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The FluPRINT dataset, a 
multidimensional analysis of the 
influenza vaccine imprint on the 
immune system
Adriana Tomic   1,2*, Ivan Tomic3, Cornelia L. Dekker4, Holden T. Maecker5 & 
Mark M. Davis1,6,7*

Machine learning has the potential to identify novel biological factors underlying successful antibody 
responses to influenza vaccines. The first attempts have revealed a high level of complexity in 
establishing influenza immunity, and many different cellular and molecular components are involved. 
Of note is that the previously identified correlates of protection fail to account for the majority of 
individual responses across different age groups and influenza seasons. Challenges remain from the 
small sample sizes in most studies and from often limited data sets, such as transcriptomic data. Here 
we report the creation of a unified database, FluPRINT, to enable large-scale studies exploring the 
cellular and molecular underpinnings of successful antibody responses to influenza vaccines. Over 3,000 
parameters were considered, including serological responses to influenza strains, serum cytokines, 
cell phenotypes, and cytokine stimulations. FluPRINT, facilitates the application of machine learning 
algorithms for data mining. The data are publicly available and represent a resource to uncover new 
markers and mechanisms that are important for influenza vaccine immunogenicity.

Background & Summary
Influenza virus has a devastating societal impact, causing up to 650,000 deaths every year worldwide1. Vaccination 
with the seasonal mixture of strains is only partially effective, even among otherwise-healthy people, leading 
to serious pandemics. Vaccine efficacy is defined as the ability of a new seasonal influenza vaccine to prevent 
influenza-like illness compared to the placebo group, according to the US Food and Drug Administration (FDA) 
in their guideline for vaccine licensure2. Young children and elderly, due to high susceptibility to influenza infec-
tion3, are encouraged to be vaccinated annually making a placebo-controlled clinical efficacy study in this pop-
ulation an extremely costly and arduous undertaking. The alternative approach to correlate vaccine-mediated 
protection in these populations is based on immunogenicity endpoints, recommended by FDA. The appropriate 
immunogenicity endpoint is the influenza-specific antibody titer measured by a hemagglutination inhibition 
(HAI) assay to each viral strain included in the vaccine. Vaccine protection is then assessed based on seroconver-
sion (4-fold increase in the HAI antibody titers after vaccination) and seroprotection (geometric mean HAI titer 
≥40 after vaccination). The HAI titer ≥40 after vaccination is associated with a 50% reduction in risk of influenza 
infection or disease4.

Lack of pre-existing influenza immunity, especially T cells, has been identified as one of the major predisposi-
tions for failure to generate antibody response to vaccination5–7. However, exact phenotypes of CD4+ and CD8+ 
T cells, which are important for protective influenza immunity in general and to vaccination with live attenu-
ated influenza vaccine (LAIV) in specific, remain elusive. The application of computational biology and machine 
learning to clinical datasets holds great promise for identifying immune cell populations and genes that mediate 
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HAI antibody responses to influenza vaccines as a correlate of vaccine protection8–15. Unfortunately the correlates 
of protection identified are not consistent between cohorts and study years8,9,11,12. Some of the identified chal-
lenges leading to such discrepancy are small sample sizes and analysis of only one aspect of the biology, such as 
molecular correlates of protection by using transcriptome data16. Additionally, comparison of the results of differ-
ent predictive models is hampered by the lack of a consensus regarding what defines the outcome of vaccination, 
i.e. high vs. low responders. For these reasons, it is necessary to generate a unified dataset that includes multiple 
measurements across age, gender and racially diverse populations, including different vaccine types. Specifically, 
it is of the utmost importance to include single-cell analysis at the protein level, such as mass cytometry combined 
with multiple high-dimensional biological measurements, since these have power to reveal heterogeneity of the 
immune system17–21.

