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Abstract: Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by T helper 2
cell (Th2)-shifted abnormal immunity, skin barrier impairment, and pruritus. The prevalence of AD
in childhood is slightly higher in boys than in girls; after puberty, the sexual difference is reversed.
The female preponderance in all generations exists in intrinsic AD with enhanced Th1 activity and
nickel allergy, lacking increased serum IgE or filaggrin mutation. AD is often deteriorated before
menstruation. We review the effects of sex hormones on immune responses and skin permeability
barrier and propose possible hypotheses for the above phenomena. After puberty, the immune
responses of patients are remarkably influenced by sex hormones. Estrogen and progesterone
enhance the activities of Th2/regulatory T cell (Treg) but suppress Th1/Th17. Androgens suppress
Th1/Th2/Th17 and induce Treg. The skin permeability barrier is fortified by estrogen but is impaired
by progesterone and androgens. Dehydroepiandrosterone suppresses Th2 but enhances Th1. The
amount of steroid sulfatase converting dehydroepiandrosterone sulfate to dehydroepiandrosterone
is higher in women than in men, and thus, women might be more susceptible to the influence of
dehydroepiandrosterone. The balance of modulatory effects of sex hormones on immune responses
and skin barrier might regulate the course of AD.

Keywords: atopic dermatitis; estrogen; progesterone; androgen; dehydroepiandrosterone; T helper 2
cell; skin barrier

1. Introduction

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by T helper 2 cell
(Th2)-shifted abnormal immunity, skin barrier impairment, and pruritus (Figure 1) [1–3]. These three
elements are mutually related and organize the clinicopathological features of AD. AD patients mostly
show reduction of filaggrin expression partly due to mutation of this gene [1–3] and reveal decreases in
water content and of ceramide synthesis in the stratum corneum (SC) [1–3]. Moreover, tight junctions
(TJs) are dysfunctional in AD: the levels of zonula occludens 1 were decreased in the non-lesional sites
of AD, and the levels of zonula occludens 1 and claudin-1 were decreased in the lesional sites relative to
the levels in skin from healthy subjects [4]. Such impaired SC and TJ barriers allow the penetration of
allergens like house dust mite, food, or pathogens, inducing sensitization to these allergens [1–3]. The
AD lesional skin is infiltrated mainly by Th2 cells producing interleukin-4 (IL-4), IL-13, or IL-31 and by
T22 cells producing IL-22, while chronic lesion is associated with the infiltration of Th1 cells producing
interferon-γ (IFN-γ). Recently, the infiltration of Th17 cells is also noted in AD lesions [5]. Most AD
patients show increased serum IgE levels and specific IgE antibodies against a variety of environmental
allergens [1–3]. AD patients suffer from severe pruritus due to a variety of pruritogens like histamine,
cytokines like thymic stromal lymphopoietin (TSLP), IL-31, IL-4, IL-13, or neuropeptides and abnormal
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extension of sensory nerves into the epidermis due to the increased expression of nerve growth factor
or artemin or to the decreased expression of semaphorin 3A [2].
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6.04% and 8.01% in Europe and the USA [8]. This tendency is more remarkable in asthma, another 
Th2-shifted allergic disease [9]; the female:male percentage of patients was 35:65 at ages of 2 to 13 
years, was inversed with 65:35 at ages of 23 to 64 years, are similar between those at ages of 14 to 22 
years [10]. Adult female patients with asthma show more severe symptoms than adult male patients; 
the percentage of hospitalization for symptoms is 68% versus 32% in females versus males [11]. 

After puberty, the secretion of sex hormones from the ovary, testis, or adrenal gland is 
enormously increased. The immune responses or skin barrier in adolescents and adults might thus 
be more susceptible to influence by sex hormones compared to those in childhood. The effects of sex 
hormones might be related to the generation-dependent sexual difference in the prevalence of allergic 
diseases [12]. Interestingly, female preponderance of AD-like dermatitis possibly after puberty is 
detected in KFRS4/Kyo rats [13]. Dermatitis with severe pruritus initially appeared around 4 months 
of age, rapidly worsened from 6 to 8 months of age, and predominantly occurred in females: 100% of 
female versus 50% of male KFRS4/Kyo rats of 8 months old that were examined. The skin lesions 
were infiltrated with eosinophils, mast cells, and lymphocytes and were associated with increased 
plasma IgE levels and increased Th2 and Th17 cytokine mRNA levels in the skin-draining lymph 
nodes. Rats become sexually mature at about the sixth week but attain social maturity 5–6 months 
later [14], corresponding to the age with worsening dermatitis in KFRS4/Kyo rats. It is thus 
hypothesized that female sex hormones like estrogen or progesterone may contribute to the higher 
incidence of dermatitis in female KFRS4/Kyo rats. 

On the other hand, female preponderance in all generations exists in intrinsic AD with enhanced 
Th1 activity and high incidence of nickel (Ni) allergy and without increased serum IgE values or 
filaggrin mutation [15]. Moreover, in female patients with AD, the disease is often deteriorated before 
menstruation, i.e., in the luteal phase when both estrogen and progesterone are secreted (Figure 2) 
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The prevalence of AD in childhood is slightly higher in boys than in girls: 8.7% and 5.6% for
boys and girls, respectively, at <4 years old in the Netherlands [6]. After puberty, there is a slightly
higher prevalence of AD in females: 5.7% and 8.1% for men and women, respectively, in Japan [7] or
6.04% and 8.01% in Europe and the USA [8]. This tendency is more remarkable in asthma, another
Th2-shifted allergic disease [9]; the female:male percentage of patients was 35:65 at ages of 2 to 13
years, was inversed with 65:35 at ages of 23 to 64 years, are similar between those at ages of 14 to 22
years [10]. Adult female patients with asthma show more severe symptoms than adult male patients;
the percentage of hospitalization for symptoms is 68% versus 32% in females versus males [11].

After puberty, the secretion of sex hormones from the ovary, testis, or adrenal gland is enormously
increased. The immune responses or skin barrier in adolescents and adults might thus be more
susceptible to influence by sex hormones compared to those in childhood. The effects of sex hormones
might be related to the generation-dependent sexual difference in the prevalence of allergic diseases [12].
Interestingly, female preponderance of AD-like dermatitis possibly after puberty is detected in
KFRS4/Kyo rats [13]. Dermatitis with severe pruritus initially appeared around 4 months of age,
rapidly worsened from 6 to 8 months of age, and predominantly occurred in females: 100% of female
versus 50% of male KFRS4/Kyo rats of 8 months old that were examined. The skin lesions were
infiltrated with eosinophils, mast cells, and lymphocytes and were associated with increased plasma
IgE levels and increased Th2 and Th17 cytokine mRNA levels in the skin-draining lymph nodes.
Rats become sexually mature at about the sixth week but attain social maturity 5–6 months later [14],
corresponding to the age with worsening dermatitis in KFRS4/Kyo rats. It is thus hypothesized that
female sex hormones like estrogen or progesterone may contribute to the higher incidence of dermatitis
in female KFRS4/Kyo rats.

