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Posts on central websites need 
less originality to be noticed
Michele Coscia1* & Clara Vandeweerdt2

Information has major consequences for democracy and society. It is important to understand what 
factors favor its diffusion. The impact of the content of a message on its likelihood of going viral is 
poorly understood. Some studies say originality is important for a message not to be overlooked. 
Others give more relevance to paratextual elements—network centrality, timing, human cognitive 
limits. Here we propose that originality and centrality interact in a nontrivial way, which might 
explain why originality by itself is not a good predictor of success. We collected data from Reddit 
on users sharing hyperlinks. We estimated the originality of each post title and the centrality of the 
website hosting the shared link. We show that the interaction effect exists: if users share content 
from a central website, originality no longer increases the odds of receiving at least one upvote. The 
same is not true for the odds of becoming one of the top 10% scoring posts. We show that originality 
is concentrated in the domain network: domains in the core of the network produce more original 
content. Our results imply that research on online information virality needs to take into account the 
nontrivial interaction between originality and prominence.

The Internet has created information highways through society. Via social media, news feeds, newsgroups and 
instant messaging, people are able to spread messages with an unprecedented speed and reach. These capabilities 
have been a force for good—e.g. Wikipedia has improved the potential reach of information—but also for bad—as 
misinformation campaigns have had severe repercussions on the democratic process1 and the effectiveness of 
vaccination campaigns2. Misinformation and fake news are super-spreaders by design3,4: if there is no need to be 
factual, messages can be crafted with virality rather than accuracy in mind. There is a wealth of research showing 
that misinformation spreads more rapidly5,6 and in larger cascades7 on social media than true information and 
has a distinctive style designed to increase arousal8—although it should be noted that misinformation on social 
media is still hotly debated by the scientific community with some studies criticizing these results9. In general, it 
is imperative to understand better how and why messages go viral, to encourage the positive effects of the Web 
and mitigate its potential negative ones.

One factor that seems to be obviously related to the likelihood of viral diffusion is the content of a message. 
However, the role of content in determining virality is currently explored mostly qualitatively10,11, with a focus 
on perceived rather than objective characteristics12. To objectively quantify the relevant aspects of a message’s 
content is hard—especially since a significant portion of communication on social media happens via images13. 
Simple quantitative measures of content (such as lexical/syntactic characteristics14, number of unique words, or 
message length15) are typically found not to predict success, or to be overwhelmed by other factors.

A few papers, however, explore more sophisticated measures of content and find them to be relevant for mes-
sage success. Some focus on the sentimental valence of the message—or the amount of arousal it provokes—and 
connect it with its chances of going viral16–20. Other studies look at originality, as research in marketing21 and 
media22 suggests that original messages are more likely to catch our collective attention. Image or textual origi-
nality indeed seems to help posts be noticed, even if it does not help with success per se23,24.

Parallel to the study of successful content, research has also looked at the effects of para-textual elements on 
success. For instance, messages are more likely to spread if appreciation from users flows quickly after content 
publication15,25,26. There is also a rich-get-richer effect for messages that obtain an early advantage, caused by the 
limited attention span of humans27,28. One para-textual element that has received particular attention is source 
centrality: whether the originators of a message29 or the websites they use to publish their content30,31 sit at the 
intersection of many communities or are otherwise central in the social structure. Work on the science of suc-
cess confirms that the structure of a network can create a disconnect between the quality of a performance and 
its success in art32, sports33, and science34,35.

The success-enhancing capacity of network hubs comes partly from their structural ability to reach many 
other nodes36. But hubs also serve as a brand name for the content they host. For instance, a Reddit user may 
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have an easier time getting upvotes for a post with a YouTube video than for one with a video hosted on their 
personal website. Because of their reach, hubs (such as YouTube) are more likely to be familiar, and the so-called 
recognition heuristic should drive users to attach more value to their content37. At the same time, the recognition 
heuristic plays a smaller role when other quality cues are available38,39—for example, when the content itself is 
highly original. In the case of social media, most sites display content more prominently than source, meaning 
that original content may be eye-catching enough for users not to rely on the recognition heuristic.

