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ABSTRACT
Climate change will significantly affect the distribution area of species. Through
establishing distribution model, we can simulate the current and future potential
distribution range and provide reference for the introduction and cultivation planning
of rare or economic plants. Dendrocalamus sinicus, endemic to Yunnan Province of
China, is the strongest woody bamboo in the world. In the present study, the MaxEnt
model was performed to simulate the distribution of different types of D. sinicus in
China and neighboring countries or regions. The results suggested that the suitable
distribution range of ‘‘straight type’’, the main type for cultivation and utilization,
was 8◦–30◦N and 73◦–122◦E under the current climate conditions, while the potential
distribution range of ‘‘bending type’’ was 6◦–31◦N and 79◦–109◦E. The two most key
climate variables associated with distribution of ‘‘straight type’’ were ‘‘Temperature
Annual Range’’ with 36.6% contribution rate and ‘‘Temperature Seasonality’’ (32.4%),
while ‘‘Isothermality’’ (47.8%) and ‘‘Precipitation of Driest Month’’ (24.8%) for
‘‘bending type’’. Under different climate change scenarios (SSP1-2.6, SSP5-8.5) and
periods (2050, 2090), the potential distribution area of the ‘‘straight type’’ were
apparently different, indicating that the distribution area of D. sinicus will be affected
significantly by climate changes in the future. Our findings would be not only beneficial
to understanding limiting factors for natural distribution of D. sinicus, but also helpful
for further germplasm conservation, introduction and cultivation planning of this rare
woody bamboo.

Subjects Biodiversity, Conservation Biology, Ecology, Climate Change Biology, Forestry
Keywords Dendrocalamus sinicus, key bioclimate variables, MaxEnt model, Potential distribution
area, Woody bamboo

INTRODUCTION
Nowadays, global warming and biodiversity conservation are some of the most crucial
challenges to human sustainable development, and the impacts of climate change on
species survival have become hot-spot issue accordingly (Harrington, Fleming & Woiwod,
2001;Kriegler et al., 2017;Wu et al., 2018). In general, the global climate change significantly
affects the distribution range of species, especially for species sensitive to climate factors
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(Atwater & Barney, 2021). Therefore, the study on species distribution shift under the
background of climate change will be beneficial to the conservation and utilization of
biological germplasm resources (Liu et al., 2022). At present, many models for predicting
the potential distribution of species were developed, such as bioclim (bioclimatic prediction
system) (Honig, Cowling & Richardson, 1992), domain (domainmodel) (Carpenter, Gillison
& Winter, 1993), GARP (genetic algorithm for rule set prediction) (Anderson, Lew &
Peterson, 2003), Enfa (ecological niche factor analysis) (Engler, Guisan & Rechsteiner, 2010)
and the MaxEnt (maximum entropy approach) model (Phillips, Anderson & Schapire,
2006). Among them, the MaxEnt model was widely used in predicting the change
trend of distribution area of the endangered or rare species (e.g., Goldenberg, Reginato
& Michelangeli, 2020; Peng et al., 2019; Trisurat et al., 2013), and the impact of climate
change on species distribution and ecosystems (e.g., Iannella et al., 2021; Nabout et al.,
2016; Noulèkoun et al., 2017). In the above researches, the MaxEnt model have exhibited
its advantages, such as short running time, small sample size required, high accuracy,
and Jackknife test to evaluate the contribution rates of various environmental variables
in the model (Li et al., 2019b; Saupe et al., 2015). At present, the potential distribution of
many rare or economically important plants has been predicted using the MaxEnt model
(e.g., Peng et al., 2019; Yi et al., 2016; Zhang et al., 2016), but there were few studies on the
distribution model of rare woody bamboos.