To accomplish that goal, we created FluPRINT, a dataset consisting of 13 data types in standardized tables on 
blood and serum samples taken from 740 individuals undergoing influenza vaccination with inactivated (IIV) 
or live attenuated seasonal influenza vaccines (LAIV) (Fig. 1). The FluPRINT dataset contains information on 
more than 3,000 parameters measured using mass cytometry (CyTOF), flow cytometry, phosphorylation-specific 
cytometry (phospho-flow), multiplex cytokine assays (multiplex ELISA), clinical lab tests (hormones and com-
plete blood count), serological profiling (HAI assay) and virological tests. In the dataset, vaccine protection is 
measured using HAI assay, and following FDA guidelines individuals are marked as high or low responders 
depending on the HAI titers after vaccination. FluPRINT includes fully integrated and normalized immunology 
measurements from eight clinical studies conducted between 2007 to 2015 and assayed at the Human Immune 
Monitoring Center (HIMC) of Stanford University. Among those, one contains data from 135 donors enrolled 
in the 8-year long ongoing longitudinal study following immune responses to seasonal inactivated influenza 
vaccines. This is particularly interesting set of data that can deepen our understanding how repeated vaccination 
effects vaccine immunogenicity. The MySQL database containing this immense dataset is publicly available online 
(www.fluprint.com). The dataset represents a unique source in terms of value and scale, which will broaden our 
understanding of immunogenicity of the current influenza vaccines.

Methods
Clinical studies.  All studies were approved by the Stanford Institutional Review Board and performed in 
accordance with guidelines on human cell research. All vaccines used were licensed in the US for use in the 
populations studied. Peripheral blood samples were obtained at the Clinical and Translational Research Unit at 
Stanford University after written informed consent/assent was obtained from participants. Samples were pro-
cessed and cryopreserved by the Stanford HIMC BioBank according to the standard operating protocols available 
online at the HIMC website (https://iti.stanford.edu/himc/protocols.html).

Data collection.  Data involving individuals enrolled in influenza vaccine studies at the Stanford-LPCH 
Vaccine Program was accessed from the Stanford Data Miner (SDM) which holds data processed by HIMC 
from 2007 up to date22. The FluPRINT cohort was assembled by filtering the SDM for assays available in studies 
involving influenza vaccination. This resulted in a dataset containing data from 740 healthy donors enrolled in 
influenza vaccine studies conducted by the Stanford-LPCH Vaccine Program from 2007 to 2015 in the follow-
ing studies: SLVP015, SLVP017, SLVP018, SLVP021, SLVP024, SLVP028, SLVP029 and SLVP030. Online-only 
Table 1 provides a summary of all studies including information about clinical trial identification numbers on 
www.clinicaltrials.gov, clinical protocols, ImmPort accession numbers to access raw data and quality reports, 
and finally references to published works where data was used. ImmPort is a web portal that contains data from 

Fig. 1  Overview of the FluPRINT dataset. The FluPRINT dataset consists of the 740 individuals from 8 
clinical studies (SLVP015, SLVP017, SLVP018, SLVP021, SLVO024, SLVP028, SLVP029 and SLVP030) and 8 
influenza seasons (from 2017 to 2015). (a) Pie chart shows distribution of donors across clinical studies. The 
dataset contains harmonized data from different assays, including mass and flow cytometry, phosphorylated 
cytometry (Phospho-flow), multiplex ELISA (Luminex assay), clinical lab tests, such as complete blood test, 
analysis of hormones and virological assays (CMV and EBV antibody titers) and serological profiling with 
hemagglutination inhibition assay, which was used to define high and low responders. (b) Distribution of assays 
across years available for each clinical study.
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NIAID-funded immunology studies and clinical trials (https://immport.niaid.nih.gov/)23. All data contained in 
the FluPRINT dataset are made freely available through the Shared Data Portal on ImmPort repository. In all 
studies, except for study SLVP015, vaccine was administrated only once. The study SLVP015 was longitudinal 
study where 135 participants received vaccine in consecutive years from 2007–2015. In all studies, generally 
healthy participants were included, and in some studies (SLVP017 for the 2010, 2011 and 2013, SLVP021 and 
SLVP029) those that were vaccinated in the prior influenza season were excluded. A total of 121 CSV files con-
taining processed data from various assays and studies were downloaded from SDM. The link to the 121 CSV 
files is provided on Zenodo24. Table 1 provides a summary of the demographic characteristics of the FluPRINT 
study population. The population spans a wide age range, from a 1-year-old to a 90-year-old, with a median 
age of 27 years. Among 740 individuals with available experimental data, 446 were females and 294 males. The 
majority (491) of the individuals were Caucasian (European American ancestry). The complete demographic 
information is available on the Zenodo25. Individuals were stratified into high and low responders, depending on 
their HAI antibody titers measured before and after vaccination, as described below. Figure 2 shows demographic 
information for the FluPRINT study population, including gender, ethnicity, cytomegalovirus (CMV) status, 
and age stratified by the outcome to vaccination. Out of 363 individuals with measured HAI responses, 111 were 
identified as high responders and 252 as low responders. Overall, no major differences in the gender, ethnicity 
distribution, or CMV status (Fig. 2a) or age (Fig. 2b) were observed between high and low responders.

