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Abstract

Fish oil supplies worldwide have declined sharply over the years. To reduce the use of fish

oil in aquaculture, many studies have explored the effects of fish oil substitutions on aquatic

animals. To illustrate the effects of dietary lipids on Chinese mitten crab and to improve the

use of vegetable oils in the diet of the crabs, 60 male juvenile Chinese mitten crabs were fed

one of five diets for 116 days: fish oil (FO), soybean oil (SO), linseed oil (LO), FO + SO (1:1,

FSO), and FO + LO (1:1, FLO). Changes in the crab hepatopancreas transcriptome were

analyzed using RNA sequencing. There were a total 55,167 unigenes obtained from the

transcriptome, of which the expression of 3030 was significantly altered in the FLO vs. FO

groups, but the expression of only 412 unigenes was altered in the FSO vs. FO groups. The

diets significantly altered the expression of many enzymes involved in lipid metabolism,

such as pancreatic lipase, long-chain acyl-CoA synthetases, carnitine palmitoyltransferase

I, acetyl-CoA carboxylase, fatty acid synthase, and fatty acyl Δ9-desaturase. The dietary lip-

ids also affected the Toll-like receptor and Janus activated kinase-signal transducers and

activators of transcription signaling pathways. Our results indicate that substituting fish oil

with vegetable oils in the diet of Chinese mitten crabs might decrease the digestion and

absorption of dietary lipids, fatty acids biosynthesis, and immunologic viral defense, and

increase β-oxidation by altering the expression of the relevant genes. Our results lay the

foundation for further understanding of lipid nutrition in Chinese mitten crab.

Introduction

As a source of energy, essential fatty acids, phospholipids, and some fat-soluble vitamins, lipids

are indispensable in aquatic feed, particularly for crustaceans [1, 2]. Over the years, fish oil

(FO) produced by wild fisheries has been the main lipid resource in aquatic feed because of the

unidentified growth factors and high content of n-3 highly unsaturated fatty acids (HUFAs),

such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) [3].

However, given the development of aquaculture and the decline of wild fisheries, FO cannot

meet the demands of aquaculture industry, and has become an obstacle to the development of
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the aquaculture industry. For the sustainable development of the aquaculture industry, many

studies have been conducted to identify other lipid resources to substitute FO in fish and crus-

tacean diets [4–7]. Some vegetable oils, such as rapeseed, linseed, and soybean oil, are consid-

ered good alternative lipid resources that are cheap and easily obtained [8]. However, many

studies have indicated that the use of vegetable oils is limited by the anti-nutritional factors,

poor palatability, and insufficient levels of essential fatty acids [9, 10]. On the other hand, vege-

table oils could partially replace FO without affecting the growth performance and feed con-

version in many fish, but the fatty acid composition in the liver and muscle are closely related

to diet [11, 12]. The same results have been reported in some crustaceans, and vegetable oils

might even be better for crustacean growth [5, 13], but little is known about the molecular

mechanism of FO substitution. Therefore, the effects of substituting FO in crustaceans warrant

further study.

The Chinese mitten crab (Eriocheir sinensis) is a native species in East Asia, and has become

the most important economic crab species in China [14]. The maximum growth of most crus-

taceans can be induced by 2–10% of total lipids of the diet (dry weight) [15]. Most crustaceans

prefer shorter chain and saturated fatty acids for energy [16]; however, polyunsaturated fatty

acids (PUFAs) also play an important role in many crustacean physiological functions, for

example, arachidonic acid (ARA, 20:4n-6), EPA, and DHA are closely related to molting [17]

and can improve growth and immunity in the early growth stages of Litopenaeus vannamei
[9]. Previously, we had researched lipid nutrition of E. sinensis. Most of our results suggested

that substituting FO in the diet of E. sinensis is practicable, where vegetable oil could partially

replace FO without affecting growth, but the fatty acid composition could be significantly

altered [18–20]. To increase FO substitution, the mechanism of the effects of substituting FO

should be investigated.