On the other hand, female preponderance in all generations exists in intrinsic AD with enhanced
Th1 activity and high incidence of nickel (Ni) allergy and without increased serum IgE values or
filaggrin mutation [15]. Moreover, in female patients with AD, the disease is often deteriorated before
menstruation, i.e., in the luteal phase when both estrogen and progesterone are secreted (Figure 2) [16].
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These phenomena indicate that sex hormones might modulate the course of AD in the context of
immune responses, skin barrier, or pruritus.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 22 

 

[16]. These phenomena indicate that sex hormones might modulate the course of AD in the context 
of immune responses, skin barrier, or pruritus. 

 
Figure 2. Menstrual cycle. Reprinted from 
https://commons.wikimedia.org/wiki/File:MenstrualCycle2.png. This file is licensed under the 
Creative Commons Attribution-Share Alike 3.0 Unported (https://creativecommons.org/licenses/by-
sa/3.0/deed.en) license. 

In this article, we firstly review the previous studies regarding the regulatory effects of sex 
hormones on the immune responses and skin barrier. We next propose hypotheses on possible 
hormonal regulation in the generation-dependent sexual difference in the prevalence of extrinsic AD, 
female preponderance of intrinsic AD, and premenstrual deterioration of AD. 

2. The Effects of Sex Hormones on Immune Responses 

2.1. General Tendency (Table 1) 

Table 1. The effects of sex hormones on immune responses and skin barrier impairment. 

Hormones  Th1 Th2 Th17 Treg Skin Barrier Impairment 
Androgen ↓ ↓ ↓ ↑ ↑ 
Estrogen ↑∼⬇ ⬆ ↑∼⬇ ⬆ ⬇ 

Progesterone ⬇ ⬆ ⬇ ⬆ ↑ 
DHEA ↑ ↓ ? ? ? 

Total activity F < M F ≫ M ? ? F < M 
↑, Moderate stimulation; ⬆, strong stimulation; ↓, moderate suppression; ⬇, strong suppression; ?, 
ambiguous; ↑∼⬇, Stimulatory or inhibitory effects dependent on the concentration, tissue, or disease 
context; Th1, T helper 1 cell; Treg, regulatory T cell; DHEA, dehydroepiandrosterone; F, female; M, 
male. 

Female hormones estrogen and progesterone mostly enhance the activities of Th2 cells and 
regulatory T cells (Tregs) but suppress Th1 and Th17 activities, which is favorable for the acceptance 
of allogeneic fetus during pregnancy [17]. Androgens like testosterone or dihydrotestosterone (DHT) 
are mostly immunosuppressive and suppress Th1, Th2, and Th17 activities but induce Treg activity. 
The magnitude of stimulation or suppression by female hormones is mostly higher than that by male 
hormones [18]. Generally in adolescents and adults, Th1 activities are higher in men than in women 
while Th2 activities are much higher in women than in men [18]. The sexual differences in Th17 or 
Treg activities are ambiguous. Dehydroepiandrosterone (DHEA) produced in the adrenal cortex 
enhances Th1 responses and shifts the balance of Th1/Th2 toward Th1-dominant immunity [19]. 
Females have higher amounts of steroid sulfatase converting dehydroepiandrosterone sulfate 
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In this article, we firstly review the previous studies regarding the regulatory effects of sex
hormones on the immune responses and skin barrier. We next propose hypotheses on possible
hormonal regulation in the generation-dependent sexual difference in the prevalence of extrinsic AD,
female preponderance of intrinsic AD, and premenstrual deterioration of AD.

2. The Effects of Sex Hormones on Immune Responses

2.1. General Tendency (Table 1)

Female hormones estrogen and progesterone mostly enhance the activities of Th2 cells and
regulatory T cells (Tregs) but suppress Th1 and Th17 activities, which is favorable for the acceptance of
allogeneic fetus during pregnancy [17]. Androgens like testosterone or dihydrotestosterone (DHT)
are mostly immunosuppressive and suppress Th1, Th2, and Th17 activities but induce Treg activity.
The magnitude of stimulation or suppression by female hormones is mostly higher than that by male
hormones [18]. Generally in adolescents and adults, Th1 activities are higher in men than in women
while Th2 activities are much higher in women than in men [18]. The sexual differences in Th17 or Treg
activities are ambiguous. Dehydroepiandrosterone (DHEA) produced in the adrenal cortex enhances
Th1 responses and shifts the balance of Th1/Th2 toward Th1-dominant immunity [19]. Females have
higher amounts of steroid sulfatase converting dehydroepiandrosterone sulfate (DHEAS) to active
DHEA and, thus, might be more susceptible to influence by DHEA compared to males [20]. To date, it
has not been precisely examined how sex hormones regulate the activity of Th22 cells producing IL-22
alone without IL-17A.

Table 1. The effects of sex hormones on immune responses and skin barrier impairment.

Hormones Th1 Th2 Th17 Treg Skin Barrier
Impairment

Androgen ↓ ↓ ↓ ↑ ↑

Estrogen ↑~
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2.2. Female Hormones

2.2.1. Estrogens (Table 2)

Table 2. Summary of the effects of estrogen on the activities of T helper 1 cell (Th1), Th2, Th17, and
regulatory T cell (Treg).

Effects Vivo/
Vitro Species Th Activities References

Adaptive Immunity

T-bet↑ vivo mice Th1↑ [21] *
IFN-γ↑ vivo mice Th1↑ [21] *
IL-12↑ vivo mice Th1↑ [21] *
T-bet↓ vitro human Th1↓ [22] **
T-bet↓ vivo mice Th1↓ [23] †

IFN-γ↓ vivo mice Th1↓ [24] †

IFN-γ↓ vitro mice Th1↓ [25] §

IFN-γ↓ vitro human Th1↓ [22] **
IFN-γ↓ vivo mice Th1↓ [23] †

GATA-3↑ vivo mice Th2↑ [26]
GATA-3↑ vivo mice Th2↑ [23] †

IL-4↑ vivo mice Th2↑ [26]
IL-4↑ vivo mice Th2↑ [23] †

B cells
IgM, IgE↑ vitro mice Th2↑ [27]

RORc↓ vivo mice Th17↓ [24] †

RORc↓ vitro human Th17↓ [28]
RORc↓ vitro/vivo mice Th17↓ [25]
RORγt↓ vitro human Th17↓ [22] **
RORγt↓ vivo mice Th17↓ [23] †

