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Rett syndrome: think outside the (skull) box
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Abstract

Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder characterized by neurodevelopmental regression between 
6 and 18 months of life and associated with multi-system comorbidities. Caused mainly by pathogenic variants in the MECP2 
(methyl CpG binding protein 2) gene, it is the second leading genetic cause of intellectual disability in girls after Down syndrome. 
RTT affects not only neurological function but also a wide array of non-neurological organs. RTT-related disorders involve 
abnormalities of the respiratory, cardiovascular, digestive, metabolic, skeletal, endocrine, muscular, and urinary systems and 
immune response. Here, we review the different aspects of RTT affecting the main peripheral groups of organs and sometimes 
occurring independently of nervous system defects.
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Introduction
Rett syndrome (RTT) is a severe X-linked neurological  
disorder that is caused primarily by loss-of-function mutations 
in the ubiquitously expressed MECP2 (methyl CpG binding  
protein 2) gene1. It is the second most prevalent genetic cause 
of intellectual disability in girls2 (incidence of 1/10,000 girls) 
after Down syndrome. Mutations occur de novo, prevent-
ing the possibility of prenatal screening or genetic counseling; 
therefore, the incidence is not expected to decline. After a  
period of normal development, patients with RTT undergo 
a regression of early neurodevelopment3. The main clinical  
features are severe intellectual disability, microcephaly, loss 
of hand skills and speech, seizures, and respiratory and motor  
abnormalities4.

Although neurological conditions are prominent, the disease 
affects not only the central nervous system (CNS) but also a 
wide array of non-neurological organs. RTT has a complex 
and multifaceted clinical appearance5. This pathology evolves 
throughout the life span of the patient, and multi-system comor-
bidities, like gastrointestinal (GI), orthopedic, endocrine, or  
cardiac issues, are more or less prevalent6. Liver injury, uro-
logical dysfunction, adipose tissue disorders, and inflammatory  
response troubles are also non-neurological disorders asso-
ciated with RTT7. Although most research is focused on the  
role of MECP2 in the CNS, the different clinical aspects  
identified in Mecp2 mutant animal models and RTT patients  
underline the importance of MECP2 in peripheral tissues.  
Even if most symptoms of RTT arise from neural origin, 
a mouse model exclusively expressing Mecp2 in neuronal 
and glial cells suggests that some symptoms of RTT occur  
independently of nervous system defects8.

According to caregivers, many of these chronic health issues 
cause pain and impair the quality of life of patients with RTT9.  
Currently, treatments are aimed at alleviating symptoms but 
not cure RTT10,11 and these peripheral abnormalities should 
be considered when planning therapeutic strategies. Here, we  
review the main systems affected by MECP2 mutations,  
besides the CNS, in RTT patients and mouse models.

Respiratory system
The most prevalent peripheral dysfunctions in RTT are breath-
ing abnormalities12. Nearly 100% of patients with classic RTT 
will develop, over their life span, breathing abnormalities that 
can be categorized into one of two groups: hyperventilation  
and breath-holding13. Up to a quarter of sudden RTT-associated  
deaths could be caused by respiratory arrhythmia14. Both male 
and female Mecp2-deficient mouse models (hemizygous or 
heterozygous Mecp2-knockout (KO) mice) display breathing  
disturbances with apneas, beginning around 1 month of life and 
worsening over time, together with an exacerbated response 
to hypoxia15–18. Post-mortem analysis of Mecp2-null mice 
lungs showed macroscopic and histological abnormalities with  
the presence of infiltrating cells in different tissues of the  
lungs, indicating inflammation19.

The cause of these breathing irregularities has been investi-
gated in RTT mouse models, principally in the brain stem, 
which has a critical role in regulating respiratory function.  
A conditional Mecp2-KO in the brain stem and spinal cord 
caused abnormal patterns of breathing20. Many neuronal 
mechanisms are likely to play a role in the RTT breathing  
phenotype21 as imbalances in synaptic transmission22 and altera-
tion in different neuromodulatory systems such as bioaminergic  
neurotransmission15,18.

A peripheral contribution to the respiratory symptoms has  
nevertheless been examined. Although Mecp2 is expressed in 
the lungs, its conditional deletion in peripheral tissues is not suf-
ficient to perturb breathing activity. Unlike in the Mecp2-null  
mice, in conditional peripheral Mecp2-KO mice no gross struc-
tural abnormalities or inflammation were found in lung tissue 
biopsies8. However, the presence of Mecp2 is essential for pul-
monary fibrosis23. Together, these results confirm that respira-
tory dysfunction is linked to disruption of autonomic or brain  
stem function.