Age (y)

Mean ± SD 38 ± 25

Median (min. to max. range) 27 (1–90)

Gender

Male (%) 294 (39.7%)

Female (%) 446 (60.3%)

Ethnicity

Caucasian (European American) (%) 491 (66.35%)

African American (%) 13 (1.75%)

American Indian and Alaska Native (%) 3 (0.4%)

Asian (%) 86 (11.6%)

Hispanic or Latino (%) 5 (0.7%)

Other (%) 137 (18.5%)

Unknown (%) 5 (0.7%)

Table 1.  Demographic characteristics for the FluPRINT study population.
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Fig. 2  Demographic characteristics for the FluPRINT study population stratified by the vaccination outcome. 
Distribution of individuals in the categories of high (red, n = 111) and low (grey, n = 252) responders regarding 
the (a) gender, ethnicity and CMV status (b) age distribution between high and low responders. Age is indicated 
in years.
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Assays and data processing.  All data used were analysed and processed at the HIMC26. The distribution 
of assays performed across clinical studies and years is illustrated in Fig. 1b. Overall, SLVP015 was the longest 
study, running from 2007 to 2014, spanning 135 unique individuals, while the majority of samples (249) came 
from the SLVP018 study (Fig. 1). Raw data, including report files, standards, controls, antibodies used are avail-
able at ImmPort (https://immport.niaid.nih.gov/) under identification numbers for each study provided in the 
Online-only Table 1. Online-only Table 2 provides information about all assays performed, protocols, validations 
used and references to the published manuscripts using the data. Protocols for all assays are available online at the 
HIMC website (https://iti.stanford.edu/himc/protocols.html).

Multiplex cytokine assay.  Multiplex ELISA using Luminex was performed using either polystyrene bead 
(for 51/52-plex) or magnetic bead kits (62/63-plex) (eBioscience/Affymetrix). The processed Luminex data avail-
able in the FluPRINT is normalized at the plate level to mitigate batch and plate effects26. The two median fluo-
rescence intensity (MFI) values for each sample for each analyte were averaged, and then log-base 2 transformed. 
Z-scores ((value–mean)/standard deviation) were computed, with means and standard deviations computed for 
each analyte for each plate. Thus, units of measurement were Zlog2 for serum Luminex. Some of the Luminex 
data was used in previous publications9,10,22,27,28. In 2009 and 2010, for SLVP015 and SLVP018 studies, serum 
analytes were analysed using MSD 4- and 9-plex kits (V-PLEX Human Proinflammatory Panel II, Mesoscale, Cat 
No. K15053D and Human ProInflammatory 9-Plex Ultra-Sensitive Kit, Mesoscale, Cat No. K15007C) as accord-
ing to the manufacturer’s protocol. The assay named ‘Other Luminex’ was performed only for study SLVP015 in 
2007 using the Human 42-Plex Polystyrene Kit (EMD Millipore, H42; MPXHCYTO060KPMX42) and data was 
processed in the same way as for the Luminex assays described above (measurement units reported were Zlog2)28.