IL-17A↓ vitro mice Th17↓ [25] §

IL-17A↓ vivo mice Th17↓ [24] †

IL-17A↓ vitro human Th17↓ [22] **
IL-17A↓ vivo mice Th17↓ [23] †

IL-22↓ vitro mice Th17↓ [25] §

IL-17A↑ vivo mice Th17↑ [29] ‡

IL-21↑ vivo mice Th17↑ [29] ‡

IL-22↑ vivo mice Th17↑ [21] *
RORγt↑ vivo mice Th17↑ [21] *
RORγt↑ vivo mice Th17↑ [29] ‡

Foxp3↑ vitro human Treg↑ [28]
Foxp3↑ vitro human Treg↑ [30]
Foxp3↑ vivo mice Treg↑ [23] †

Foxp3↑ vivo/vitro mice Treg↑ [31]
IL-10↑ vivo mice Treg↑ [23] †

IL10↑ vitro mice Treg↑ [12]
TGF-↑ vivo mice Treg↑ [23] †

Foxp3↓ vitro human Treg↓ [22] **
IL-10↓ vitro human Treg↓ [22] **

Innate immunity

Macrophage
IL-10↑ vitro human Th2↑ [32]

Macrophage
IL-1RA↑ vitro human Th2↑ [32]

Macrophage
CD192↑ vitro human Th2↑ [32]

Mast cell degranulation↑ vitro mice Th2↑ [33]

↑, stimulation; ↓, suppression; ROR, retinoic acid receptor-related orphan nuclear receptor; Foxp3, forkhead
box P3; GATA3, GATA binding protein 3; T-bet, T-box-containing protein expressed in T cells; STAT3, signal
transducer and activator of transcription 3; *, Estrous level of estradiol (E2) induced the effects, pregnancy-level
of E2 did not; **, Effects of polyphenolic compound delphinidin; †, Pregnancy-levels of E2; ‡, Estrogen receptor
agonist diarylpropionitrile; §, 10−10M E2 induced the effects, but 10−11E2 did not; Effects of selective estrogen
receptor modulator.

Estrogens are estrone, estradiol (E2), and estriol. E2 is produced by ovarian granulosa cells and
placenta. The immunomodulatory effects of E2 are mediated mainly by intracellular estrogen receptor
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α (ERα) and ERβ or structurally unrelated membrane G-protein-coupled estrogen receptor 1. E2
promotes Th2 activity [26,32]: E2 at pregnancy levels of concentration enhanced the expression of GATA
binding protein 3 (GATA3) and IL-4 in ovariectomized experimental autoimmune encephalomyelitis
(EAE) model mice [23]. E2 also enhanced IgE production in mouse splenocytes [27].

The effects of E2 on Th1 cells are complex and depend on the concentration, tissue, or disease
context: E2 at estrous levels of concentration in vivo enhanced the expression of T-box-containing
protein expressed in T cell (T-bet) and IFN-γ production in female ovariectomized autoimmune
thyroiditis model mice [21]. In contrast, E2 at pregnancy levels of concentration reduced the production
of IL-12 and IFN-γ in phytohemagglutinin plus lipopolysaccharide (LPS)-stimulated human whole
blood cells [34]. The high-dose estrogen treatment reduced the expression of IFN-γ and T-bet in EAE
model mice [23]. It appears that pregnancy levels of E2 shift the Th1/Th2 balance towards Th2 profiles,
inhibiting Th1 development [22,35].

Though E2 mostly suppresses Th17 activity [22,24], several studies reported the stimulatory
effects of E2 on Th17 cells: E2 at estrous levels of concentration enhanced the expression of IL-21
and retinoic acid receptor-related orphan nuclear receptor γt (RORγt) in female ovariectomized
autoimmune thyroiditis model mice [21]. Diarylpropionitrile, a specific agonist of ERβ and not
of ERα, in vivo enhanced IL-17A, IL-21, and RORγt mRNA levels in splenocytes of experimental
autoimmune thyroiditis model mice through binding of the agonist-activated ERβ to IL-17A and IL-21
gene promoters [29]. In contrast, E2 at estrous levels of concentration suppressed RORc expression
and IL-17A and IL-22 production in response to sperm or Candida albicans in female ovariectomized
mice [25]. The treatment with estrogen at pregnancy levels of concentration suppressed RORγt
expression and IL-17A and IL-6 production in EAE model mice [23]. E2 upregulated the expression of
repressor of estrogen receptor activity (REA) and recruited REA to the estrogen response elements
(EREs) on the RORγt promoter region, thus inhibiting RORγt expression [36].

E2 enhances the activity and/or proliferation of Tregs [28]: E2 enhanced the expression of forkhead
box P3 (Foxp3) by inducing binding of the E2/ERα complex to EREs on a human Foxp3 promoter [30].
Polanczyk et al. reported that E2 in vivo and in vitro increased Foxp3 expression and Treg number
in mice [31]. Tai et al. reported that E2, at physiological doses, in vitro stimulated the conversion of
CD4+CD25-T cells into CD4+CD25+T cells, which exhibited the enhanced expression of Foxp3 and
IL-10 in mice [12].

Estrogen also acts on mast cells and induces IgE-mediated degranulation [33,37], indicating the
stimulatory effects of E2 on allergic diseases. In Th2 hapten toluene diisocyanate (TDI)-sensitized
allergic airway inflammation model mice, ERα and ERβ agonists induced IL-33 production of airway
epithelial cells and eosinophil infiltration into the lung [38].

2.2.2. Progesterone (Table 3)

Progesterone is secreted by the ovarian corpus luteum and placenta and plays a major role in
the establishment and maintenance of pregnancy. The effects of progesterone are mainly mediated
by intracellular progesterone receptors while some rapid non-transcriptional actions are mediated by
structurally unrelated membrane progesterone receptors [17].
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Table 3. Summary of the effects of progesterone on the activities of T helper 1 cell (Th1), Th2, Th17, and
regulatory T cell (Treg).

