its expected
value, this could also be done at each position separately
provided sufficient data are available. In practice, such
data might not be available or they might not trustfully
reflect current error mechanisms.

Elston et al. [18] have pointed out that the implicit
assumption made in ASP designs, that randomly sampled
sib pairs share half of their alleles IBD, might not hold in
practice and have argued for including discordant pairs in
such studies. The genomic control approach suggested

here may be an alternative solution to this issue. Finally
we note that, although we have only considered designs
involving sib pairs, the approach naturally extends to
other types of relative pairs.

Conclusion
Under realistic genotyping error scenarios, power losses
observed in extremely concordant designs are modest but
the effect on type I error in extremely discordant designs
can be dramatic. Our analytic approach provides some
understanding of the differences in influence of genotyp-
ing errors across study designs. The advent of SNP arrays
does not eliminate the impact of genotyping errors but it
makes genomic control a feasible option with the poten-
tial to deliver more robust inference in linkage analysis
data subject to genotyping errors or other mechanisms
distorting the IBD signal.

Abbreviations
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