Hemagglutination inhibition assay.  Serum antibody titers before vaccination and day 28 after vacci-
nation were measured using the standard HAI assay29 using strains of influenza contained in the vaccines9,10,27. 
Geometric mean titers (GMT) were calculated for all strains of the virus contained in the vaccine, while fold 
change is calculated as: GMT for all vaccine strains on day 28/GMT for all vaccine strains on day 0. High respond-
ers were determined as individuals that seroconverted (4-fold or greater rise in HAI titer) and were seroprotected 
(GMT HAI ≥ 40).

Virological assays.  CMV and Epstein-Barr virus (EBV) analysis was performed using CMV IgG ELISA 
(Calbiotech, Cat No. CM027G) and EBV-VCA IgG ELISA (Calbiotech, Cat No. EVO10G), following manufac-
turer’s protocols10,27,30.

Immunophenotyping.  Immunophenotyping was performed either with flow cytometry (Lyoplate)27,30 or 
mass cytometry (CyTOF)30–32. Data was analysed using FlowJo software using the standard templates. Gates were 
adjusted on a donor-specific basis, if necessary, to control for any differences in background or positive staining 
intensity. The statistics was exported for each gated population to a spreadsheet. The percentage of each cell type 
is determined and reported as a percent of the parent cell type.

Phosphorylation-specific cytometry.  Phospho-flow assays were performed either using flow cytometry 
on PBMC (for studies SLVP015, SLVP018 and SLVP021 from 2007 to 2012)9,10,27,28,30 or mass cytometry on whole 
blood (for studies SLVP015, SLVP018 and SLVP021 in 2013)33,34. The percentage of each cell type is determined 
and reported as a percent of the parent cell type. Median values are reported to quantitate the level of phosphoryl-
ation of each protein in response to stimulation. For phospho-flow data acquired on flow cytometer a fold change 
value was computed as the stimulated readout divided by the unstimulated readout (e.g. 90th percentile of MFI 
of CD4+ pSTAT5 IFNα stimulated/90th percentile of CD4+ pSTAT5 unstimulated cells), while for data acquired 
using mass cytometry a fold change was calculated by subtracting the arcsinh (intensity) between stimulated and 
unstimulated (arsinh stim – arcsing unstim).

Automated importer and data harmonization.  After collecting the data, a custom PHP script was 
generated to parse each of the 121 CSV files and to import data into the MySQL database. The source code for 
the script is available online at https://github.com/LogIN-/fluprint. The script optimizes the data harmonization 
process essential for combining data from different studies. Control and nonsense data were not imported, such 
as “CXCR3-FMO CD8+ T cells”, “nonNK-nonB-nonT-nonmonocyte-nonbasophils”, “viable”, etc. To standardize 
data, the original CSV entries were cleaned into the MySQL database readable format (e.g. quotes and parenthe-
sis replaced with underscores, “+” with text “positive”, etc.). Additionally, classifications for ethnicity (Table 2), 
vaccine names (Table 3) and vaccination history (Table 4) were resolved into standard forms, while assays were 
numerated (Table 5). For example, “Fluzone single-dose syringe” and “Fluzone single-dose syringe 2009–2010” 
were mapped to “Fluzone” and given number 4 (Table 3). In all studies, vaccines were given intramuscularly for 
IIV and intranasally for LAIV, except for one study where a distinct licensed formulation of IIV was given intra-
dermally and this was labelled as Fluzone Intradermal and given number 2. During data merging, we replaced 
text strings with binary values. For example, for the variable of gender, female and male were replaced with zero 
and one. To be able to distinguish between visits in consecutive years, a unique visit identification was calculated. 
For the original internal visit data, each visit in one year was labelled as V1 for day zero and V2 for day seven. 
However, if the same individual came in the consecutive year, day zero visit would again be labelled V1, and day 
seven as visit V2, causing repetition of values. To avoid such repetitions in the database, we generated a unique 
visit ID. Therefore, for the above example, first visit in the first year would be labelled V1 for day zero and V2 for 
day seven, but for the next year visits would be labelled as V3 for day zero and V4 for day seven. To distinguish 
between Luminex assays, the prefix L50 was given to each analyte analysed with the 51/52-plex Luminex kit. 
Finally, we imputed new values and calculated the vaccine outcome parameter using HAI antibody titers. High 
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responders were determined as individuals that have HAI antibody titer for all vaccine strains ≥40 after vacci-
nation and GMT HAI fold change ≥4, following FDA guidelines for evaluation of vaccine efficacy2. Vaccine out-
come was expressed as a binary value: high responders were given value of one and low responders the value zero.