Effects Vivo/Vitro Species Th Activities References

Adaptive Immunity

T-bet↓ vitro cows Th1↓ [39]
IFN-γ↓ vitro cows Th1↓ [39]

PIBF- STAT6↑ vitro human Th2↑ [40]
GATA3↑ vivo/vitro mice Th2↑ [41]

IL-4↑ ex vivo mice Th2↑ [42]
IL-4↑ vitro cows Th2↑ [39]
IL-4↑ vivo mice Th2↑ [42]
B cell
IgE↑ vivo mice Th2↑ [42]

Vaginal epithelial cell
TSLP↑ vivo/vitro mice Th2↑ [41]

STAT3 RORC CCR6 IL-23R
IL-6R AHR↓ vitro human Th17↓ [43]

RORγt↓ vivo/
vitro mice Th17↓ [41]

RORC↓ vitro cows Th17↓ [39]
IL-17A↓ vitro human Th17↓ [43]
IL-17A↓ vitro cows Th17↓ [39]
IL-17F↓ vitro human Th17↓ [43]
IL-21↓ vitro human Th17↓ [43]
CD39+

regulatory Th17↑ vivo mice Th17↑※ [44]

IL-17A↑ vivo mice Th17↑※ [44]
IL-22↑ vivo mice Th17↑※ [44]
IL-23↑ vivo mice Th17↑※ [44]
IL-6↑ vivo mice Th17↑※ [44]

TGF-β↑ vivo mice Th17↑※ [44]
Foxp3↑ vitro mice Treg↑ [43]
Foxp3↑ vivo/vitro mice Treg↑ [41]

Innate Immunity

Airway epithelial cells
Amphiregulin↑ vivo mice [44]

※,CD39+ regulatory Th17 cells; ↑, stimulation; ↓, suppression; ROR, retinoic acid receptor-related orphan nuclear
receptor; Foxp3, forkhead box P3; GATA3, GATA binding protein 3; T-bet, T-box-containing protein expressed in
T cells; STAT, signal transducer and activator of transcription; AHR, aryl hydrocarbon receptor; CCR6 CC-type
chemokine receptor 6; TSLP, thymic stromal lymphopoietin; PIBF, progesterone-induced blocking factor.

Progesterone promotes Th2 activity [45]: progesterone acts on T cells and induces the secretion
of progesterone-inducible blocking factor (PIBF) which binds IL-4 receptor α(IL-4Rα)/PIBFR on the
cell surface and induces the Janus kinase 1 (Jak1)/signal transducer and activator of transcription 6
(STAT6) pathway to increase the production of Th2 cytokines like IL-4 or IL-10 [40]. Progesterone
increased TSLP expression in vaginal epithelium and GATA-3 expression and IL-4 production in
CD4+T cells in Neisseria gonorhoeae-infected vagina of mice [41]. Progesterone treatment increased IL-4
production in peripheral blood mononuclear cells (PBMCs) from pregnant cows [39]. The pro-Th2
effect of progesterone is consistent with the higher IL-4 and IL-10 production in PBMCs from pregnant
cows with high progesterone levels than those from nonpregnant cows [39]. Progesterone treatment on
ovariectomized asthma model mice increased serum IgE levels and IL-4 production in bronchoalveolar
lavage cells [42], indicating the contribution of progesterone to the elicitation of allergic diseases.

In contrast, progesterone directly suppresses Th1 development in mice [46]. Progesterone
treatment suppressed T-bet expression and IFN-γ production in PBMCs from pregnant cows [39].
The Th1-suppressive effect of progesterone is also consistent with the decreased IFN-γ production in
PBMCs from pregnant cows compared to those from nonpregnant cows [39].

Progesterone suppresses the differentiation of Th17 cells: progesterone in vitro suppressed
IL-17A, IL-17F, and IL-21 production and RORc expression in human cord blood cells under the
Th17-differentiation conditions and also suppressed their STAT3 phosphorylation in response to
IL-6 [43]. Progesterone suppressed RORγt expression and decreased IL-17A-producing CD4+T cell
numbers in Neisseria gonorhoeae-infected vagina of mice [41].
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Progesterone induces the differentiation of Tregs [44]: progesterone in vitro drove the allogeneic
activation-induced differentiation of human cord blood naive T cells into immunosuppressive Tregs,
which highly expressed FoxP3 and memory T cell marker CD45RO [43]. Progesterone increased the
percentage of CD4+CD25+Foxp3+ Tregs in Neisseria gonorhoeae-infected vagina of mice [41]. These
reports totally suggest that progesterone favors Th2/Treg activities but suppresses Th1/Th17 activities,
which might be favorable for tolerance to allogeneic fetus and for maintenance of pregnancy [17].

2.3. Androgens (Table 4)

Table 4. Summary of the effects of androgens on the activities of T helper 1 cell (Th1), Th2, Th17, and
regulatory T cell (Treg).

Effects Vivo/Vitro Species Th Activities References

Adaptive Immunity

ptpn1↑ STAT4↓ vivo/ vitro human and mice Th1↓ [47]
PPARα↑ vitro/vivo mice Th1↓ [48]
IFN-γ↓ vitro/vivo mice Th1↓ [48]
IFN-γ↓ vitro mice Th1↓ [49]
IFN-γ↓ vitro human Th1↓ [50]
IL-12↓ vitro human Th1↓ [50]

CXCL10↓ vitro human Th1↓ [50]
IL-13↓ vitro human Th2↓ [50]
IL-4↓ vitro human Th2↓ [50]
IL-5↓ vitro human Th2↓ [50]

B cell number↓ vivo mice Th2↓ [51]
B cell

Antigen-specific IgE
production ↓

vivo mice Th2↓ [52]

PPARγ↓ vitro/vivo mice Th17↑ [48]
IL-17A↑ vitro/vivo mice Th17↑ [48]
IL-23R↓ vivo mice Th17↓ [53]
IL-23R↓ vitro Mice Th17↓ [54]
IL-17A↓ vitro mice Th17↓ [49]
IL-17A↓ vivo mice Th17↓ [53]
IL-17A↓ vitro human Th17↓ [50]

ARE-Foxp3↑ vitro human Treg↑ [55]
IL-10↑ vitro human Treg↑ [50]

Innate Immunity

Mast cell
IL-4↓ vivo mice Th2↓ [53]

ILC2
IL-13↓ vivo mice Th2↓ [53]

Basophil
IL-4↓ vivo mice Th2↓ [53]

↑, stimulation; ↓, suppression; ROR, retinoic acid receptor-related orphan nuclear receptor; Foxp3, forkhead box P3;
STAT, signal transducer and activator of transcription; ptpn1, protein tyrosine phosphatase, non-receptor type 1;
PPAR peroxisome proliferator-activated receptor; ARE, androgen response element; ILC, innate lymphoid cell.

Androgens, such as dihydrotestosterone (DHT) or testosterone, are synthesized in the gonads
and adrenal glands. Testosterone is the most concentrated androgen in adult male serum. DHT is
present at one-tenth the concentration of testosterone though DHT is more potent than testosterone.
Testosterone can be aromatized to E2 by aromatase. Androgens mainly bind intracellular androgen
receptors (ARs) but also bind plasma membrane G-protein-coupled receptors [56].