In this study, we explore the possibility that such interactions between content and para-text are part of the 
reason why some studies have found surprisingly small effects of content on success. Specifically, we propose that 
content hosted on websites that are central in the Web, and therefore highly recognizable, need less originality 
to be receive attention. Put differently, originality has different effects depending on the level of prominence of 
the information source. Based on existing theory about the recognition heuristic, we formulate three research 
questions.

As a first research question, we want to know if originality—in conjunction with centrality—predicts getting 
noticed. In other words, we test whether original messages are less likely to be completely overlooked, depending 
on their source’s centrality. Second, we want to know if originality—in conjunction with centrality—predicts 
success. In other words, we test whether original messages are more likely to be part of the set of most appreci-
ated messages. Finally, we investigate how originality distributes on a network of content sources, to see whether 
central agents feel the need to be more or less original. The latter question is important because the centrality-
originality interaction assumes a different character depending on whether originality is coupled with centrality 
in the network or if it is completely independent from it.

To answer these questions we focus on posts on Reddit that consist of a web address—which we can place 
in the Web network allowing us to estimate centrality—and a post title—which allows us to estimate the post’s 
originality. We focus on titles because they are the first thing users notice, and thus should greatly impact their 
perception of the content’s overall originality. Further, post titles on Reddit all have comparable formats, where 
the content of a post can be a text, image, video, or even an audio file—making it challenging to develop a single 
measure for originality.

Results
In this section, we show that our first two research questions have opposite answers. On the one hand, if the 
user shares content originating from a non-central website, originality increases the odds of receiving at least 
one upvote on Reddit. This is not the case for content from central websites. On the other hand, there is no clear 
originality-centrality interaction effect when the outcome is post success—measured as being in the top 10% 
scoring posts. In other words, our results suggest that the originality-centrality interaction is more about getting 
at least minimal notice than about obtaining actual success.

As for our third research question, we show that both originality and success concentrate in the core of the 
domain network. Centrality in a website positively correlates with originality, and originality is concentrated in 
the core of the network. This is counterintuitive: central websites do not need originality as much as peripheral 
ones, yet their content is more original on average. Results for RQ1 are consistent across different definitions of 
originality, centrality, success, and also hold true on another social media platform (Twitter). Results for RQ2 
are mixed.

Preliminaries.  We use a mixed-effects linear model to investigate the relationship between originality and 
centrality in defining the success of a post. The following equation specifies our model:

In this equation:

•	 Yi is the success of post i. For RQ1, Yi is the probability of receiving an upvote, p(> 1) . For RQ2, Yi is the 
probability of being in the top 10% scoring posts on Reddit in a day, p(> 10%);

•	 Ti is the title of post i on Reddit, with |Ti| being its length in number of tokens;
•	 OTi is the originality of title Ti;
•	 di is the domain of the link shared via that post;
•	 Cdi is domain di ’s centrality in the hyperlink network;
•	 ηh and ηw are fixed effects for hour of day and day of week in which the post appeared on Reddit;
•	 αs is a random effect of the subreddit in which the post was made;
•	 β0 is the intercept and ǫi is the error term.

The focus of this paper is β3 , which is the coefficient of the interaction between originality and centrality. Existing 
theory on the recognition heuristic suggests that β3 would be negative, as being original would lower the require-
ment of using a more central (recognizable) website for one’s post. Besides this mixed effects linear model, we 
also provide results for a fixed effects logit model in the Supplementary Materials Sections 2 and 3.

Hereafter, all coefficients of interest from our regressions are statistically significant with p < 0.01—unless 
otherwise stated. This is due to the size of our dataset. For this reason, rather than focusing on statistical signifi-
cance, we focus on effect size. The “Methods” section below details how we collected the data, preprocessed the 
titles Ti , estimated a title’s originality OTi and a post’s centrality Cdi , and for a justification of our choice of models.