A next-generation sequencing technique, RNA sequencing (RNA-Seq), is a newly devel-

oped technology used for studying molecular mechanisms in biological studies [21], and has

been successfully used for studying E. sinensis. However, most studies have focused on E.

sinensis development, molting, immune pathways, relationships between nutrition and repro-

duction, osmoregulation, and adaptation to eyestalk ablation [22–27]. Few researchers have

investigated the effects of dietary lipid resources on E. sinensis. In this study, two vegetable oils,

which mainly contain ω-3 and ω-6 fatty acids respectively, were selected as the substitution of

fish oil in the diets of E. sinensis. The ratio of the replacement was determined according to

our results before. To illustrate the mechanism of the replacement of fish oil, two groups with

the complete replacement of fish oil were added to enlarge the effects of the replacement. Then

we analyzed the hepatopancreas transcriptome of E. sinensis fed with different diets, and deter-

mined the effects of different dietary lipids on the lipid metabolism in E. sinensis.

Materials and methods

Experimental diets

Five isonitrogenous, isolipidic purified diets were formulated from three lipid resources: FO,

soybean oil (SO), and linseed oil (LO). Table 1 lists the ingredients of the experimental diets.

The diets were formed into 1.5-mm (diameter) pellets and stored at -20˚C until used.

Experimental animals and feeding trials

Juvenile Chinese mitten crabs were obtained from the Chongming research base of Shanghai

Ocean University and were stocked in tanks for 1 week for acclimation. During this period,

the crabs were fed FO diet. After 1 week, 60 healthy male crabs (initial weight 2.15 ± 0.10 g)

were randomly assigned to five groups (n = 12). Each crab in each group was cultivated in a
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single plastic box (36 cm × 18 cm × 18 cm). The groups were randomly assigned one experi-

mental diet and were fed once daily at 13:00 h for 116 days. Uneaten feed was removed with a

siphon tube after 2 h. During the experiment, the water was exchanged once daily with 1/3–1/

2 of the tank volume, and was aerated throughout the feeding trial. The photoperiod was

approximately 12-h light:12-h dark. Water quality parameters were monitored 2–3 times

weekly to maintain conditions of 24.5–30.0˚C, pH 8.0 ± 0.4, dissolved oxygen > 5 mg/L, and

total ammonia nitrogen< 0.01 mg/L.

At the end of the experiment, the crabs were fasted for 24 h. Three crabs were randomly col-

lected from each group, and were dissected to obtain the hepatopancreas for transcriptome

analysis. Then the hepatopancreas was immediately frozen in liquid nitrogen and stored at

-80˚C until used.

RNA extraction, transcriptome library preparation, and RNA-Seq

Total RNA was extracted from the hepatopancreas using TRIzol (Invitrogen) according to the

manufacturer’s instructions. RNA quality and quantity were determined using Agilent 2100

and NanoDrop 2000 prior to subsequent experiments. Only high-quality RNA samples

(1.8< optical density [OD]260/280 < 2.2; 28S:18S > 1.0; RNA >5 μg) was used for the tran-

scriptome analysis.

Table 1. Composition of the experimental diets.

Ingredients Fish oil Soybean oil Linseed oil Fish oil and soybean oil Fish oil and linseed oil

FO SO LO FSO FLO

Casein 41 41 41 41 41

Cellulose 4 4 4 4 4

Wheat flour 28.65 28.65 28.65 28.65 28.65

Carboxymethylcellulose (CMC) 4 4 4 4 4

Yeast extract 5 5 5 5 5

Lysine 0.15 0.15 0.15 0.15 0.15

Glycine 0.5 0.5 0.5 0.5 0.5

Vitamin C (99.7%) 0.5 0.5 0.5 0.5 0.5

Vitamin E (97%) 0.1 0.1 0.1 0.1 0.1

Phospholipid (99%) 3 3 3 3 3

Cholesterol 0.5 0.5 0.5 0.5 0.5

Inositol 0.6 0.6 0.6 0.6 0.6

Choline chloride (50%) 1 1 1 1 1

Mineral premix1 3 3 3 3 3

Vitamin premix2 2 2 2 2 2

Fish oil 6 0 0 3 3

Soybean oil 0 6 0 3 0

Linseed oil 0 0 6 0 3

Proximate composition (percentage of dry weight)