Generating tables.  To build FluPRINT database, we generated four tables, as shown in Fig. 3. Table 6 depicts 
characteristics of the FluPRINT database. In the table donor, each row represents an individual given a unique 
encrypted identification number (study donor ID). Other fields provide information about the clinical study in 
which an individual was enrolled (study ID and study internal ID), gender and race. The second table, named 
donor_visits describes information about the donor’s age, CMV and EBV status, Body Mass Index (BMI) and 
vaccine received on each clinical visit. Each clinical visit was given a unique identification (visit ID) in addition 
to the internal visit ID (provided by the clinical study) to distinguish between visits in consecutive years. For each 
visit, we calculated vaccine response by measuring HAI antibody response. Information about vaccine outcome 
is available as geometric mean titers (geo_mean), difference in the geometric mean titers before and after vacci-
nation (delta_geo_mean), and difference for each vaccine strain (delta_single). In the last field, each individual is 
classified as high and low responder (vaccine_resp). On each visit, samples were analysed and information about 
which assays were performed (assay field) and value of the measured analytes (units and data) are stored in the 
experimental_data table. Finally, the medical_history table describes information connected with each clinical 
visit about usage of statins (statin_use) and whether an influenza vaccine was received in the past (influenza vac-
cine history), if yes, how many times (total_vaccines_received, self reported). Also, we provide information which 
type of influenza vaccine was received in the previous years (1 to 5 years prior enrolment in the clinical study). 
Lastly, information about influenza infection (report of MD diagnosis) history and influenza-related hospitaliza-
tion (participant report) is provided.

Data Records
The FluPRINT dataset described herein is available online for use by the research community and can be down-
loaded directly from a research data repository Zenodo35. Additionally, the dataset can be imported in the MySQL 
database for further manipulation and data extraction. The instructions how to import FluPRINT into the data-
base are available at github (https://github.com/LogIN-/fluprint). The summary of the dataset, including the 
number of observations, fields and description for each table is provided in Table 6.

Original Remapped

Caucasian or White Caucasian

Caucasian or White, Asian Other

Caucasian or White, Other Other

Asian Asian

Asian, Other Other

Other Other

Caucasian or White, Black African American, Asian, Other Other

Caucasian or White, Black African American Other

NULL Other

Not Hispanic or Latino Other

Non-Hispanic Other

Decline to answer Unknown

Black African American Black or African American

Black African American, Asian Other

Cauc or White, Black Af Am Other

Caucasian or White, Pacific Islander Other

Caucasian or White, PacIslan Other

Cauc or White, Pacific Islander Other

Pacific Islander, Asian Other

American Indian/Alaska native, Caucasian or Wh Other

American Indian/Alaska native, Caucasian or White Other

American Indian/Alaska native, Black African American Other

Am In/Alaska native, Cauc or W Other

Am In/AlaskaNative, Black Af Am Other

American Indian/Alaska native American Indian or Alaska Native

Hispanic Hispanic/Latino

Hispanic or Latino Hispanic/Latino

Table 2.  Remapping ethnicity.
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Technical Validation
The objective of the current study was to ensure that the FluPRINT dataset accurately reflects processed data 
available in SDM. Technical data validation was carried in previous published studies referred in the Online-only 
Table 2. Data was downloaded from the original source, and here we focused on ensuring that data records were 
accurately harmonized, merged and mapped in the unifying FluPRINT database.