(1)Yi = β0 + β1OTi + β2Cdi + β3(OTi × Cdi )+ β4|Ti| + ηh + ηw + αs + ǫi ,
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Originality‑centrality interaction: predicting getting noticed (RQ1).  Figure 1a shows on the y axis 
the probability of getting one upvote or more. These probabilities are estimated for an “example” post: one made 
at midnight on Friday in the subreddit r/videos with a post title of length 8—the median title length. We 
then set website centrality Cd to high, medium, or low—using the third, second, and first quartile value. Then, 
we predict p(> 1) for growing values of originality OT . Note that the quantities of interest (namely, the slopes 
of originality for different levels of centrality) are the same no matter what time, day, subreddit, and post length 
we choose for the “example” post.

We see that β3 from Eq. (1) is negative, which means that as centrality goes up, originality matters less—and 
vice versa. Being original is actually detrimental if you use a central website: going from the minimum to maxi-
mum originality found in the data, the probability of getting an upvote declines from 19.2 to 16.3% . Instead, for 
a non-central website, the probability goes up from 11.1 to 16.5%.

Therefore, the answer to our first research question is yes: originality interacts with centrality to predict which 
posts get noticed. The more central the website is, the less originality helps. In other words, the recognition heu-
ristic (triggered by a central website “brand name”) seems to matter somewhat for unoriginal posts, but not for 
original ones. More importantly, this is true for every way we measure originality, centrality and success—see 
Supplementary Materials Sections 2 and 3. Supplementary Tables 1–6 report coefficients and significance levels, 
and show that the basic results hold in a fixed effects logit model.

Originality‑centrality interaction: predicting success (RQ2).  Figure  1b shows that the answer to 
our second research question is no: originality does not interact with centrality to help a post become one of the 
top 10% performing posts. For high centrality websites, growing originality from its minimum to its maximum 
value brings the probability from 7.8 to 8.3% . For low centrality websites, the probability goes from from 8.8 to 
9% . None of this is statistically significant. Note that all these probabilities are lower than 10% due to our choices 
for the fixed effects values.

This analysis suggests that originality matters more for low centrality websites, but only to predict failure—i.e. 
to increase the chances of getting at least one upvote. Originality has little relevance when it comes to becom-
ing successful—i.e. to be in the top 10% performing posts in a month. Different measurement strategies in the 
Supplementary Materials Sections 2 and 3, however, do not all confirm this null result. Instead, we see a mix 
of positive and negative, sometimes statistically significant interaction coefficients (though nearly all are much 
smaller in size than the corresponding coefficients for RQ1). Therefore, our answer to RQ2 is inconclusive.

Distribution of originality in the web (RQ3).  A final important factor to understand the relationship 
between originality and centrality is their correlation in the network of websites. Is it true that posts using more or 
less central websites achieve significantly different levels of originality? One possible speculation could be that users 
know that they need additional effort if they want to “make it” when starting from a non-central website. This might 
explain why in the past the effect of originality on success had been hard to disentangle from centrality.

A simple answer to this question lies in the correlation between centrality and post characteristics. The rela-
tionship between centrality and originality appears to be positive and significant, but very small. The Pearson 
correlation coefficients range from 0.03 to 0.07, depending on the measure of centrality. There is also a positive 
relationship between the centrality and the average number of upvotes a domain has, with higher coefficients 
(0.47–0.54).

This analysis is incomplete, though, because networks are multidimensional objects. There are many ways in 
which the same centrality values—especially the in-degree—could distribute in different structures. For instance, 
high-in-degree high-original nodes might be scattered in different communities, with the network lacking a core. 
This would generate a positive degree-originality correlation, but originality would not be concentrated in the 
network. Supplementary Material Section 4 shows some examples supporting this statement.

To take into account the complex structure of the network, we calculate the network variance40 of originality 
and upvotes, using effective resistance41 to estimate the distance between nodes—effective resistance is more 
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Figure 1.   The interaction effect between originality and centrality. Originality on the x axis, centrality (“Cen” 
in the legend) is the darkness of the line, success on the y axis. (a) Probability of getting at least one upvote 
( p(> 1) ) in red; (b) probability of being in the top 10% scoring posts in a day ( p(> 10%) ) in blue.
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robust to random graph fluctuations than the simple shortest path lengths, which can vary greatly with the addi-
tion/deletion of a single edge40. Network variance is high when original posts are scattered in the periphery, and 
it is low when they concentrate in the core.