Woody bamboo belongs to the bamboo subfamily of Gramineae (Poaceae), with about
80 genera and more than 1,500 species (Yi et al., 2008; Soreng et al., 2017). Under natural
conditions, it is distributed in continents except for Europe and Antarctica, its species
diversity is concentrated in the tropical and subtropical regions of Asia, Africa and South
America (Yi et al., 2008). Yunnan Province of China, one of the modern distribution
centers of bamboos in the world, possesses more than 220 native bamboo species from
28 genera, is known as ‘‘the hometown of bamboo in the world’’ (Hui, Yang & Du, 2006).
Remarkably,Dendrocalamus sinicus, endemic to southern and southwestern Yunnan, is the
largest woody bamboo species documented in the world. It is a subtropical and tropical
sympodium bamboo with a diameter at breast height (DBH) of 30 cm and a height of
nearly 30 m. The peak period of bamboo shooting is from July to August, depending on
the beginning date of rainy season (Hui, Yang & Du, 2006; Guo, Chen & Yang, 2019). The
average wet weight of culm is 100–150 kg, and the culm timber yield per unit areas is
5–8 times more than Moso bamboo (Phyllostachys edulis), which is the main economic
bamboo species in eastern Asia (Hui, Yang & Du, 2006). Therefore, D. sinicus has great
development potential in timber, paper making and handicraft industry, etc. As a precious
and rare bamboo species in the world, it is of high scientific research, economic and cultural
value (Hui, Yang & Du, 2006).

Within the distribution range of D. sinicus, two natural types of culm, namely ‘‘straight
type’’ and ‘‘bending type’’, are detected (Gu et al., 2012; Yang et al., 2018; Guo, Chen &
Yang, 2019). The ‘‘straight type’’ bears straight and terete culms from head to foot, and
its internodes are normal and smooth (Fig. 1A). It is not only the excellent raw material
for timber and building materials, but also the main type of industrial utilization and
cultivation (Hui, Yang & Du, 2006). On the other hand, the ‘‘bending type’’ has abnormal
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Figure 1 Morphological characteristics of straight type (A) and bending type (B). Photographs by
Peitong Dou.

Full-size DOI: 10.7717/peerj.13847/fig-1

culms at the lower half (Fig. 1B), and its internodes are swollen, shortened or deformed,
which is a little value in garden landscaping. The significant differences in ecological
conditions were detected between the habits of two types (Hui, Yang & Du, 2006). The
‘‘straight type’’ usually distributes at subtropical mountains with 1,000–1,500 m above sea
level, while the ‘‘bending type’’ occurs in habitats of marginal tropical montane regions at
elevations of ca. 500–1,000 m (Gu et al., 2012; Yang et al., 2018).

So far, due to the integrative influence of climate change and biological characteristics,
e.g., sporadic flowering and low seed setting rate, the habitat of D. sinicus is scattered and
high-quality germplasm resources are scarce (Gu et al., 2012; Xie et al., 2019). Therefore,
it is necessary to choose suitable areas to protect and propagate this rare bamboo species.
In the present study, we use the MaxEnt model to screen the key environmental factors
affecting the distribution ofD. sinicus, and to predict potential distribution areas. Our aims
are to distinguish out the key natural factors limiting the distribution of D. sinicus, and
to provide a scientific basis for its germplasm conservation and further introduction and
cultivation planning.

MATERIALS & METHODS
Species data sources
By searching the Chinese Virtual Herbarium (https://www.cvh.ac.cn/), National Science
and Technology Infrastructure (http://www.nsii.org.cn/2017/home.php), Flora Reipublicae
Popularis Sinicae (http://www.iplant.cn/frps), Global Biodiversity Information Facility
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Table 1 Occurrence records ofD. sinicus in China.

Code Longitude Latitude Culm type

1 99.02056 23.50694 Straight type
2 98.93806 23.44833 Straight type
3 98.97528 23.37417 Straight type
4 99.07778 23.32 Straight type
5 98.98111 23.30889 Straight type
6 99.09944 23.295 Straight type
7 98.94722 23.25111 Straight type
8 98.92972 23.22139 Straight type
9 99.54139 22.72806 Straight type
10 99.62222 22.63278 Straight type
11 99.4675 22.51417 Straight type
12 99.08333 23.56667 Straight type
13 99.48333 22.75 Straight type
14 99.60861 22.44333 Mixed growth
15 99.53861 22.31639 Mixed growth
16 99.37944 22.22917 Mixed growth
17 101.2517 21.93306 Mixed growth
18 99.60139 22.16111 Bending type
19 100.3444 21.85778 Bending type
20 100.377 21.94987 Bending type
21 101.5849 21.66172 Bending type
22 101.6667 21.26667 Bending type
23 100.2 21.75 Bending type
24 100.05 21.7 Bending type
25 100.3833 21.83333 Bending type