Crude protein 39.26 39.24 39.44 39.80 39.46

Crude lipid 9.75 9.31 9.47 9.82 9.56

Ash 5.68 5.77 5.72 5.74 5.70

1Mineral premix: 1 kg diet contained Ca(H2PO4)2, 10 g; MgSO4�7H2O, 2.4 g; KCl, 4.5 g; NaCl, 2.1 g; FeSO4�H2O, 155 mg; CuSO4�5H2O, 40 mg;

ZnSO4�H2O, 80 mg; MnSO4�H2O, 30 mg; KI, 11.7 mg; CoCl2�6H2O, 4.8 mg; Na2SeO3, 2.4 mg.
2Vitamin premix: 1 kg diet contained vitamin A, 10000 IU; vitamin D, 2500 IU; vitamin K, 64 mg; thiamin, 60 mg; riboflavin, 250 mg; pyridoxine, 60 mg;

calcium pantothenate, 240 mg; niacin, 60 mg; folic acid, 12 mg; biotin, 50 mg; cyanocobalamin, 4 mg.

https://doi.org/10.1371/journal.pone.0182087.t001
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The RNA-Seq transcriptome library was prepared using a Truseq RNA Sample Prep Kit

(Illumina). PolyA mRNA was purified using poly-T oligo attached magnetic beads (Invitro-

gen), and was randomly segmented into 200-bp fragments by fragmentation buffer. Then,

first-strand complementary DNA (cDNA) was synthesized using reverse transcriptase and

random primers, followed by synthesis of second-strand cDNA. The second-strand cDNA was

end-repaired using End Repair Mix (Illumina), and a single A base was added at the 3´ end for

adapter ligation. The cDNA target fragments were selected on 2% Low Range Ultra Agarose

(Bio-Red), followed by 15 cycles of PCR amplification. After TBS-380 (Invitrogen) quantifica-

tion, bridge PCR was performed to amplify the DNA fragments to single-molecule DNA clus-

ters, which were subsequently used in HiSeq 4000 (Illumina) sequencing.

De novo assembly and annotation

After quality trimming and adapter clipping by SeqPrep (https://github.com/jstjohn/SeqPrep)

and Sickle (https://github.com/najoshi/sickle), clean data were obtained for RNA de novo

assembly with Trinity (http://trinityrnaseq.sourceforge.net/, Version: trinityrnaseq-

r20140413) [28]. For annotation, the assembled transcripts were aligned with the NCBI

protein nonredundant (Nr), STRING, Swiss-Prot, and Kyoto Encyclopedia of Genes and

Genomes (KEGG) databases using BlastX (Version 2.2.25), with a cut-off E-value < 1.0 × 10−5.

Gene Ontology (GO) functional classification was conducted to obtain GO annotations for

describing biological processes, molecular functions, and cellular components using Blast2GO

(http://www.blast2go.com/b2ghome) [29]. The KEGG (http://www.genome.jp/kegg/) was

used to analyze the pathways in which the transcripts were involved.

Differential gene expression and functional enrichment

Expression abundance was determined using RSEM (http://deweylab.biostat.wisc.edu/rsem/)

[30]. Read counts were obtained by mapping each sample to the corresponding gene. The gene

expression levels were measured according to the fragments per kilobase of exon model per

million mapped reads (FPKM) method. Differential expression analysis was performed using

edgeR (http://www.bioconductor.org/packages/2.12/bioc/html/edgeR.html). Genes were con-

sidered significantly differentially expressed (DEGs) when the false discovery rate < 0.05 or

log2|FC|� 1. Cluster analysis was performed according to the DEG expression levels. GO and

KEGG pathway functional enrichment analyses were then carried out on the DEGs to deter-

mine the DEG functions. Goatools (https://github.com/tanghaibao/goatools) and KOBAS

(http://kobas.cbi.pku.edu.cn/home.do) were used for GO and KEGG pathway functional

enrichment analysis, respectively. Hypergeometric distribution was used to obtain the P-value;

significant enrichment was regarded as corrected P-value < 0.05.