Figure 2a shows the observed value of network variance for originality, compared to the distribution of net-
work variance values of 10, 000 null models. These null models are generated by randomly shuffling the observed 
originality values across all domains in the network. The actual observed network variance for originality is lower 
than any of the null models, meaning that originality is more concentrated in the core than we would expect if 
it were distributed randomly. Figure 2b shows that the same is true for upvotes, where concentration diverges 
even further from the null models.

In light of this result, the answer to RQ3 is that originality tends to be found in the core of the network, and 
it positively correlates with centrality. In RQ1 we found that the most central websites benefit the least from 
originality. Here we find that, in spite of this, these central websites still tend to produce the most original posts. 
The implication of this finding is that the true role of content originality is harder to disentangle from central-
ity, because they are not independent from each other—which would explain why it is difficult to study in the 
literature.

Robustness checks.  To ensure the robustness of our results, we alter all the components of our model one 
by one with a similar measure and confirm that our results are unaffected by this change—thus they do not hold 
only for our specific definitions of centrality, originality, success, or even data source. The results of these checks 
are in Supplementary Materials Sections 2 and 3 and they all confirm the conclusions we have drawn from the 
previous section: originality interacts with centrality to predict posts getting at least minimal notice (RQ1), but 
do not predict success (RQ2).

For centrality, we use alternative definitions different from indegree. We estimate a domain di ’s importance 
via its betweenness and PageRank centrality in the domain network, and via the number of posts sharing content 
from di on Reddit. For originality, we create an alternative measure based on information-theory. It better quan-
tifies the amount of surprising information in a post title, but it is less intuitive. This does not affect the results. 
We also try altering our definition of success, considering comments rather than upvotes. We then show that our 
results hold not only for December 2019—the period we consider here—but also for a longer time span (from 
November 2019 to January 2020). We further show that our results are robust to different ways of cleaning the 
data, specifically whether we include our analysis domains and subreddits with very few posts—which suppos-
edly provide more noisy data—or whether we choose different thresholds to determine which posts were part 
of the top performing ones on Reddit. Finally, we use a different data source, repeating our analysis on Twitter. 
In all cases, our main results hold for RQ1. As noted above, robustness checks lead to mixed results for RQ2.

Discussion
In this paper we analyze the relationship between the content of a message in social media (specifically its origi-
nality), the centrality of the website from which it originates, and its success. According to the literature, content 
does not seem to play a large role in determining success. In this paper we show why the relationship between 
the two variables might be hard to properly gauge.

First, originality interacts with centrality in predicting the odds of a message getting noticed at all. Originality 
matters more when the message originates from a peripheral website. Central platforms can get away with less 
original messages, most likely because their recognizability helps them get at least minimal attention. Second, 
the effect of this interaction is only clear when estimating the chances for a message of not failing—on Reddit, 
this means getting at least one upvote, which represents the minimum possible bar of attention. The effect is 
unclear when looking at the chances of becoming one of the most successful posts. Finally, originality does not 
distribute randomly in the network of content creators. Even though central websites could get away with using 
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less originality, on average posts originating from a central website are still more original than posts originating 
in the periphery. Originality tends to concentrate in the core of the network.

Our paper has a number of limitations, which could be addressed in future work. First, we only investigate 
social media. While our results hold on two platforms—Reddit and Twitter—it is still unclear whether we dis-
covered something that applies to web communication in general, including for instance personal websites and 
instant messaging. Second, while our network of content sources contains all the most important nodes in the 
web network—google.com, facebook.com, twitter.com, etc.—future studies could include a larger 
portion of the peripheral web.

Finally, we need more confidence about whether we measure originality, centrality and success in the proper 
way. Our originality measures could be validated by manually annotating a subset of the data. Further, the right 
measure of prominence for a website might not be in-degree, but average daily pageviews. Future work should 
also explore success measures more relevant for human society. For instance, success could be measured through 
high-cost actions such as signing a petition or participating in crowdfunding, rather than simply upvoting or 
retweeting.