Androgens are mostly immunosuppressive [51,57]. Androgens inhibit Th1 differentiation:
testosterone inhibited IL-12-induced phosphorylation of STAT4 in murine CD4+T cells by inducing the
expression of protein tyrosine phosphatase nonreceptor 1, which inactivates Jak2 and Tyk2 kinases [47].
DHT inhibited IFN-γ production in murine CD4+T cells by enhancing the expression of peroxisome
proliferator-activated receptor α (PPARα), which represses IFNγ transcription [48].

Androgens inhibit Th2 differentiation: DHT treatment of bone-marrow-derived dendritic cells
pulsed with Trichuris muris antigen reduced their Th2-priming activity with a complete ablation of
IL-4, IL-10, and IL-13 production by co-cultured T cells [54]. DHT treatment of prostate stromal
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cells suppressed the production of IL-4, IL-5, and IL-13 production by co-cultured CD4+ T cells [50].
Gonadectomized male mice showed increased IL-13-producing innate lymphoid cell 2 (ILC2) and
Th2 cells and increased serum IgE levels compared to sham-operated mice in response to house dust
mite antigens [53], indicating the suppressive effects of androgens on type 2 immune responses. In
male castrated phospholipase A-sensitized allergic rhinitis model mice, testosterone administration
decreased the production of phospholipase A-specific IgE [52], indicating the suppressive effects of
androgens on allergic rhinitis. Androgens also suppress B cell lymphopoiesis [51]: testosterone acted
on bone marrow stromal cells to induce the production of transforming growth factor-β, which reduced
the production of IL-7 required for B cell proliferation and differentiation [56].

Androgens suppress Th17 differentiation: male gonadectomized mice showed increased
IL-17A-producing Th17 and γδT cells compared to sham-operated mice in response to house dust mite
antigens [53]. The deficiency of AR signaling enhanced IL-17A production and IL-23R expression
in T cells under Th17-differentiation conditions [53]. These results indicate the inhibitory effects of
androgens on type 17 immune responses. Testosterone treatment of murine T cells in vitro decreased
IFN-γ or IL-17 production under the Th1- or Th17-differentiation conditions, respectively [49].

On the other hand, androgens induce Tregs: androgen-activated AR bound androgen response
elements on the Foxp3 promoter and enhanced the acetylation of histone H4 on the promoter, allowing
the binding of additional transcription factors, and thus enhanced the expression of Foxp3 in human
T cells [55]. Danazol, an attenuated androgen, increased CD4+CD25highCD127lowFoxp3+ Tregs in
patients with aplastic anemia [58].

2.4. DHEA (Table 5)

Table 5. Summary of the effects of dehydroepiandrosterone (DHEA) on the activities of T helper 1 cell
(Th1), Th2, Th17, and regulatory T cell (Treg).

Effects Vivo/Vitro Species Th Activities References

Adaptive Immunity

IFN-γ↑ vivo mice Th1↑ [59]
IFN-γ↑ ex vivo mice Th1↑ [60]
IFN-γ↑ vitro mice Th1↑ [19]
IL-12↑ vitro mice Th1↑ [10]
IFN-γ↓ vivo mice Th1↓ [61] *
IFN-γ↓ vivo mice Th1↓ [62]
IL-4↓ vivo mice Th2↓ [59]
IL-4↓ vitro mice Th2↓ [63]
IL-4↓ vitro human Th2↓ [64]
IL-4↓ vivo mice Th2↓ [61] *
IL-4↓ vivo mice Th2↓ [60]
IL-4↓ ex vivo mice Th2↓ [60]
IL-5↓ vivo mice Th2↓ [59]
IL-5↓ vivo mice Th2↓ [62]
IL-5↓ vitro human Th2↓ [64]
IL-5↓ ex vivo mice Th2↓ [60]

IL-13↓ vivo mice Th2↓ [59]
CCL11↓ vivo mice Th2↓ [59]
CCL24↓ vivo mice Th2↓ [59]

B cell
IgE ↓ vivo mice Th2↓ [65]

B cell
IgE ↓ vivo mice Th2↓ [60]

B cell
IgG1↓ vivo mice [60]

IL-13↑ vivo mice Th2↑ [62]
RORC↓ vivo mice Th17↓ [61] *
IL-17A↓ vivo mice Th17↓ [61] *
IL-17A↓ vivo mice Th17↓ [62]
TNF-α↓ vivo mice Th17↓ [60]

IL-6↓ vivo mice Th17↓ [62]
TGFβ↓ vivo mice Th17↓ [62]
TNF-α↑ vitro human Th17↑ [66] †

IL-6↑ vitro human Th17↑ [66] †

IL-1β↑ vitro human Th17↑ [66] †

Foxp3↓ vitro human Treg↓ [67]
IL-10↓ vitro mice Treg↓ [62]
IL-10↓ vitro mice Treg↓ [63]
Foxp3↑ vivo mice Treg↑ [68] **
IL-10↑ vivo mice Treg↑ [61] *
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Table 5. Cont.

Effects Vivo/Vitro Species Th Activities References

Innate Immunity

Mast cell
infiltration↓ vivo mice Th2↓ [60]

Eosinophil
infiltration↓ vivo mice Th2↓ [59]

Eosinophil
infiltration↓ vivo mice Th2↓ [60]

HaCat cells
CCL17↓ vitro human Th2↓ [60]

HaCat cells
CCL22↓ vitro human Th2↓ [60]

BEAS-2B
CCL11↓ vitro human Th2↓ [59]

BEAS-2B
CCL24↓ vitro human Th2↓ [59]

Ovary granulosa
cell

ICAM1/VCAM1↑
vivo mice [19]

*, Possible effects of DHEA metabolite, 5-androsten-3β,17β-diol (adiol), via estrogen receptor β (ERβ); **, Synthetic
DHEA analog HE3286; †, Effects via ER; ↑, stimulation; ↓, suppression; ?, ambiguous; ROR, retinoic acid
receptor-related orphan nuclear receptor; Foxp3, forkhead box P3; ICAM1, intercellular adhesion molecule 1;
VCAM1, vascular cell adhesion molecule 1.

DHEAS is the most abundant steroid in human blood serum and is secreted by the adrenal
cortex [69]. DHEAS is converted by steroid sulfatase to an active form, DHEA [69]. Steroid sulfatase is
controlled by an X-linked gene that escapes the Lyon effect of X-inactivation; as a result, women have
twice the amount of steroid sulfatase than men [70], especially in peripheral lymphoid organs [20]. The
DHEA/DHEAS ratio in circulation is usually higher in women than in men [71], and under 50 years
old, the plasma DHEA concentration of women is higher than that of men [72]. It is thus hypothesized
that women might be more susceptible to the effects of DHEA than men [20] though the effects might
be influenced by other factors such as receptor and downstream pathways. DHEA itself binds nuclear
steroid hormone receptors like AR, ERα, or ERβ with lower affinities than cognate ligands. DHEA is
metabolized to other steroid hormones, testosterone, DHT, or E2 (Figure 3), and these metabolites bind
the corresponding steroid receptors: DHEA metabolite 5-androsten-3β,17β-diol can bind ERβ [61].
Moreover, recent studies revealed that DHEA and DHEAS act as ligands of many nuclear receptors
like PPARα, pregnane X receptor, and constitutive androstanol receptor and membrane receptors like
TrkA, N-methyl-D-aspartic acid receptors, or γ-amino butyric acid receptors [73]. Thus, the biological
effects of DHEA depend on the levels of metabolizing enzymes and individual receptors and, thus,
vary with species, tissues, or cell types.