Digestive system
GI and nutritional troubles are frequently reported in patients 
with RTT24. In a cohort of 983 females with RTT, 81% had  
feeding problems (principally chewing difficulty, prolonged 
feeding time, and choking), 92% had GI problems (gastro-
esophageal reflux, constipation, straining with bowel move-
ments, and passage of hard stools), and 47% had nutritional 
problems (poor weight principally)24. A small percentage (4.4%) 
of patients also have biliary tract disease, which may have a  
fatal outcome25.

Only a few studies have investigated GI dysfunction in mouse 
models and, although there is a well-known underweight in  
Mecp2-KO mice26, GI dysmotility was described only in 201627. 
That study found a large increase in transit time in Mecp2-KO  
mice compared with controls27. Wahba et al. also showed 
that MECP2 was expressed in the GI tract, specifically in the 
enteric nervous system (ENS) in humans and mice as early 
as embryonic day 11.5 (E11.5)28. GI motility is controlled by 
the myenteric plexus, part of the ENS which uses more than  
30 neurotransmitters29. However, peristalsis is activated mainly  
by acetylcholine and inhibited by vasoactive intestinal peptide29  
and nitric oxide30. Levels of nNOS (the enzyme catalyzing  
the production of nitric oxide) were elevated in Mecp2-KO  
GI tissue27. This upregulation could be, in part, responsible  
for GI hypomotility.

At the histological scale, Mecp2-null mice displayed a shorter 
colon with severe changes in its epithelium similar to those 
observed in colitis and abnormal localization of key membrane  
proteins31. However, conditional deletion of Mecp2 from intes-
tinal tissue using the villin promoter, an actin binding pro-
tein expressed mainly in the microvilli of the epithelium of 
the gut, does not reproduce the Mecp2-null GI phenotype31.  
Since the conditional Mecp2-KO in non-neuronal cells does not 
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display any body-weight decrease compared with the control  
group8, these symptoms may have a neural origin. A cen-
tral or enteric origin cannot be ruled out here since a brain- or  
ENS-specific Mecp2-KO does not exist. The commonly called 
CNS conditional KO mice were generated with the nestin-Cre  
transgene26,32. However, nestin is also expressed in the gut, 
and nestin-expressing intestinal cells give rise to enteric neu-
rons and glia33. A study by Deguchi et al. suggests that  
constipation in RTT is related to autonomic nervous system  
dysfunction originating in the brain stem and not in the  
bowel34. Indeed, an immunoreactivity assay showed no  
differences in the expression of substance P, tyrosine hydrox-
ylase, and vasoactive intestinal peptide in girls with RTT  
compared with healthy controls in the gut. This is in contrast  
to the brain stem, where differences were found34. However, GI 
motility is not controlled by these neurotransmitters only, and  
transit perturbations could be partly caused by ENS dysfunction.

Prompted by recent evidence that bacterial and fungal gut 
microbiota have a role in human health and GI functions,  
studies have been conducted in patients with RTT35–37. Measures  
of fecal calprotectin and erythrocyte sedimentation rate 
showed an increase linked to intestinal sub-inflammatory status  
in patients with RTT36. Interestingly, patients with RTT  
display an altered microbiota, in terms of abundances and  
richness, and modified short-chain fatty acid profiles36 and these 
alternations were not correlated with constipation status. The  
study by Borghi et al. (2017) was in agreement with the  
latest findings; however, the authors showed that microbiota 
dysbiosis was related to total disease severity35. A focus on the 
gut mycobiota revealed a distinct genotypic profile of Candida  
parapsilosis in girls with RTT compared with controls, increas-
ing its potential virulent features and the capacity to be more 
resistant to antifungals37. Even though mechanisms are not 
clearly understood yet, altered gut microbiota could be impli-
cated in the GI pathophysiology of RTT. To resolve this  
question, intestinal microbiota was investigated in a female 
rat model of RTT38, and different abundance of microbial taxa 
between wild-type (WT) and RTT rat has been identified. The 
use of animal models allows experimental control of the diet 
and the host, and manipulation of the microbiota is neces-
sary to further investigate the role of the gut microbiome in  
the severity and progression of RTT.