Methods
We answered our research questions using Reddit data. We downloaded data about all posts sharing a hyper-
link on Reddit in December 2019. First, we used a naive Bayes approach to estimate the originality of each post 
by looking at its title. Next, we created a hyperlink network of the domains of all shared hyperlinks. We then 
estimated the centrality of the website using network centrality measures on the top-level domain web network.

Data.  Reddit.  The raw data is 21.2M Reddit posts in the month of December 2019. We are interested in 
posts sharing a hyperlink: we ignored all “self ” posts that are just messages by the user. We also removed all 
posts self-hosted on Reddit’s image and video hosting. This was done because these posts are not associated with 
a domain on the Web and thus have no place in our website network. We removed ads and sticky posts—posts 
that are always on top of the page regardless of the number of upvotes. We did so because these posts are always 
visible no matter the votes they receive: this would pollute our results. We also removed posts explicitly marked 
as “Not Safe For Work” (NSFW), normally pornography and gore, as such content might not obey the same rules 
as regular content. After this step, we were left with 4.8M posts.

We resolved shortened URLs to the main domain they belong to—e.g. flic.kr is transformed into flickr.
com. We reduced sub-domains to their parent domain—e.g. i.imgur.com turns into imgur.com. We 
removed all porn subreddits and webdomains that survived the explicit NSFW filter. We only kept domains that 
are also found in the Common Crawl data. This reduced the data to 3.8M posts.

We also removed all subreddits with predominant non-English content, like r/brasil or r/norge. 
This is because our originality score is based on word probabilities, so all words in a language different from the 
dominant language of the platform (English) would have incorrect originality estimates. Following the same 
logic, we tokenized all the titles in the dataset by removing English stopwords, stemming the remaining words 
and keeping only words that are part of the English dictionary—provided by the NLTK Python library—or that 
are sufficiently frequent in the dataset—these include slang words like “wtf ” or “subreddit”. If a post had no valid 
words, it was removed from the dataset.

We removed all subreddits with fewer than five surviving posts, and domains that were used less than five 
times in the data. The final dataset resulted in a collection of 3.1M posts from 11.9k domains and 29.1k subreddits. 
Figure 3 shows a few summary statistics of the final dataset. Figure 3a,b show trends in the number of posts per 
hour and per day of the week, which follow the expected patterns of human activity. This is why we controlled 
for these patterns in our analysis.

The distribution of upvotes per posts and posts and upvotes per domain is skewed (Fig. 3c,d), which means 
that the majority of posts/domain receive little attention: around 57% of submissions did not receive a single 
upvote. Most of the attention is grabbed by a few superstar posts/domains. The domain with most posts is you-
tube.com (694k posts), while the one with most upvotes is imgur.com (114M upvotes).

Common crawl.  We downloaded the domain graph from the Common Crawl for the November 2019–January 
2020 period. Since from the Reddit data we can only reliably obtain top-level domain information, we focus on 
top-level domains. Nodes in the graph are all of the domains that we found in the Reddit data. Two nodes are 
connected if there is a hyperlink between any of their webpages.

We worked with the largest weakly connected component of the graph. Table 1 reports its summary statistics. 
The node count is not equal to the domain count in the final Reddit dataset because some of the domains shared 
on Reddit do not appear in the largest connected component—in fact, they do not have a single hyperlink to the 
other domains used on Reddit. We needed the website network to have a single connected component in order 
to perform our robustness checks with betweenness centrality and to address RQ3 with network variance. Thus, 
posts using those domains were dropped from the analysis.

Originality.  For the purposes of this paper, we decided to use a definition of originality that is as simple and 
intuitive as possible: an original title is a title that, on average, surprises the reader. In more formal terms, in a 
surprising title the reader could not predict what word will come next given the word they are reading right now. 
To the extent that this is a noisy measure of “true” originality, the effects in this paper are lower bound estimates42 
(p. 320–322). On the other hand, an overly-sophisticated measure might be more difficult to interpret.