DHEA mostly enhances Th1 differentiation: DHEA treatment enhanced IL-12 and IFN-γ
production in female murine peritoneal cells in vivo and enhanced the expression of very late
antigen-4 and leukocyte function-associated antigen-1 in CD4+ T cells in vitro [19]. DHEA in vivo
increased the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1
in ovary granulosa cells of mice [19,74]. DHEA suppresses type 2 immune responses [65]: in female
ovalbumin-sensitized asthma model mice, DHEA administration reduced eosinophil infiltration
into the lung; serum ovalbumin-specific IgE levels; and the expression of IL-4, IL-5, and IL-13 and
type 2 chemokines CC-chemokine ligand 1 (CCL1) and CCL24 in bronchoalveolar lavage fluid but
increased IFN-γ production in ovalbumin-activated splenocytes [59]. DHEA reduced IL-4 production
but increased IL-2 production in concanavalin A-stimulated human PBMCs [64]. In LPS-induced
experimental inflammation model mice, DHEA increased the Th1/Th2 ratio in spleen T cells [63]. DHEA
significantly increased Th1 cytokine levels (IL-2 and IFN-α) and decreased Th2 cytokine levels (IL-4 and
IL-10) in primary cultured spleen T cells [63]. DHEA decreased Na+K+-ATPase activity and increased
Ca2+ ATPase activity in T cells, which might regulate the balance of cytokine secretion [63]. Thus,
DHEA enhances Th1 immune response and regulates the balance of Th1/Th2 toward Th1-dominant
immunity. In AD model mice induced by topical 2,4-dinitrochlorobenzene (DNCB), oral or topical
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DHEA attenuated the infiltration of eosinophils and mast cells into DNCB-challenged ear skin. In
those mice, oral or topical DHEA also reduced serum IL-4 and IgE levels and reduced IL-4 and
IL-5 production but increased IFN-γ production in splenocytes [60]. DHEA in vitro suppressed the
production of type 2 chemokines, CCL17 and CCL22, in tumor necrosis factor-α-stimulated HaCat
cells [60].
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The effects of DHEA on Th17 and Treg are ambiguous [62] and dependent on tissue or
disease context [66]: DHEA treatment increased the number of Foxp3+ Tregs in splenocytes of
female ovariectomized mice [75]. In EAE model mice and human multiple sclerosis patients,
DHEA directly inhibited the activity of Th17 cells, inducing IL-10-producing Tregs via ERβ
activation [61]. This effect may be mediated by 5-androsten-3β,17β-diol, converted from DHEA
by 17β-hydroxysteroid dehydrogenase (Figure 3). Synthetic DHEA analog HE3286 increased the
frequency of CD4+CD25+Foxp3+ Tregs in spleen in collagen-induced arthritis model mice [68] though
the receptors for this analog are unknown and not ERα, ERβ, or AR. In contrast, DHEA reduced the
expression of Foxp3 without altering Treg frequency in PBMCs from patients co-infected with HIV and
tuberculosis [67].

3. The Effects of Sex Hormones on the Skin Barrier (Table 1)

Overall, in adults, skin hydration is slightly higher in women than in men and basal transepidermal
water loss (TEWL) is significantly higher in men than in women [35,76]. The epidermal permeability
barrier is impaired by androgens and progesterone but is restored by E2 [77]. E2 paradoxically worsens
the progesterone-induced barrier impairment [78]. The skin barrier is impaired in the luteal phase
when both progesterone and estrogen are secreted [79].

The ovariectomy of female C57/BL6 mice reduced skin hydration, delayed skin permeability
recovery after tape stripping, and reduced epidermal thickness; these were restored by the
administration of E2 [80]. Ovariectomy also reduced the expression of desmoglein-1, involucrin, and
loricrin, key constituents of corneodesmosome and cornified envelope (CE) in SC; these were restored
by E2 treatment [80]. Ovariectomy of female nude mice (ICR-Foxn1nu) also reduced the expression of
filaggrin and integrin β in the skin [81]. These results support that E2 strengthens the skin permeability
barrier and integrity.

The castration of male mice (Sk:h1) or treatment with AR antagonist flutamide accelerated skin
permeability recovery after tape stripping, and testosterone administration delayed recovery in the
castrated mice [82]. Testosterone treatment of castrated mice reduced the number of lamellar bodies in
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the cytosol of stratum granulosum (SG) cells and decreased secreted lamellar contents at the interface
of SC and SG [82]. These results support that testosterone perturbs the skin permeability barrier
homeostasis. The administration of E2 in pregnant rats reduced TEWL of day-20 fetus while that
was increased by DHT [77]. The administration of E2 accelerated lipid deposition and formation
of lamellar unit structures in the SC of day-20 fetal epidermis in utero while these were delayed
by DHT [77]. In fetal skin explants from day-17 rats, estrogen increased while DHT reduced the
activity of β-glucocerebrosidase, which converts glucosylceramides to ceramides and is essential for
the formation of lamellar unit structures throughout SC interstices [83]. In the same explants, estrogen
accelerated while DHT delayed the expression of filaggrin and loricrin, key constituents of keratohyalin
granules and CE, respectively [84]. These results indicate that E2 accelerates while androgen delays SC
barrier formation.