(http://www.gbif.org) as well as our investigation and sample collection in the field, a total
of 25 distribution locations ofD. sinicuswere obtained (Table 1) after checking the integrity
of coordinate information and eliminating the duplicate coordinates. In the previous
molecular genetic study (Yang et al., 2018), all existing populations of D. sinicus were
divided into two genotypes, i.e., ‘‘straight type’’ and ‘‘bending type’’, which was consistent
with the morphological characters of culms (Gu et al., 2012). Therefore, according to
the previous results, 25 coordinate points were divided into 13 ‘‘straight type’’, eight
‘‘bending type’’ and four mixed coordinate points. All coordinates were saved in the CSV
(comma-separated values) format for MaxEnt model analysis according to culm type.
Software ArcGIS 10.2 was used to reproduce the current distribution points of D. sinicus
(Fig. 2).

Climate variables
In this study, bioclimatic variables from the WorldClim website (https://www.worldclim.
org/data/worldclim21.html#google_vignette) (Table S1) was used in further analysis. We
removed variables 8, 9, 18, and 19 because of spatial artifacts (Ashraf et al., 2017). The
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Yunnan, ChinaLancang-Mekong River

Myanmar Laos

Figure 2 Spatial distribution of occurrence records ofD. sinicus in China.
Full-size DOI: 10.7717/peerj.13847/fig-2

environmental variables, recorded from 1970 to 2000, were saved in file format of ASCII
(American Standard Code for Information Interchange) converted by ArcGIS 10.2, and
were used to establish the initial model (Fick & Hijmans, 2017). In order to eliminate the
auto-correlation and colinearity between variables, the Pearson correlation coefficient
(r) and principal component analysis (PCA) of 15 bioclimate variables from occurrence
records were tested, and only one variable from each set of highly cross-correlated variables
(|r| > 0.8) was kept for further analysis according to Yi et al. (2016). For instance, the
variables bio6 was correlated with both bio5 (r = 0.8) and bio7 (r = − 0.9), then bio6 was
dropped and both bio5 and bio7 were reserved based on the PCA result.

Future climate projections were extracted from the Shared Socioeconomic Pathways
(SSPs) of the BCC-CSM2-MR global climate (2021–2040, 2041–2060, 2061–2080,
and 2081–2100) database in the Coupled Model Intercomparison Projects 6 (CMIP6)
(https://www.worldclim.org/data/cmip6/cmip6_clim2.5m.html). The associated scenarios
included the SSP1-2.6 (ssp126), SSP2-4.5 (ssp245), SSP3-7.0 (ssp370), and SSP5-8.5
(ssp585), following Liu et al. (2021a). The SSPs reflect four different developments of
the world that were characterized by varying levels of global challenges. We selected
SSP1-2.6 (low forcing scenario, radiation intensity reaches 2.6w/m2 in 2100) and SSP5-8.5
(high forcing scenario, radiation intensity reaches 8.5 w/m2 in 2100) as future test scenarios
according to Zhang, Chen & Xin (2019), and simulated the suitable distribution of ‘‘straight
type’’ in the 2050s (2041–2060) and 2090s (2081–2100). All environmental data used in this
model were 2.5-arc minute spatial resolution (also referred to as 4.5 km spatial resolution).
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Construction and test of the MaxEnt model
For each type, we created 493 candidate models by combining 17 values of regularization
multiplier (0.1–1.0 at intervals of 0.1, 2–6 at intervals of 1, as well as 8 and 10), and all
29 possible combinations of five feature classes (linear = L, quadratic = Q, product = P,
threshold = T, and hinge = H). The performance of the candidate model was evaluated
on the basis of significance (partial ROC, with 500 iterations and 50 percent of data for
bootstrapping), omission rates (E = 5%), and model complexity (Akaike Information
Criterion corrected for small sample sizes, AICc). The best models were selected according
to the significant models and the omission rate ≤ 5%. The models of Delta AICc ≤
2 were selected as final models in this model set (Cobos et al., 2019; Alkishe & Peterson,
2022). The complete set of occurrences and the selected parameterizations were used to
create the final models for the two types. We produced 10 replicates by bootstrap, with
logistic outputs, and transferred these models to the 12 countries or regions for current
and future scenarios. Partial ROC and omission rates (E = 5%) were evaluated for the
final models (Cobos et al., 2019). The above analysis was performed through the kuenm R
package (https://github.com/marlonecobos/kuenm). The receiver operating characteristic
curve (ROC) of all environmental variables was calculated, and the importance of different
environmental variables was measured by Jackknife test, following Li et al. (2019a). The
areas under the receiver operating characteristic curve (AUC) were used to evaluate the
accuracy of the model (Goldenberg, Reginato & Michelangeli, 2020). The evaluation criteria
are as follows: 0.5 < AUC≤ 0.6 (the model is failed), 0.6 < AUC≤ 0.7 (‘‘poor’’), 0.7 < AUC
≤ 0.8 (‘‘general’’), 0.8 < AUC≤ 0.9 (‘‘better’’) and 0.9 < AUC≤ 1 (‘‘excellent’’). The closer
the AUC value was to 1, the higher was the prediction accuracy of the model (Wang et al.,
2018; Phillips et al., 2009). The suitability maps were calculated using the logistic output of
MaxEnt, which ranges from 0 (lowest suitability) to 1 (highest suitability). For visualization
and further analysis, the prediction results were imported into ArcGIS 10.2 and divided
the habitat suitability maps into four levels according to expert experience and relevant
literature (Hui, Yang & Du, 2006; Zhang et al., 2019): unsuitable habitat (0–0.35), poorly
suitable habitat (0.35–0.55), moderately suitable habitat (0.55–0.75), and highly suitable
habitat (0.75–1).