Quantitative real-time PCR validation of RNA-Seq

Ten DEGs were randomly selected for validation by quantitative real-time PCR (qRT-PCR);

Table 2 lists the primer sequences. Gene expression was normalized to β-actin. Total RNA was

extracted from the hepatopancreas of three crabs in each group using TRIzol (Invitrogen)

according the manufacturer’s instructions. Then, first-strand cDNA was synthesized using Pri-

meScript RT Master Mix (Cat. No. RR036A, TaKaRa). The qRT-PCR was carried out following

the manufacturer’s instructions for SYBR Premix Ex Taq (Cat. No. RR420A, TaKaRa) in an

ABI 7500 Real-Time PCR System (Life Tech, applied biosystems) using the template above.

Each sample was triplicate to reduce the error caused by the PCR system. The qRT-PCR was

carried out in a total volume of 10 μL: 5 μL 2× SYBR Premix Ex Taq, 0.2 μL 50× ROX Reference

Dye II, 1 μL diluted cDNA mix, 0.2 μL each primer (10 μM), and 3.4 μL sterile distilled water.
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The transcript levels were calculated using the comparative threshold cycle (2-ΔΔCt) formula.

ΔCt was obtained in the formula: ΔCt = Ct gene of interest—Ct internal control, then a maxi-

mum ΔCt was selected as ΔCtmax, ΔΔCt was calculated in the formula: ΔΔCt = ΔCt−ΔCtmax.

Then the relative expressions of each genes were defined by 2-ΔΔCt, more information about the

formulation of the comparative threshold cycle (2-ΔΔCt) formula was referred to Schmittgen

[31]. After log-transformation, FPKM value of each group in RNA-seq were compared to the

results of qRT-PCR for the validation of RNA-Seq.

Results

Sequencing and de novo assembly

After sequencing, quality trimming, and adapter clipping, a total 320,973,688 reads were

obtained from the hepatopancreas of E. sinensis fed FO, SO, LO, FSO (FO + SO), or FLO

(FO + LO) diet (Table 3) and used for de novo assembly. We obtained 70,591 transcripts after

assembly, and the transcripts were further clustered into 55,167 unigenes. The average tran-

script and unigene length was 946 bp and 1083 bp, respectively. Table 4 shows the other statis-

tics of the assembly. About 22,760 transcripts (32.24%) and 20,929 unigenes (37.94%) were

1–400 bp in length, accounting for the majority of the transcripts and unigenes.

Table 2. Primers used for qRT-PCR.

Gene Sense Primer Anti-Sense Primer

GAPDH TCGGTATCAACGGATTCGG GGGGTCATTCACAGCCACAA

TLSP AGACACATAGGCCCATCCCA TTCACACTGCCCCAACACTC

FAD9 TAAGGTGGTGTGGAGAAACG ATCAGGGTGAAGCCTAGGGT

ALF3 GGGATGGCGGAGTGTAACAA GACAGGAAGGAAAACATGAGGT

PPAF CAGGTGTGGATAAAGTTGGG GTATGAAAAGTGTAGGGGCG

HPGDS GAGGACATCACCCCAAAGC TCATGGTCAGCCCGAGAG

PL CACCACCTTCTCCCTCTT CGTGCACCACTACCTTGA

CC CGACTGGATGATGTCACCAA GTATCTACGACGCCATTGCT

FABP ATCACCAGTCCCACACCCAA CGCACCTCAACTCCACTACAAT

LGBP GACATTGTGGAATGCAGGG TGAGTCAACGAAGTCGGAGG

β-Actin ACCTCGGTTCTATTTTGTCGG ATGCTTTCGCAGTAGTTCGTC

GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; TLSP: Trypsin-like serine protease; FAD9: Acyl-CoA Δ9-desaturase; ALF3: Anti-lipopolysaccharide

factor 3; PPAF: Prophenoloxidase-activating factor; HPGDS: Hematopoietic prostaglandin D synthase; PL: Pancreatic lipase; CC: Cryptocyanin; FABP:

Fatty acid-binding protein; LGBP: Lipopolysaccharide and β-1,3-glucan-binding protein.

https://doi.org/10.1371/journal.pone.0182087.t002

Table 3. Summary of the RNA-Seq reads production after quality trimming and adapter clipping.

Sample Reads Nucleotides Q20% Q30% GC%

FO 67921784 9965463329 98.7 96.05 51.82

SO 63379752 9295537814 98.73 96.17 49.34

LO 58608878 8590472597 98.67 96 47.8

FSO 58790294 8630748381 98.72 96.12 51.45

FLO 72272980 10595523301 98.71 96.1 49.1

Q20%, Q30%: percent of bases with Phred value > 20 and >30.