Metabolism
The liver plays a central role in all of the body’s metabolic 
functions, such as carbohydrate, fat, or protein metabolism39.  
Interestingly, RTT is associated with metabolic dysfunctions  
and liver disease40.

Kyle et al. (2016) investigated whether the loss of Mecp2 
could cause perturbations of metabolism in a male mouse 
model of RTT41. Mecp2 deletion induces severe dyslipidemia, 
fatty liver disease, metabolic syndrome, and insulin resist-
ance and alters energy homeostasis. Liver-specific deletion of  
Mecp2 increases lipogenic enzyme transcription, leading to  
fatty liver disease without affecting insulin sensitivity41.

Except for the brain, which has to synthesize its own choles-
terol (since this compound cannot cross the blood–brain barrier),  
the body’s primary producer of cholesterol is the liver42. 
Although brain cholesterol synthesis is commonly disrupted in  
Mecp2-null mice, elevated cholesterol level in the liver is 
observed only in 129.Mecp2tm1.1Bird mice43, and peripheral meta-
bolic phenotype differs across genetic backgrounds44. Con-
sistently, lipid metabolism is altered in a subset of patients  
with RTT45. The imbalance in plasma lipid profile is restricted 
to cholesterol metabolism with augmented levels of total  
cholesterol, low-density lipoprotein (LDL) and high-density  
lipoprotein (HDL) cholesterol in patients with RTT46.

The understanding of metabolic aspects and liver injuries 
linked to RTT reveals potential therapeutic targets but unfor-
tunately faces limitations for therapeutic strategies such as 
gene therapy. Indeed, hepatotoxicity due to high off-target 
liver delivery of an AAV9-Mecp2 has been demonstrated in a  
female mouse model of RTT47.

Skeletal system
Orthopedic comorbidities have been reported in over 80% 
of patients with RTT, and the most encountered disorder is 
scoliosis48. Scoliosis is related to a lack of walking but is  
unrelated to the loss of hand skills or hand stereotypes48. These 
results extend our understanding of interactions between  
scoliosis and overall clinical severity. Surgical correction of 
scoliosis is mostly successful but has a very high rate of com-
plications with a prolonged hospital stay49. Other orthopedic 
symptoms include hip displacement and a high prevalence of  
fractures50–52, which can be diminished with intravenous 
bisphosphonates treatment53. Several markers, such as osteo-
calcin or bone-specific alkaline phosphatase, which are linked  
to bone formation and resorption, were decreased in patients 
with RTT54. These results suggest a low bone turnover that 
could explain altered bone mass. Altogether, these observations 
support the need for clinical and radiological surveillance in  
all patients with RTT.

Studies in a murine model of RTT confirmed low bone mass as 
a component of this syndrome with cortical thickness, min-
eralization of the medullary cavity in long bones, and low 
bone density in the spine55. Curvature of the spine is also  
present with kyphosis in the form of a C56. Interestingly, Kamal 
et al. (2015) showed that the skeletal phenotype caused by 
Mecp2 deficiency is potentially reversible by the delayed res-
toration of Mecp2 in adult mice57. These results highlight the 
importance of the development of gene-based therapies, espe-
cially in light of recent advances in gene therapy for bone  
regeneration58.

Endocrine system
The endocrine system is controlled by glands, located either 
in the brain (such as the pituitary and the pineal gland) or in the 
periphery (such as the thyroid, adrenals, or gonads). Other tis-
sues, like the adipose tissue, which secretes leptin, a hormone 
inhibiting hunger and upregulated in RTT, can also contribute  
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to the endocrine system59. Endocrine disorders have an impact  
on growth, menstrual cycles, and bones.

Hyperactivity of the hypothalamic–pituitary–adrenal (HPA) axis 
has been observed in animal models of RTT60, and the investi-
gation of HPA axis function among patients with RTT shows 
that diurnal decline of cortisol is less steep in patients with 
the most severe symptoms such as frequent hyperventilation61. 
These preliminary results support the hypothesis that RTT is  
associated with aberrant HPA axis function.