RESULTS
Model selection and accuracy evaluation
After kuenm R package screening, the feature class was LP and regularization multiplier
was 2 in the final model parameter combination of the ‘‘straight type’’. As for the ‘‘bending
type’’, the feature class was LQTH and regularization multiplier was 3. We rebuild the
model using the optimized parameter combination. The AUC values of the ‘‘straight type’’
and ‘‘bending type’’ were 0.978 and 0.996 (Fig. S1) respectively, indicating both models
were ‘‘excellent’’. The above results suggested that the distribution area simulation using
the MaxEnt model was reliable, and we further analyzed the impact of climate change on
the distribution area of D. sinicus.
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Table 2 The dominant factors affecting the potential distribution of different culm types forD. sini-
cus.

Category Bioclimatic variables Abbreviation Percent
contribution

Accumulated
Percent
contribution/%

Temperature Annual Range bio7 36.6 36.6
Straight type Temperature Seasonality

(standard deviation *100)
bio4 32.4 69

Annual Precipitation bio12 15.9 84.9
Precipitation of Wettest Month bio13 9.9 94.8
Isothermality bio3 47.8 47.8

Bending type Precipitation of Driest Month bio14 24.8 72.6
Temperature Seasonality
(standard deviation *100)

bio4 16.5 89.1

Mean Temperature of Coldest Quarter bio11 8.7 97.8

Selection of key climatic factors
For each type of D. sinicus, four most key climate variables affecting the geographical
distribution were screened out using the MaxEnt model. As for the ‘‘straight type’’,
four key climate variables with a cumulative contribution rate of 94.8% were: Temperature
Annual Range (bio7; 36.6%), Temperature Seasonality (bio4; 32.4%), Annual Precipitation
(bio12; 15.9%) and Precipitation of Wettest Month (bio13; 9.9%) (Table 2). On the other
hand, four key climate variables of the ‘‘bending type’’ were the Isothermality (bio3;
47.8%), Precipitation of Driest Month (bio14; 24.8%), Temperature Seasonality (bio4;
16.5%) and Mean Temperature of Coldest Quarter (bio11; 8.7%) (Table 2), with a
cumulative contribution rate of 97.8%. The results of Pearson correlation coefficient (r)
analysis indicated that none of correlation coefficient between the environmental variables
exceeded 0.8 (Table 3). Because altitude and solar radiation were highly correlated with
many climate variables (Tables S2, S3), climate variables were preferentially selected as
variables for the classification of suitable areas, rather than solar radiation and altitude.
Finally, all four climate variables above were deemed as the main factors affecting the
distribution of two types. On this basis, the MaxEnt models of the ‘‘straight type’’ and
‘‘bending type’’ distributions were established and were further evaluated.