GC%: percent of G and C bases accounting for total bases.

https://doi.org/10.1371/journal.pone.0182087.t003
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Annotation of unigenes

The assembled unigenes were aligned with the Nr, STRING, Swiss-Prot, and KEGG databases

using BlastX. Of the assembled unigenes, 25,920 (46.98%), 17,499 (31.72%), and 14,532

(26.34%) were matched in the Nr, Swiss-Prot, and KEGG databases, respectively; only 5820

(10.55%) were matched in the STRING database. Up to 13,305 unigenes were matched in the

Nr database with 0< E-value� 1 × 10−10.

GO annotation analysis showed that the unigenes could be assigned to three parts: biologi-

cal process, cellular component, and molecular function, and could be further classified into

62 categories (S1 Fig). Most of the unigenes were in the terms cellular process, single-organism

process, metabolic process, cell, cell part, binding, and catalytic activity. The Clusters of Ortho-

logous Groups (COG) number was obtained from the results of the blast with the STRING

database, and the unigenes were classified under their function according to the COG number.

The most enriched terms were in general function prediction only, followed by post-transla-

tional modification, protein turnover, chaperones and translation, ribosomal structure, and

biogenesis (S2 Fig). According to the KEGG pathway, in which the unigenes participated, the

unigenes were assigned to five processes: metabolism (46.2%), genetic information processing

(13.9%), environmental information processing (11.0%), cellular process (10.4%), and organis-

mal systems (18.5%) (S3 Fig). In metabolism, global and overview maps was the most highly

represented, followed by amino acid metabolism, carbohydrate metabolism, energy metabo-

lism, and lipid metabolism. Translation, signal transduction, transport and catabolism, endo-

crine system comprised the main portion of the remaining four processes, respectively.

Analysis of DEGs

We found that 1157, 1238, 412, and 3030 DEGs were significantly altered between the FO vs.

SO, FO vs. LO, FO vs. FSO, and FO vs. FLO groups, respectively. Cluster analysis showed that

the DEGs in each group could be divided into five clusters according to their expression levels

(S4 Fig). 120 (75.68%) were in subcluster 1, where the expression of most unigenes was lower

in the FO, LO, and FLO groups (S5 Fig). Cluster analysis also revealed the same expression

pattern for DEGs in the FO and FSO groups; DEGs in the LO group were clustered together

with that in the FLO and SO groups, but were closer to that of the FLO group. Compared with

the FO group, 648, 524, 179, and 1301 genes were upregulated and 509, 714, 233, and 1729

genes were downregulated in the SO, LO, FSO, and FLO groups, respectively. To understand

the DEGs further, the DEGs were annotated in the GO and KEGG databases. GO annotation

showed that the expression of the genes for growth, immune system processes, enzyme regula-

tor activity, and nutrient reservoir activity in the SO group were all upregulated compared

with that of the FO group (S6 Fig). However, the expression of the genes involved in growth

and immune system processes were unaltered in the LO group; the expression of the genes for

the reproduction and reproductive processes were all upregulated (S7 Fig). In the FSO group,

Table 4. Summary of RNA-Seq de novo assembly results.

Unigenes Transcripts

Total sequence number 55167 70591

Total sequence bases 52192785 76469410

Percent of GC (%) 47.64 47.83

Longest transcript bases 18906 18906

Shortest transcript bases 201 201

Average length bases 946 1083

https://doi.org/10.1371/journal.pone.0182087.t004
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the relative expression of the genes for antioxidant activity was upregulated (S8 Fig). KEGG

annotation showed that the significantly altered DEGs in the SO, LO, FSO, and FLO groups

were assigned to 181, 180, 58, and 223 KEGG pathways, respectively, including that for fat

digestion and absorption (Fig 1), fatty acid degradation (Fig 2), fatty acid metabolism (Fig 3),

fatty acid biosynthesis (Fig 4), unsaturated fatty acid biosynthesis (S9 Fig), and several other

lipid metabolism pathways. The expression of pancreatic lipase (PL) in fat digestion and

absorption was significantly downregulated in the LO and FLO groups vs. the FO group. In

fatty acid degradation, the expression of long-chain acyl-CoA synthetases (ACSLs) was signifi-

cantly lower in the LO and FLO groups than in the FO group, but carnitine palmitoyltransfer-

ase I (CPTI) expression was upregulated. The expression of acetyl-CoA carboxylase (ACC)

and fatty acid synthase (FAS) were downregulated in the LO and FLO groups as compared to

the FO group. Two pathways related to immunity were downregulated in the crabs fed with

vegetable oils: Toll-like receptors (TLRs) and signal transducers and activators of transcription