Vaccine received Vaccine type ID Vaccine type name

FluMist IIV4 0.2 mL intranasal spray 1 Flumist

FluMist Intranasal spray 1 Flumist

FluMist Intranasal Spray 2009–2010 1 Flumist

FluMist Intranasal Spray 1 Flumist

Flumist 1 Flumist

Fluzone Intradermal-IIV3 2 Fluzone Intradermal

Fluzone Intradermal 2 Fluzone Intradermal

GSK Fluarix IIV3 single-dose syringe 3 Fluarix

Fluzone 0.5 mL IIV4 SD syringe 4 Fluzone

Fluzone 0.25 mL IIV4 SD syringe 5 Paediatric Fluzone

Fluzone IIV3 multi-dose vial 4 Fluzone

Fluzone single-dose syringe 4 Fluzone

Fluzone multi-dose vial 4 Fluzone

Fluzone single-dose syringe 2009–2010 4 Fluzone

Fluzone high-dose syringe 6 High Dose Fluzone

Fluzone 0.5 mL single-dose syringe 4 Fluzone

Fluzone 0.25 mL single-dose syringe 5 Paediatric Fluzone

Fluzone IIV3 High-Dose SDS 6 High Dose Fluzone

Fluzone IIV4 single-dose syringe 4 Fluzone

Fluzone High-Dose syringe 6 High Dose Fluzone

Table 3.  Remapping vaccine type.

Original Remapped

No 0

Yes 1

IIV injection/im 2

Doesn’t know/doesn’t remember/na/does not remember 3

LAIV4 intranasal/laiv_std_intranasal/laiv_std_ intranasal/nasal/intranasal 4

Table 4.  Remapping vaccination history.

Original Remapped

CMV EBV 1

Other immunoassay 2

Human Luminex 62–63 plex 3

CyTOF phenotyping 4

HAI 5

Human Luminex 51 plex 6

Phospho-flow cytokine stim (PBMC) 7

pCyTOF (whole blood) pheno 9

pCyTOF (whole blood) phospho 10

CBCD 11

Human MSD 4 plex 12

Lyoplate 1 13

Human MSD 9 plex 14

Human Luminex 50 plex 15

Other Luminex 16

Table 5.  Assays in the database.

https://doi.org/10.1038/s41597-019-0213-4
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The FluPRINT dataset was validated on two levels: (1) upon insertion and (2) after the data was inserted 
into the database. To validate data on insertion, we created loggers to monitor import of the CSV files into the 
database. This ensured easier and more effective troubleshooting of potential problems and contributed to the 
monitoring of the import process. Two different sets were used: (1) informative and (2) error loggers. Informative 
loggers provided information about which processing step has started or finished and how many samples have 
been processed in that particular step. This allowed us to monitor that correct number of samples was processed. 
Error loggers provided exact identification and name of the data which could not be imported into the database, 
usually caused by missing or incorrect user input, such as “… assay is missing. Skipping … ‘$row’”. This facilitated 
the process to identify erroneous data, which were then manually reviewed, corrected, and updated.

Once the database was built, a manual review of data was performed to ensure accuracy and integrity of the 
dataset. Several random individuals were chosen and the accuracy of data was evaluated by comparison with the 
raw data. Additionally, we evaluated total number of all donors, assays performed, clinical studies and years with 
the raw data available at the SDM.

Fig. 3  The FluPRINT database model. The diagram shows a schema of the FluPRINT database. Core tables, 
donors (red), donor_visits (yellow), experimental_data (blue) and medical_history (green) are interconnected. 
Tables experimental_data and medical_history are connected to the core table donor_visits. The data fields 
for each table are listed, including the name and the type of the data. CHAR and VARCHAR, string data as 
characters; INT, numeric data as integers; FLOAT, approximate numeric data values; DECIMAL, exact numeric 
data values; DATETIME, temporal data values; TINYINT, numeric data as integers (range 0–255); BOOLEAN, 
numeric data with Boolean values (zero/one). Maximal number of characters allowed in the data fields is 
denoted as number in parenthesis.