Relationship between geographical distribution and environmental
variables
The importance values of key climate variables to the distribution of D. sinicus were
analyzed using the Jackknife test in the MaxEnt model. Within the ‘‘straight type’’, the
order of the four key climate factors was Temperature Seasonality (bio4), Temperature
Annual Range (bio7), Annual Precipitation (bio12) and Precipitation of Wettest Month
(bio13) (Fig. S2), based on importance. And their appropriate variation ranges were <390,
<23.9 ◦C, >1,418 mm and > 282 mm, respectively (Table 4). As for the ‘‘bending type’’,
the order of four key climate factors was Temperature Seasonality (bio4), Isothermality
(bio3), Mean Temperature of Coldest Quarter (bio11) and Precipitation of Driest Month
(bio14) (Fig. S2), and their appropriate variation ranges (optimal values) were 210–410
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Table 3 Pearson correlation coefficient of key environmental factors affecting the distribution of dif-
ferent culm types forD. sinicus.

Code bio7 bio4 Bio12 bio13

bio7 1
Straight type bio4 0.712 1

bio12 −0.590 −0.235 1
bio13 0.180 0.617 0.458 1
Code bio3 bio14 bio4 bio11
bio3 1

Bending type bio14 0.215 1
bio4 −0.749 −0.188 1
bio11 0.150 0.261 −0.142 1

Notes.
**The difference is very significant at the level of 0.01.

Table 4 Suitable range of environmental variables of different culm types forD. sinicus.

Category Environmental variables (abbreviation)/Unit Suitable range
(Optimum value)

Temperature Annual Range (bio7)/◦C <23.9
Straight type Temperature Seasonality (standard deviation *100) (bio4) <390

Annual Precipitation (bio12)/mm >1418
Precipitation of Wettest Month (bio13)/mm >282
Isothermality (bio3) >49.1

Bending type Precipitation of Driest Month (bio14)/mm 7.2–34.0 (13.2)
Temperature Seasonality (standard deviation *100) (bio4) 210–410 (338)
Mean Temperature of Coldest Quarter (bio11)/◦C 10.7–20.4 (15.9)

(338), > 49.1, 10.7–20.4 (15.9) ◦C and 7.2–34.0 (13.2) mm, respectively (Table 4). The
response curves of environmental variables to the distribution probability were shown in
Figs. S3 and S4. When the environmental variables were lower than the optimal value, the
distribution probability increased with the increase of the environmental variables. And it
worked in the reverse too.

The suitable areas of different types under current climatic scenario
MaxEnt model predicted the potentially suitable areas of D. sinicus included 12 countries
or regions under the current environmental conditions. The potential distribution range
of the ‘‘straight type’’ was between 8◦–30◦N and 73◦–122◦E (Fig. 3A), and the distribution
area covered 2234583.37 km2 (Table 5). Among potential distribution range, the countries
with large distribution areas were India (30.86%), China (24.61%), Myanmar (16.72%),
and Thailand (15.86%) (Table 5). In addition, the highly suitable areas, with a cumulative
area of 133,072.92 km2, weremainly distributed inMyanmar (81.57%), Thailand (12.82%),
and Bangladesh (3.94%) (Table 5). By and large, the suitable areas of the ‘‘straight type’’
extended along the longitude and latitude from the existing distribution range, and the
extended range along the longitude was much larger than that of the latitude.
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Figure 3 The suitability distribution area of straight type (A) and bending type (B) under the cur-
rent scenario.Vietnam-VNM, Thailand-THA, Nepal-NPL, Myanmar-MMR, Sri Lanka-LKA, Laos-LAO,
Cambodia-KHM, India-IND, Bhutan-BTN, Bangladesh-BGD, China-CHN, Kashmir-KAS, Tibet-XZ,
Sichuan-SC, Yunnan-YN, Guizhou-GZ, Guangxi-GX, Guangdong-GD, Hainan-HI, Fujian-FJ, Zhejiang-
ZJ, Jiangxi-JX, Hunan-HN, Taiwan-TW.