In patients with RTT, the most common (59% of patients) 
endocrine issue is low bone mineral content52, which is corre-
lated with the occurrence of fractures. This alteration of bone 
mineral deposition may be caused by vitamin D deficiency62.  
Blue et al. (2015) showed that, compared with WT mice, 
female heterozygous and male Mecp2-null mice also displayed 
decreased mineral apposition rate, mineralizing surface, and  
bone formation rate/bone surface63.

Girls with RTT also frequently present alterations in the time  
of appearance of secondary sexual characteristics such as early 
pubertal onset and delayed menarche64, yet the mechanisms 
by which MECP2 mutations could impact pubertal pathways  
remain unclear.

Also, at the gland level, thyroid function has been studied in 
RTT and no consensus was reached65–67. A subtle decrease 
of levels of T

4
, one of the thyroid hormones, was reported in 

a cohort of 17 patients by Cooke et al., but no evidence of  
clinical hypothyroidism was found67. The study of a larger 
cohort of 45 girls with typical and atypical RTT showed oppo-
site results with increased T

4
 levels65. The thyroid hormones T

3
  

and T
4
 are essential for proper development; they function as 

transcription factors and the genes they regulate are impor-
tant for brain development68. The relationship between thy-
roid disorders and RTT phenotype merits further investigations, 
especially since it is known that the lack of thyroid hormones  
results in intellectual deficiency68 and weight variation69.

Cardiovascular system
Cardiac abnormalities have been investigated as a cause of 
sudden death of unknown origin in RTT. The patients have 
electrocardiogram and rhythm defects, including prolonged  
QT interval (QTc)70,71, one of the most studied cardiac risk 
factors for sudden death. No clinical morphological or func-
tional changes have been demonstrated using cardiac imaging  
studies, although a subclinical mild decrease in systolic and 
diastolic ventricular function was found in a cohort of 72 girls 
with typical RTT72. These findings must be considered in the  
context of patients exhibiting autonomic dysfunctions with 
sympathetic over-activity, parasympathetic under-activity, and  
sympathovagal imbalance73.

Cardiac arrhythmias have also been reported in animal mod-
els of RTT; and these arrhythmias could be predisposed by 
prolonged QTc74 but also by the abnormal differentiation of 

cardiac progenitors, the dysregulation of cardiac genes, or 
cardiomyocyte structural alterations75. Baseline heart rate 
and blood pressure are at WT levels in Mecp2 heterozygous  
females76, suggesting no defects of autonomic cardiovascular  
control. However, Herrera et al. (2016) showed that condi-
tional removal of Mecp2 in cholinergic neurons was suffi-
cient to recapitulate cardiac rhythm defects in RTT mice77. 
These results showed that Mecp2 deficiency altered autonomic  
cardiac control mainly via the cholinergic nervous system.

Muscular system
Muscular troubles are present at different time points of the 
pathology. Mild hypotonia is frequently observed before the 
onset of symptoms in patients with RTT78. During the late 
motor deterioration phase, abnormal muscle tone is observed79.  
Skeletal muscles in Mecp2 mutant mice were not exten-
sively investigated except by Conti et al. (2015)80. Mecp2 
deficiency induces severe skeletal muscle atrophy with no  
dystrophic features other than a reduced muscle mass80. Muscle  
atrophy can have different causes, including necrosis (which 
is not observed here), abnormal innervation, or dysfunction  
of the neuromuscular plaque. However, the morphology  
of neuromuscular plaques is normal in the absence of 
Mecp280 and innervation is functional81. Another cause of 
atrophy could be the affected regeneration after muscular  
injuries observed in Mecp2-null mice80.

To understand whether muscular defects are cell- or  
non-cell-autonomous, Conti et al. generated a conditional KO 
for Mecp2 using the MyoD promoter, expressed in myob-
lasts and muscle fibers. These animals displayed normal  
muscle structure and myofibers and did not show any of the  
RTT-linked myopathy80. According to these results, Mecp2 is 
not required for the development and growth of skeletal mus-
cles and these defects may be due to non-cell-autonomous  
mechanisms related to trophic factors80.

Skeletal muscles are rich in mitochondria, the primary 
organelle producing energy in the cell. Muscle biopsies of 
patients with RTT showed not only morphological ultrastruc-
tural abnormalities in mitochondrial number and size but also 
distention, vacuolation, dumb-bell shape, and membranous  
changes82–86. Therefore, the muscular phenotype of RTT could  
also be caused, in part, by mitochondria dysfunction.