(STAT), which play an important role in the TLR signaling pathway (Fig 5) and Janus activated

kinase—STAT (JAK—STAT) signaling pathway (Fig 6), respectively.

Fig 1. Fat digestion and absorption pathway.

https://doi.org/10.1371/journal.pone.0182087.g001
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qRT-PCR validation of RNA-Seq

To verify the RNA-Seq results, 10 randomly selected genes in the same hepatopancreas RNA

samples were analyzed by qRT-PCR. The RNA-Seq and qRT-PCR results are compared in Fig

7, and confirmed the reliability of RNA-Seq.

Discussion

In previous years, transcriptome analysis has been extensively applied in biological studies. In

crustaceans, the hepatopancreas is a major lipid storage and metabolism organ that has the

same functions as adipose tissue and the liver in vertebrates [32, 33]. The hepatopancreas is

also responsible for the biosynthesis of some hormones; therefore, it is the ideal organ for

studying transcriptome changes following feeding with different lipid source diets [34]. In

this study, we analyzed the effects of different dietary lipid resources on the E. sinensis

Fig 2. Fatty acid degradation pathway.

https://doi.org/10.1371/journal.pone.0182087.g002
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Fig 3. Fatty acid metabolism pathway.

https://doi.org/10.1371/journal.pone.0182087.g003
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hepatopancreas transcriptome. The dietary lipid sources had obvious effects on lipid digestion,

absorption, and metabolism in E. sinensis.
Along with proteins, lipids are the major organic constituents of aquatic animals, playing

an important role in the life histories and physiology aquatic animals. The major role of lipids

in fish is providing energy for growth and movement [35]. Fat digestion and absorption is the

first step in utilizing lipids, and determines lipids utilization in fish. Only hydrolyzed fat can be

absorbed as free fatty acids and glycerides and then be reconstituted to triglycerides in the

mucosal cells of the small intestine [36]. PL, which can catalyze triacylglycerol hydrolysis, is

considered the most important enzyme in fat digestion and absorption. Nutritional status and

hormones regulate PL expression in humans and mice [37, 38]. In the present study, crabs fed

with vegetable oils had significantly lower mRNA levels of PL than those fed FO. In male

weanling Sprague-Dawley rats, PL mRNA levels were lower in rats fed trioctanoate/tridecano-

ate (medium-chain triglycerides) than in those fed safflower oils, but were not significantly dif-

ferent among the diets [39]. From the results, we could conclude that comparing with long

chain and high unsaturated fatty acid, short carbon chain length and low degree of desatura-

tion of fatty acid could inhibite the mRNA levels of PL. Although the low mRNA levels of PL

were found in vegetable oil, it was interesting that the hepatosomatic index in the crabs fed

with vegetable oil were higher than crabs fed with FO (data were not shown). We speculated

Fig 4. Fatty acid biosynthesis pathway.

https://doi.org/10.1371/journal.pone.0182087.g004

Dietary lipid effects on E. sinensis hepatopancreas transcriptome

PLOS ONE | https://doi.org/10.1371/journal.pone.0182087 July 28, 2017 10 / 19

https://doi.org/10.1371/journal.pone.0182087.g004
https://doi.org/10.1371/journal.pone.0182087


Fig 5. TLR signaling pathway.

https://doi.org/10.1371/journal.pone.0182087.g005

Fig 6. JAK—STAT signaling pathway.

https://doi.org/10.1371/journal.pone.0182087.g006
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Fig 7. qPCR validation of RNA-Seq.

https://doi.org/10.1371/journal.pone.0182087.g007
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that the crabs fed with vegetable oil might have higher PL activity to increase the utilization of

dietary lipid. And it had been reported that the expression and activity of PL in rat were not in

synchronization when fed with different lipid diets [39], which might provide an evidence to

our conclusion.