We quantified this surprise in terms of probability at a bigram level. A bigram B is a sequence of two tokens, 
t1 and t2 . The conditional probability p(t2|t1) is the likelihood that a bigram starting with t1 is completed by t2 . 
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p(t2|t1) is estimated based on posts from the 30 days before B was posted (including the day of its posting). If 
p(t3|t1) < p(t2|t1) , then we say that bigram (t1, t3) is more surprising than bigram (t1, t2) . Bigrams are made up 
of tokens, not words: there are no stopwords and words are reduced to their semantic roots—this is done to avoid 
that the originality of a bigram containing “cats” would be rated differently than the same bigram containing 
“cat” instead. For notation simplicity, if a bigram B = (t1, t2) , we write p(t2|t1) as p(B).

A title T is a sequence of |T| bigrams: T = {B1,B2,B3, . . . ,B|T|} . We added two special tokens to every title in 
the dataset: ˆ to indicate the beginning of the title, and $ to indicate the end. Thus, T’s first token ( B1 ) is always ˆ , 
and T’s last token ( B|T| ) is always $. This allows us to estimate the surprise of starting/ending a post title with a given 
token—a piece of information that would otherwise be ignored.

We could then estimate the average bigram probability of a title T:

We use the notation TT , because this is a measure of “triviality” of a post—it is higher when the probabilities of 
each bigram are high. We need to transform it into a measure of originality OT:

TT =

∑|T|
i=1 p(Bi)

|T|
.

OT = − logTT .
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Figure 3.   Descriptive statistics of the Reddit dataset. Subfigures (a) and (b) show raw values, subfigures (c) and 
(d) show the complement of the cumulative distribution.

Table 1.   Summary statistics of the web graph used.

Measure Value

# Nodes 11,401

# Edges 2,716,488

Avg Degree 477

Density 0.02

Transitivity 0.32

Avg path length 2.03

Diameter 5
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This is a convenient formulation because TT is lower than 1—being the average of a set of probabilities—and 
thus its logarithm is negative. By multiplying the logarithm by −1 , we obtained a measure that goes from 0 to ∞ 
that is directly proportional to the average level of surprise of the title T.

Figure 4a shows the distribution of the OT values across all posts in the Reddit dataset—smoothed via a 
Kernel Density Estimation (KDE) using a Gaussian kernel with bandwith equal to 0.01. Since OT is the result of 
a logarithm, we can see that the distribution is roughly a lognormal. The distribution is asymmetrical, showing 
that low OT values are more likely than high values, as one would expect.

One objection to our definition of originality could be that it is too linked with the length of a post |T|. 
However, Fig. 4b shows that the distribution of post lengths is different than the distribution of OT . In fact, their 
Spearman rank correlation is a mere 0.076. Thus OT and |T| are capturing different things, and we use |T| as a 
control in our analysis.

The odd tail of the length distribution can be explained by the fact that some subreddits encourage users to 
post extensive and descriptive titles. For instance, in r/science a user should give enough information in 
the post title to properly characterize the results of the paper they are linking to (e.g.: https://​www.​reddit.​com/r/​
scien​ce/​comme​nts/​q39sod/​mrna_​covid_​vacci​nes_​highly_​effec​tive_​at/, date of last access: October 8th, 2021).

Centrality.  There are many ways to estimate centrality in a network, each capturing a slightly different notion 
of “importance”. Here we focused on three: in-degree, betweenness centrality43, and PageRank44. Note that, for 
betweenness centrality, we used an undirected view of the webgraph, which is preferable as the graph is com-
posed by multiple strongly connected components. The directed betweenness centralities of two nodes in two 
different strongly connected components would not be comparable. We ignored out-degree centrality because 
we think it does not meaningfully captures a notion of “importance” in the way it is intended in this paper—it is 
more a notion of how “active” a node is in creating connections. For the other measures, “importance” means: 
the ability of capturing hyperlinks (in-degree) from prominent sources (PageRank); or the structural importance 
in tying together the web graph (betweenness centrality).

The first three columns of Table 2 show the top ranked domains according to these three criteria. The table 
includes all domains that appear in the top five of at least one centrality measure. From the table we can see that 
these three network measures all capture something similar, as the set of top ranking nodes is mostly the same 
in a slightly different order. For this reason, we used the in-degree of domain d as our default measure of its 
centrality, Cd . The other measures were used as robustness checks.
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Figure 4.   Distributions of OT and |T|. (a) Kernel density estimation (KDE) on the y axis of OT values (x axis). 
(b) The probability (y axis) of a post to have a title of length |T| (x axis) or shorter.