Full-size DOI: 10.7717/peerj.13847/fig-3

As for the ‘‘bending type’’, its potential distribution range was between 6◦–31◦N and
79◦–109◦E (Fig. 3B), and the highly suitable areas were mainly distributed in southwest
China, northern Laos and eastern Myanmar. Different from the ‘‘straight type’’, the
distribution range of the ‘‘bending type’’ mainly displayed a trend of southward expansion
along low latitude to the tropics. It was worth noting that the potential distribution areas
of the two variants were significantly larger than the existing ranges.

The suitable distribution area of the “straight type” under future
climate scenarios
As an excellent timber bamboo species and main type for industrial utilization and
cultivation, the ‘‘straight type’’ is our concerning focus, and in this study, we predicted the
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Table 5 Predicted potential distribution area for straight type under current climatic conditions.

Country Unsuitable
habitat(km2)

Poorly suitable
habitat(km2)

Moderately
suitable
habitat(km2)

Highly suitable
habitat(km2)

Suitable
habitat (km2)

Percentage of
highly suitable
areas in total(%)

Percentage of
suitable areas
in total(%)

Vietnam 249,045.14 24,149.31 3,524.31 0.00 27,673.61 0.00 1.24
Thailand 76,458.33 121,562.50 215,885.42 17,065.97 354,513.89 12.82 15.86
Nepal 129,600.70 6024.31 0.00 0.00 6024.31 0.00 0.27
Myanmar 205,625.00 100,086.81 165,052.09 108,541.67 373,680.56 81.57 16.72
Sri Lanka 52,500.00 642.36 572.92 0.00 1215.28 0.00 0.05
Laos 126,718.75 46,475.70 23,298.61 451.39 70,225.70 0.34 3.14
Cambodia 65,173.61 81,753.47 3,628.47 0.00 85,381.95 0.00 3.82
India 1,930,017.39 626,458.34 63,229.17 0.00 689,687.51 0.00 30.86
Bhutan 33,836.81 416.67 0.00 0.00 416.67 0.00 0.02
Bangladesh 48,836.81 29,357.64 38,802.08 5,243.06 73,402.78 3.94 3.28
China 9,078,402.92 470,017.37 78,142.36 1,770.83 549,930.56 1.33 24.61
Kashmir 179,583.34 2,152.78 277.78 0.00 2,430.56 0.00 0.11
Total 12,175,798.81 150,9097.25 592,413.20 133,072.92 2,234,583.37 100.00 100.00

2050,SSP1-2.6

0.75-1(highly suitable habitat)0.35-0.55(poorly suitable habitat) 0.55-0.75(moderately suitable habitat)0-0.35(unsuitable habitat)Suitable index
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Figure 4 Potentially suitable climatic distribution of straight type under different climate change
scenarios.Vietnam-VNM, Thailand-THA, Nepal-NPL, Myanmar-MMR, Sri Lanka-LKA, Laos-LAO,
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potentially suitable distribution area of the ‘‘straight type’’ under SSP1-2.6 and SSP5-8.5
future climate change scenarios (Fig. 4). Under the SSP1-2.6 scenario in 2050, the highly
suitable habitat of the ‘‘straight type’’ was mainly in Myanmar and western Thailand.
While under SSP5-8.5 in 2050 and SSP1-2.6 in 2090, the highly suitable habitat basically

Dou et al. (2022), PeerJ, DOI 10.7717/peerj.13847 10/19

https://peerj.com
https://doi.org/10.7717/peerj.13847/fig-4
http://dx.doi.org/10.7717/peerj.13847


disappeared in western Thailand, but emerged in parts of eastern India. In addition, under
SSP5-8.5 in 2090, the suitable habitat, especially for the highly suitable distribution, sharply
shrank in eastern India, southern China, Cambodia, Thailand and Myanmar.

Compared with the current distribution, three types of the predicted suitable habitats,
namely poorly, moderately and total highly suitable regions, exhibited different change
trends under the climate change scenarios SSP1-2.6 and SSP5-8.5 in 2050. The total highly
suitable regions displayed a decreasing trend, namely 27.42% and 8.19% under SSP1-2.6
and SSP5-8.5 scenarios respectively (Table 6). But the poorly, moderately and total suitable
habitat had an increasing trend, and the increase rate of suitable area under low radiation
intensity (SSP1-2.6) was higher than that of high radiation intensity (SSP5-8.5).