The dietary lipids significantly changed two key enzymes in β-oxidation. Compared with

FO, ACSLs in vegetable oil group were downregulated, but CPTI was significantly upregulated

due to the use of fatty acids in β-oxidation. ACSL and CPTI had important roles in the esterifi-

cation of fatty acids and the entry of acyl moieties into the mitochondrion for β-oxidation,

respectively [40–44]. ACSL1 and ACSL4 were annotated in the present study. ACSL1 expres-

sion was unchanged in the groups; ACSL4 expression was downregulated in the LO vs. FO

and FLO vs. FO groups, but was unchanged in the SO vs. FO and FSO vs. FO groups. It had

been reported that ACSL4 has more specific substrate preferences and has a clear preference

for PUFAs, such as ARA and EPA [45, 46]. In the present study, the ARA and EPA content in

the FO group were almost twice that in the FLO group. The high content ARA and EPA in FO

might provide an evidence to the high ACSL4 mRNA, because more ACSL4 was needed to

activate ARA and EPA. However, little is known about the reason why the ACSL4 mRNA was

not changed in the SO and FSO vs. FO. CPTI is located in the mitochondrial outer membrane,

and can convert fatty acid-CoAs into fatty acid carnitines [47]. In the present study, CPT1

mRNA was significantly increased in the FLO group rather than the FO group. There was

study indicated that the fatty acids could have an effect on CPTI mRNA, where long-chain

fatty acids such as 16:0, 18:1n-9, 18:2n-6, 20:5n-3, and 22:6n-3 can significantly increase CPTI

mRNA as compared to medium-chain fatty acids (8:0 and 10:0), and the effects of 20:5n-3 and

22:6n-3 are more significant than that of 16:0, 18:1n-9, and 18:2n-6 [48]. The result above was

contrary to the present study, we speculate that this is due to the different species between rat

and E. sinensis. There are high content of EPA and DHA in the hepatopancreas of E. sinensis.
Dietary EPA and DHA in FO might mainly be stocked in hepatopancreas rather than provide

energy by β-oxidation, thereby decreasing the expression of CPTI.

The de novo synthesis of fatty acid was also significantly changed by the dietary lipid. Fatty

acid synthesis involves two steps: ACC and FAS catalyze the first, and then the fatty acids syn-

thesized by ACC and FAS are further elongated and desaturated into long-chain unsaturated

fatty acids [49]. The reaction begins with the synthesis of malonyl-CoA from acetyl-CoA, cata-

lyzed by ACC. Then, sequential Claisen condensation reactions catalyzed by FAS take place

with acetyl-CoA and malonyl-CoA [50]. It had been reported that the expression of FAS and

ACC in CaCo-2 cells could have a close relationship to the fatty acids [51]. In the present

study, comparing with the FO group, FAS was downregulated in the SO, LO, and FLO groups

and ACC was downregulated in the FLO group. The greatest difference between the FO, SO,

LO, and FLO diets is the fatty acid composition. However, comparing with vegetable oil, FO

could significantly promote the expression of FAS. we speculated that this was due to the high

content of 14:0 in the diet of FO, which was the substrate of FAS.

E. sinensis is famous for the high PUFA content in the hepatopancreas. PUFA biosynthe-

sis is complex and involves sequential desaturation and elongation catalyzed by fatty acyl

elongase (ELOVL) and desaturase (FAD) [52, 53]. We have investigated the capacity of

PUFA biosynthesis in E. sinensis, and have identified many enzymes participating in PUFA

biosynthesis, such as fatty acyl Δ6-desaturase, fatty acyl Δ9-desaturase, and ELOVL6 [54–56].