Table 2.   The top web domains according to their ranks in multiple centrality measures.

Domain In-degree rank Betweenness rank PageRank rank # Posts rank

twitter.com 1 2 1 3

facebook.com 2 1 3 39

google.com 3 3 2 8

youtube.com 4 5 4 1

instagram.com 5 8 5 25

blogspot.com 11 4 15 7

imgur.com 47 28 34 2

gfycat.com 619 683 450 4

twitch.tv 214 136 73 5

https://www.reddit.com/r/science/comments/q39sod/mrna_covid_vaccines_highly_effective_at/
https://www.reddit.com/r/science/comments/q39sod/mrna_covid_vaccines_highly_effective_at/
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We have an additional measure of importance for web domains that does not use the web graph: number of 
posts on Reddit that link to the domain. The idea is to capture domains that are “important” simply because they 
are widely used, whatever the cause for this widespread adoption might be. As the last column of Table 2 shows, 
this measure captures something rather different from network centrality. Central nodes in the network are 
used often, but some of the most-used domains are not especially central in the web graph—most prominently, 
gfycat.com, which is an animated image hosting platform widely used on Reddit. We also provide robustness 
checks using this alternative measure of importance.

Models.  For our main analyses, we used a mixed-effects regression with an interaction between originality O 
and centrality C and random effects of subreddit. It is specified by Eq. (1).

The model has the benefit that it is easy to interpret: β3 is simply the increase in the effect of originality, as 
centrality goes up by one unit. The effect of originality, in turn, is the increase in probability of a post being 
noticed or successful, for a one unit increase in originality. However, there are two problems with this model’s 
assumptions. First, both outcome variables ( p(> 1) and p(> 10%) ) are binary. This means the model is a so-
called linear probability model. A linear relationship between the predictors and binary outcome might not be 
plausible in this case, and might lead to predictions of probabilities higher than one or lower than zero. Second, 
random effects of subreddit might not be reasonable, as they assume that subreddit is not correlated with any 
of the other predictors.

To address these weaknesses, we checked the robustness of the results with a logit model with subreddit fixed 
effects, estimated via Conditional Maximum Likelihood Estimation45,46 (CMLE). We did not use this fixed-effects 
logit model as our main model because its coefficients are harder to interpret. However, since the results from 
two models are compatible—as Supplementary Tables 1–6 show—the interpretations we get from the simpler 
model are not likely to be misleading.

Ethics.  All data in this study consists of information that Reddit and Twitter users intended to make publicly 
available. Posts and accounts are not present in our data set if they had been deleted by users before we down-
loaded the data. We leaned towards analyzing older data, so that Reddit users had the opportunity to delete their 
content for 1.5 years before it was downloaded. For Twitter, the corresponding period is 4 years. We further 
filtered out all porn and “self ” posts, and deleted full URLs and user IDs, removing all of this potentially more 
sensitive data from storage immediately after the pre-processing step. In the data set that we made publicly 
available, we further removed post titles (leaving only their originality score), so that it includes no identifiable 
information. This research was therefore judged to have minimal risk for participants47.

In light of this, no individual-level data has been used for the analysis in this paper and all methods were 
carried out in accordance with relevant guidelines and regulations for data privacy and ethical concerns. All 
data used from the analysis is anonymous and open to public access; no permission is needed to access raw data.

Data availability
Reddit raw data available at https://​files.​pushs​hift.​io/​reddit/​submi​ssions/.Common Crawl raw data available at 
https://​commo​ncrawl.​org/​2020/​02/​host-​and-​domain-​level-​web-​graphs-​novde​cjan-​2019-​2020/.Twitter raw data 
available at https://​files.​pushs​hift.​io/​twitt​er/​US_​Polit​icalT​weets.​tar.​gz.Preprocessed data, and scripts for result 
reproducibility and verifiability, available at https://​www.​miche​lecos​cia.​com/?​page_​id=​2070#​scire​p22.All datasets 
are open to public access. No permission is needed to access raw data.
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