Topical testosterone delayed skin permeability barrier recovery in male hairless mice (HR-1),
and the delay was overcome by co-application of E2 [78]. Progesterone also delayed the recovery;
however, the delay was paradoxically enhanced by E2 [78]. To date, the precise mechanism of how
progesterone delays skin permeability barrier recovery is not elucidated; however, it is indicated
that progesterone opposes the protective effect of E2 on skin permeability barrier and that the skin
permeability barrier may be impaired in females in the luteal phase when both progesterone and
estrogen are secreted. Muizzuddin et al. showed that the skin permeability barrier was the weakest
between days 22 and 26 of the menstrual cycle, the mid-luteal phase [85]. TEWL is higher at the day
of minimal estrogen/progesterone ratio (around day 26) than that at the day of maximal estrogen
secretion (around day 13) [79]. It is thus hypothesized that the skin barrier might be protected by E2,
which might be opposed by progesterone. The skin patch test reaction to Ni is higher at the luteal
phase than that at the ovulatory phase or at the follicular phase [86], which may be due to the skin
permeability barrier impairment at the luteal phase when progesterone is secreted. In the uterus of
ovariectomized mice, E2 treatment increased mRNA levels of small proline-rich protein 2 (SPRR2),
which was dampened by progesterone [87]. Since SPRRs are key constituents of CE in SC of the
skin, further studies should elucidate if such suppressive effects of progesterone might be reproduced
in the skin. In contrast, progesterone upregulated the expression of TJ proteins occludin and zona
occludens 2 in the epidermis, and this effect was canceled by E2 in ovariectomized FvB mice [88].
Progesterone upregulated the expression of occludin in human gut tissues and Caco-2 cells [89]. It is
thus hypothesized that the TJ barrier might be restored by progesterone but impaired by E2, opposite
to the SC barrier, though confirmative studies are required for its verification.

It is reported that oral DHEA in humans at > 60 years old improved skin hydration, epidermal
thickness, sebum production, and pigmentation [90]. Such antiaging effects of DHEA are mainly
generated by the enhanced collagen biosynthesis and deposition: topical DHEA increased the mRNA
levels of procollagen 1/3 and heat shock protein 47, a type 1 collagen chaperone protein in human
dermal fibroblasts [91]. In contrast, topical DHEA treatment reduced the expression of genes associated
with the terminal differentiation and cornification of keratinocytes, corneodesmosin, claudin 8, SPRR2G,
late envelope protein 7, and Jagged 1, indicating the suppression of skin barrier properties [92]. To
date, the direct effects of DHEA on skin permeability barrier have not been reported and should further
be examined. In the testis, DHEAS but not DHEA augmented the TJ connections between Sertoli cells
by promoting the expression of claudin-3 and -5 via membrane Gnα11-coupled receptors independent
of AR [93].

4. The Effects of Sex Hormones on the Pruritus

There have been no reports that sex hormones act as pruritogens. However, E2 and/or progesterone
directly or indirectly induce the secretion of Th2-related cytokines, IL-4, IL-13, IL-31, TSLP, or
IL-33; these cytokines bind the corresponding receptors on C-type sensory neurons and generate
an itch sensation [94]. In Th2 hapten TDI-sentitized allergic dermatitis model mice, oral or topical
administration of ERα agonist propylpyrazoletriol induced TSLP and IL-33 expression in keratinocytes
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and promoted scratching behavior [95]; the pruritus might be caused by TSLP and IL-33. Estrogen also
acted on mast cells and promoted the release of histamines [33,37], which also act as pruritogens.

In sensory neuron-keratinocyte coculture model, DHEA produced by keratinocytes promoted
neurite growth possibly through the activation of TrkA [96,97], indicating the relations to abnormal
neurite outgrowth into the epidermis of AD lesions. The effects of sex hormones on neurite growth
should further be examined precisely.

5. Intrinsic AD

Intrinsic AD patients occupy around 10–20% of whole AD, show normal IgE values, lack
IgE antibodies against environmental or food allergens, and lack barrier disruption and filaggrin
gene mutation [15]. Intrinsic AD patients manifest Dennie–Morgan fold but without icthyosis
vulgaris and palmar hyperlinearity and with milder severity of AD. Intrinsic AD patients show
positive on patch tests to metals, especially to Ni, at a higher percentage than extrinsic AD
patients, indicating the higher incidence of metal allergy [98]. Intrinsic AD patients show high
Ni concentrations in serum and sweat [98,99], indicating the enhanced absorption and/or transport
of Ni derived from food and sensitization with Ni in the circulation and skin. Immunologically,
intrinsic AD patients show higher Th1 activity than that of extrinsic AD patients and show Th2
activity comparable to that of extrinsic AD patients [100]. Since Ni interacts with toll-like receptor 4 in
addition to major histocompatibility/self-peptide complex and induces a mixed Th1 and Th2 cytokine
responses [98,101–103], a considerable number of intrinsic AD patients, though not all, might show
both Th1 and Th2 responses to Ni through its presentation by antigen presenting cells in the skin patch
test. Thus, metals might act as the main allergens in intrinsic AD though other agents might also work
in its pathogenesis. In both children or adults, the prevalence of intrinsic AD is higher in females than
in males [104,105]; moreover, the prevalence of Ni allergy is higher in females than in males [106,107].

6. Possible Hypotheses on the Generation-Dependent Sexual Difference in the Prevalence of
Extrinsic AD (Table 6)

It is hypothesized that prepubertal children might be mostly devoid of the influence of sex
hormones considering their very low concentrations. The effects of DHEA, shifting the Th1/Th2 balance
to Th1, might be more remarkably revealed in girls than in boys due to the higher levels of steroid
sulfatase converting DHEAS to DHEA. Thus, both atopic asthma and extrinsic AD, Th2-shifted allergic
diseases with atopic diathesis, might be more prevalent in boys than in girls. The male preponderance
in childhood asthma might also involve gender-specific factors other than hormonal regulation [108]:
boys have smaller airway diameters relative to lung volume (dysanapsis; [109]) and show a higher
percentage of positive skin prick tests or IgE antibodies against aeroallergens than girls, indicating
higher atopic diathesis in boys than in girls [110]. The higher aeroallergen sensitivities in boys may also
be related to the male predominance in childhood AD [111]. Alternatively, the higher asthma incidence
in boys may be because underdiagnosed and undertreated asthma patients exist among girls [112].

After puberty, the levels of sex hormones, estrogen, progesterone, testosterone, or DHT are greatly
increased and individuals might thus be more greatly influenced by the immunological effects of those
sex hormones than those of DHEA [18,113,114]. Women are exposed to higher levels of estrogen and
progesterone promoting Th2 activity. The prevalence and severity of atopic asthma might thus become
much higher in women than in men exposed to higher levels of androgens suppressing Th2 activity.
The female preponderance in adult asthma may also involve other gender-specific factors [108]: the
bronchial hyperresponsiveness is more frequent in women than in men; women are more likely to be
exposed to indoor aeroallergens than men.