Urinary system
Urological dysfunction is infrequent but is described in a  
subset of patients, about 8% of a large cohort of 905 girls with  
typical RTT87, which is a higher incidence rate compared 
with the general population. The most frequent complications 
are urinary tract infection, kidney stones, or urine retention87  
but also urinary acidification88. These symptoms are signifi-
cantly correlated with the total clinical severity score. However,  
incontinence is not part of the RTT phenotype89.

In both male and female Mecp2-mutant mice, urological 
function was studied in the absence of Mecp287. Patterns of  
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micturition were assessed, and abnormalities were found with 
a decreased volume of urine per spot for both sexes; no differ-
ence was found between hemizygous males and heterozygous  
Mecp2-KO females. As micturition troubles can lead to urine 
reflux from the bladder to the kidney and cause damage,  
kidney function was also investigated. Serum chemistry 
exhibited evidence of kidney failure and necropsy identi-
fied distended bladders, obstruction of the urinary tract, and  
moderate hydronephrosis87; this clinical observation could be a 
cause of mortality in these mice.

The cause of urological dysfunction in RTT is not well known 
yet. Nevertheless, it is noteworthy that urological problems 
are found in other neurological disorders like Parkinson’s 
disease or Huntington’s chorea. Urological complications 
could be the consequence of a dysfunction of the autonomic  
nervous system.

Immune response
A subclinical chronic inflammatory status has been shown 
in RTT patients with an increased erythrocyte sedimentation  
rate90. A major cytokine upregulation was also found and 
was correlated with clinical severity and the inflammatory  
status91. These observations suggest that immune response dys-
functions contribute to the pathophysiology of RTT92: on one 
hand, with the alteration of microglia activity in the CNS that 
affects neural development93 and, on the other hand, with the 

alteration of peripheral immune cells such as macrophages.  
Even if several reports suggest the presence of an autoim-
mune component in RTT, such as oxidative damage, cytokine 
dysregulation, or acute-phase protein response, no “classical  
autoimmunity” has been shown yet94.

Mecp2 was found to be expressed in cells implicated in 
the immune response, such as peripheral macrophages and  
monocytes95. In Mecp2-null mice, macrophage populations,  
including microglia, are decreased96. However, conditional 
KO of Mecp2 in the macrophage was not able to generate  
an RTT phenotype, but the inflammatory status has not been 
reported yet97.

Immune response participates in RTT pathophysiology, and 
the genetic rescue of several macrophage and monocyte popu-
lations results in the attenuation of a subset of phenotypes  
and the increase of the life span95.

Conclusions
RTT is a complex disorder that impacts primarily the CNS but 
also several systems inducing multiple comorbidities (Figure 1).  
Most of these peripheral symptoms, such as breathing abnor-
malities or cardiac defects, are still due to Mecp2 deficiency 
in the brain or peripheral nervous system. However, some 
organs are likely affected by the lack of Mecp2 in the tissue  
itself. It is noteworthy that some comorbidities are also found 

Figure 1. Rett syndrome-related organ system disorders involve abnormalities of the respiratory, cardiovascular, digestive, metabolic, 
skeletal, endocrine, muscular, and urinary system. Graphical representation of the organ systems affected in a patient with Rett syndrome. 
The schematic art pieces used in this figure were provided by Servier Medical Art (https://smart.servier.com/). Servier Medical Art by Servier 
is licensed under the terms of Creative Commons Attribution 3.0 Unported License (CC BY 3.0).

https://smart.servier.com/
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in other diseases affecting multiple organs and are certainly 
consequences of other symptoms. Therefore, these clinical  
manifestations may not be specific to RTT.

The various studies on mouse models have shown that they  
reproduce certain comorbidities fairly accurately. However, 
these models, generally Mecp2-KO males, are genetically 
quite distant from the mutations found in female patients, com-
plicating the translation of studies and therapeutic trials in  
patients.

In order to improve disease management and the patients’ qual-
ity of life, multi-disciplinary medical follow-up is key. Indeed, 
these “peripheral” symptoms cause significant pain and may 

be responsible for sudden death. The complexity of the dis-
ease is a hindrance to research, mainly for therapy, and the  
multi-organ damage is an additional challenge. A better under-
standing of this multi-system disorder, thanks to model sys-
tems and human studies, will provide better care for patients  
and hopefully advance therapeutic development.
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