Table name Rows Columns Description

donors 740 6
Each row in this table is one donor. Donor is described with 5 additional parameters that 
include unique identification (donor_id and study_donor_id), identification for the study 
(study_id), full internal name of the study (study_internal_id), gender and race.

donor_visits 2,937 18

Each row represents a donor at the particular visit (visit_id). Additionally, information about 
internal visit identification (visit_internal_id), date of the visit (visit_year and visit_day), pre- 
or post-vaccination visit for HAI assay (visit_type_hai), age at the visit (age and age_round), 
CMV/EBV status, BMI index at the visit are provided. Additionally, type of vaccine received 
(vaccine) and other calculated measures for HAI assay (geo_mean, d_geo_mean, d_single, 
vaccine_resp) are provided.

experimental_data 371,260 9
Each row represents a donor at particular visit (donor_visits_id). At each visit, assay that was 
performed is listed (assay) along with the names and values for measured analytes (name, 
name_formatted, subset, units and data).

Medical_history 740 18

Each row is one donor at first visit described by 15 additional parameters. These include 
usage of statins (statin_use) and history of receiving influenza vaccines (flu_vaccination_
history). If donor received vaccination before enrollment, the survey information is provided 
about how many vaccines were received (total_vaccines_received), and the type of vaccines 
for each prior season (fields for the one year before enrolment: vaccinated_1yr_prior and 
vaccine_type_1yr_prior). This information is provided for up to 5 years prior enrolment in 
the clinical study and is by report, not record verified.

Table 6.  The characteristics of the FluPRINT database.

https://doi.org/10.1038/s41597-019-0213-4
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Usage Notes
Recent advances in the computational biology and the development of novel machine learning algorithms, espe-
cially deep learning, make it possible to extract knowledge and identify patterns in an unbiased manner from 
large clinical datasets. Application of machine learning algorithms to clinical datasets can reveal biomarkers for 
different diseases, therapies36, including vaccinations8,9,12. The data from the FluPRINT study can be used to iden-
tify cellular and molecular baseline biomarkers that govern successful antibody response to influenza vaccines 
(IIV and LAIV) across different influenza seasons and a broad age population. The HAI antibody response to 
influenza vaccines is considered as an alternative way to compare immunogenicity of the vaccines in susceptible 
groups where placebo-controlled clinical efficacy study cannot be performed. Since FluPRINT dataset is provided 
as a database, this facilitates further analysis. Queries can be easily performed to obtain a single CSV file. For 
example, researchers interested in understanding which immune cells and chemokines can differentiate between 
high and low responders that received inactivated influenza vaccine could search the FluPRINT database. In the 
database, they can find all donors for which flow cytometry or mass cytometry were performed together with 
Luminex assays, for which donors the HAI response was measured, and all the donors who received inactivated 
influenza vaccine. The resulting CSV file can then easily be used for downstream analysis.

Major advantages of this dataset are the mapping of the vaccine outcome, classifying individuals as high or 
low responders, standardization of the data from different clinical studies, and from different assays. This data 
harmonization process allows for direct comparison of immune cell frequency, phenotype, and functionality 
and quantity of chemokines and cytokines shared between individuals before or after influenza vaccinations. By 
releasing the FluPRINT database and the source code, we provide users with the ability to continue building upon 
this resource and to update the database with their data and other databases.

Code availability
The source code for the PHP script and database schema are available from a public github repository (https://
github.com/LogIN-/fluprint). Raw data files used to generate dataset are provided as single compressed file on 
Zenodo24. Full study population with demographic characteristics is provided as single CSV file25. Additionally, 
entire FluPRINT database export is available as CSV table and SQL file35. Database is also accessible at the project 
website https://fluprint.com.
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