In the case of adult extrinsic AD, patients are influenced by the effects of sex hormones both
on immune responses and skin barrier impairment. The Th2 shift is more prevalent in women than
in men; however, skin barrier impairment is more likely to occur in men exposed to high levels of
androgens perturbing skin permeability barrier. In women, skin barrier is restored by estrogen at
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the follicular and ovulatory phases but are disturbed by progesterone at the luteal phase. Totally,
female adults might be slightly more protected from skin barrier impairment compared to male adults,
considering the postmenopausal skin barrier disruption in females and its restoration by hormonal
agents, including both estrogen and progesterone [115]. Thus, female adults with higher Th2 activity
but slightly more protection from skin barrier impairment may show a slightly higher prevalence of
extrinsic AD compared to male adults, though the sexual difference is moderate compared to strict
female preponderance of adult atopic asthma. It is known that Th1 activity is enhanced in the chronic
phase of AD and that Th17 cells may also be involved in the pathogenesis of AD [5], which might
be more applicable to women than men since estrogen might promote Th1 and Th17 activities at
estrous level of concentrations [21]. Other gender-specific factors might also be related to the moderate
female preponderance of adult AD: women are more responsive to pruritogens than men, and female
mice showed higher scratching counts than male mice under the stimulus of proteinase-activated
receptor-2-activating peptide [116]. The involvement of sex hormones in hyperknesis or alloknesis
should further be investigated.

Table 6. The generation-dependent sexual difference in the prevalence of atopic asthma and extrinsic
atopic dermatitis (AD).

Child Adolescent–Adult

Atopic
Asthma

Atopic
Diathesis

Th2
Regulation
by DHEA

Th2
Regulation

by Sex
Hormones

Th2
Regulation
by DHEA

M +~++ ↓ ↓↓by A ↓

F + ↓↓ ↑↑↑↑by E, P ↓↓

Prevalence M > F M� F

Extrinsic
AD

Atopic
Diathesis

Filaggrin
Gene

Nutation

Th2
Regulation
by DHEA

Th2
Regulation

by Sex
Hormones

Th2
Regulation
by DHEA

Skin Barrier
Impairment

by Sex
Hormones

M +~++ + or − ↓ ↓↓by A ↓ ↑by A

F + + or − ↓↓ ↑↑↑↑by E, P ↓↓
↓↓by E ↑by P

Totally↓
Prevalence M > F M < F

↑, Stimulation; ↓, Suppression; Th2, T helper 2 cell; DHEA, dehydroepiandrosterone; F, female; M, male; A, androgen;
E, estrogen; P, progesterone.

7. Possible Hypotheses on Female Preponderance of Intrinsic AD (Table 7)

We herein propose a hypothesis on female preponderance of intrinsic AD in the context of metal
allergy, one possible agent of its pathogenesis. Patients with intrinsic AD are not associated with
atopic diathesis, filaggrin gene mutation, or congenital skin barrier impairment and are associated
with enhanced Th1 activity as well as Th2 and high incidence of Ni allergy though not in all patients.
Before puberty, there is no sexual difference in the chances of Ni exposure, though in Western countries,
girls are more frequently exposed to Ni due to the first pierce experiences. Th1 responses to Ni might
be more remarkable in girls with higher susceptibility to DHEA promoting Th1 activity than in boys.
Totally, intrinsic AD in childhood might be more prevalent in girls than in boys.

After puberty, women are more frequently exposed to Ni by wearing ornaments than men.
The immune response to Ni might be gradually shifted from Th1 to Th2 since repeated elicitation
with antigens alters the balance of cytokines released locally, with a shift toward Th2-dominated
responses [117]. Immune responses after puberty might be more susceptible to the influence of sex
hormones than of DHEA. After puberty, Th2 responses to Ni might be more remarkable in women
with higher levels of estrogen and progesterone stimulating Th2 activity than men with higher levels
of androgens suppressing Th2 activity. The intrinsic AD after puberty might thus become much more
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prevalent in women than in men. The female preponderance of intrinsic AD may also involve certain
gender-dependent factors unrelated to metal allergy, which should further be identified.

Table 7. Female preponderance of intrinsic atopic dermatitis (AD).

Intrinsic
AD

Child Adolescent–Adult

Atopic
Diathesis

Filaggrin
Gene

Nutation

Exposure
to Ni

Stimulation
of Th1

Response to
Ni by DHEA

Exposure
to Ni

Regulation of
Th2 Response
to Ni by Sex
Hormones

Stimulation
of Th1

Response to
Ni by DHEA

M − − + ↑ + ↓↓by A ↑

F − − +~++ ↑↑ ++ ↑↑↑↑by E, P ↑↑

Prevalence M < F M� F

↑, Stimulation; ↓, Suppression; Th1, T helper 1 cell; DHEA, dehydroepiandrosterone; F, female; M, male; A, androgen;
E, estrogen; P, progesterone; Ni, nickel.

8. Possible Hypotheses on the Premenstrual Deterioration of AD in Females

About half of female AD patients experience premenstrual deterioration of AD symptoms [118].
The deterioration might be due to the dual effects of estrogen and progesterone on Th2 activity and
skin barrier. At the luteal phase, both estrogen and progesterone are secreted and, thus, Th2-skewing
effects are higher than in the other phases; moreover, the skin permeability barrier is perturbed by
progesterone, especially, just prior to menstruation with minimal estrogen/progesterone ratio.

The deterioration of AD during pregnancy is also reported; 52% or 61% of female AD patients
who experienced pregnancy had noticed deterioration of AD during pregnancy in the UK [119] or
Korea [120], respectively. The deterioration of AD during pregnancy might also reflect the effects of
extremely high concentrations of E2 and progesterone on Th2 activity and skin barrier. Moreover, the
prevalence of deterioration during pregnancy was higher in intrinsic AD patients (100%) compared to
that in extrinsic AD patients (47.1%) in the Korean study [120]. It is thus hypothesized that intrinsic
AD patients might be more susceptible to the influence of female sex hormones compared to extrinsic
AD patients.

9. Serum Hormone Concentrations in Patients with Allergic Diseases

It is reported that serum concentrations of DHEA or testosterone are lower in male AD patients
compared to the reference group [64,121]. These indicate that DHEA- or testosterone-induced
suppressive effects on Th2 activity are reduced in male AD patients, which might aggravate the
symptoms of AD. It is also reported that serum concentrations of DHEA or DHEAS are lower in
patients with asthma or chronic spontaneous urticaria compared to the reference group, irrespective
of gender [122]. It is thus speculated that the reduction of Th2-suppressive effects by DHEA
might accelerate the Th2 shift in these patients though confirmatory studies are needed to verify
the speculation.

It is reported that prolonged physical stress with energy and sleep deprivation reduced serum
DHEA levels and increased serum DHEAS levels, indicating the decrease of steroid sulfatase activity
and/or increase of sulfotransferase activity by prolonged physical stress [123]. It is thus hypothesized
that the reduction of DHEA levels might be one possible cause of the stress-induced exacerbation of
allergic diseases.

10. Conclusions

We reviewed the effects of sex hormones related to the course of AD and focused on immune
responses and skin barrier. The balance of the effects of sex hormones might up- or downregulate the
prevalence and course of AD. Future studies should elucidate the effects of sex hormones on Th22
activity or pruritus, using AD model mice.
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