ELOVL2 and ELOVL5 were annotated in the present study. ELOVL2 and ELOVL5 are widely

distributed in mammals, bony fish, and other vertebrates [57–59]. Molecular characteriza-

tion of ELOVL2 and ELOVL5 has shown that they are related to the biosynthesis of long-

chain fatty acids such as EPA and DHA [60]. The expression of ELOVL2 and ELOVL5 in

E. sinensis provides compelling evidence for the high EPA and DHA content in E. sinensis
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hepatopancreas. Many studies have indicated that different lipids can regulate ELOVL
expression. Substituting FO with vegetable oils significantly increased ELOVL expression

[61–63]. However, in this study, ELOVL2 and ELOVL5 expression was unaltered following

the replacement of FO by SO and LO. There is not much preceding information on the dif-

ference between our study and others. Further studies should be performed to obtain the

full-length cDNA of ELOVL2 and ELOVL5 in E. sinensis and to investigate the effects of die-

tary fatty acids on ELOVL.

But in the present study, fatty acyl Δ9-desaturase expression was significantly altered in the

SO, LO, and FLO groups. Fatty acyl Δ9-desaturase is the rate-limiting enzyme in monounsatu-

rated fatty acid biosynthesis, and can introduce a double bond in palmitoyl-CoA (16:0) and

stearoyl-CoA (18:0) [64]. Guo and colleagues were the first to isolate fatty acyl Δ9-desaturase

from E. sinensis [55], and it has been characterized in BL21(DE3)pLysS, fatty acyl Δ9-desatur-

ase in E. sinensis had an activity in the desaturation of C18:0 [65]. As the high content of

18:1n-9 in the vegetable oil, the fatty acyl Δ9-desaturase expression in FO was significantly

lower than vegetable oil. We speculate that the high content of 18:1n-9 in the vegetable oil are

the products of the reaction in which fatty acyl Δ9-desaturase participates, thereby inhibiting

fatty acyl Δ9-desaturase expression in E. sinensis.
Many studies have indicated that replacing FO with vegetable oils did not affect growth in

aquatic animals, but that immunity could be reduced significantly [6, 9]. In the present study,

replacing FO with vegetable oils had significant effects on the TLR and JAK—STAT signaling

pathways and many other pathways related to immunity. The TLR signaling pathway is the

innate immune system of invertebrates for sensing pathogenic microorganism invasion. TLRs

play a crucial role in this system, which can recognize specific microbial components [66].

Currently, there are 12 known TLRs (TLR1–TLR12) [67]. TLRs are important pattern recogni-

tion receptors (PRRs), which have different ligands. TLR3 is required for the recognition of

double-stranded RNAs (dsRNAs) [68]; single-stranded RNAs (ssRNAs) are mainly recognized

by TLR7 and TLR8 [69, 70]. In the present study, TLR3, TLR7, and TLR8 were significantly

downregulated during LO replacement of FO, which might decrease virus recognition and the

immune response further. STATs are a family that can be activated by JAK family members,

and regulate downstream pathways such as the growth and differentiation of immune cells

[71, 72]. The JAK—STAT signaling pathway plays an important role in the immunologic

defense of crustaceans [73, 74]. Compared with FO, STAT was significantly downregulated in

the crabs fed with vegetable oils, and the downregulated protein inhibitors of activated STAT

is an effective inhibitor of STAT. The change in STATs could have a significant effect on the

immune system of E. sinensis.

Conclusions

The effects of dietary lipid resources on the Chinese mitten crab were analyzed with transcrip-

tome analysis, which showed that dietary lipids had obvious effects on the lipid metabolism in

the hepatopancreas of the crabs. Replacing FO with vegetable oils significantly altered fat diges-

tion and absorption, fatty acid metabolism, fatty acid degradation, fatty acid biosynthesis,

unsaturated fatty acid biosynthesis, and many other lipid metabolism pathways. Compared

with FO, the increasing addition of SO and LO in the diets of the crabs might decrease the

digestion and absorption of dietary lipids, fatty acids biosynthesis, and virus immunologic

defense, and increase β-oxidation by altering the expression of the genes for PL, ACSLs, CPTI,

ACC, FAS, fatty acyl Δ9-desaturase, TLRs, STAT, and other relevant genes. However, the details

of the effects of dietary lipids on Chinese mitten crab are still unclear; future studies should use

the E. sinensis genomic sequence to improve the transcriptome. Moreover, the present study
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was conducted at transcriptional level; protein expression should also be analyzed to further

understand the lipid metabolism of Chinese mitten crabs fed different lipid diets.
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