On the other hand, comparison with the current distribution, almost predicted suitable
habitats under two climate scenarios in 2090 exhibited dramatically decreasing trends,
except the highly suitable area slightly increased 0.59% under the SSP1-2.6 climate scenario
in 2090 (Table 6). Meanwhile, the high radiation intensity scenarios (SSP5-8.5) had a much
stronger effect on decreasing suitable habitat than that of low radiation intensity scenarios
(SSP1-2.6). The reduction of suitable areas under SSP5-8.5 in 2090, to a large extent, were
due to the exclusion of eastern India, southern China (GX, HI, GD, FJ and JX), Cambodia
and Thailand (Fig. 4).

DISCUSSION
Key climate factors determining the survival and distribution of
D. sinicus
As the strongest woody bamboo documented in the world, D. sinicus has outstanding
performance in producing timber. Meanwhile, because of narrow distribution and
provenance scarcity, its germplasm conservation and introduction planning have raised
extensive attentions since publication as a new species (Chia & Sun, 1982; Hui, Yang
& Du, 2006; Gu et al., 2012). The consequent problem is to clarify the key climate
factors determining the survival and distribution of D. sinicus, which is important
but yet controversial. Empirically, low temperature in winter (Hui, Yang & Du, 2006)
or precipitation (Pu, 2004) were once considered to be the most key climate variable
determining the growth and distribution of D. sinicus. In this study, the MaxEnt model
detected that the bioclimatic variables of the highest contribution rate to the distribution
of two types were different, namely Temperature Annual Range (36.6%) for the ‘‘straight
type’’ and Isothermality (47.8%) for the ‘‘bending type’’ respectively (Table 2), indicating
that temperature was probably the most key factor affecting the survival of D. sinicus. This
result was similar to opinion of Hui, Yang & Du (2006). It may be due to the biological
characteristics of D. sinicus, namely, it is a tropical bamboo species occurred at the edge of
the tropics, and the low temperature in winter will seriously threaten its survival (Chia &
Sun, 1982; Hui, Yang & Du, 2006).
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Table 6 Potentially suitable climatic distribution of straight type under different climate change scenarios.

Decades Scenarios Predicted area/104km2 Increase/decrease rate (%) [Compared to the current distribution]

Total poorly
suitable habitat

Total moderately
suitable habitat

Total highly
suitable habitat

Totalsuitable
habitat

Total poorly
suitable habitat

Total moderately
suitable habitat

Total highly
suitable habitat

Total suitable
habitat

Current – 150.91 59.24 13.31 223.46 – – – –

2050s ssp126 162.50 80.91 9.66 253.07 7.68 36.59 −27.42 13.25

ssp585 151.17 71.57 12.22 234.96 0.17 20.81 −8.19 5.15

2090s ssp126 97.66 44.29 13.39 155.33 −35.29 −25.24 0.59 −30.49

ssp585 55.66 31.25 8.31 95.23 −63.11 −47.25 −37.55 −57.38
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Suitable distribution range based on the MaxEnt model and
introduction practice of D. sinicus
According to the prediction of the MaxEnt model, the current suitable distribution ranges
of the two types were different. For the ‘‘straight type’’, the suitable distribution range was
8◦–30◦N and 73◦–122◦E with a broad span of east–west distribution, while the potential
distribution range of ‘‘bending type’’ was 6◦–31◦N and 79◦–109◦E. Compared with the
‘‘straight type’’, the highly suitable habitat of ‘‘bending type’’ appeared sporadically in
south Vietnam, south India and Sri Lanka, This suggested that the distribution range of
‘‘bending type’’ exhibited a southward spreading trend to the tropical area, which was
similar to the previous research results (Yang et al., 2018). The identical environmental
variable affecting the distributions of the two types was Temperature Seasonality, which is
the most important variables in the Jackknife test, and the maximum value of Temperature
Seasonality in the ‘‘bending type’’ was higher than that in the ‘‘straight type’’ (Table 4).
This might reflect that the ‘‘bending type’’ could survive in regions with larger temperature
seasonality variation, and had more tropical attribute than ‘‘straight type’’ (Chia & Sun,
1982; Hui, Yang & Du, 2006; Yang et al., 2018).

On the aspect of introduction and cultivation planning of D. sinicus, our results also
provided some new views. Conventionally, planning for plant introduction and cultivation
range was mainly based on similar climate, soil conditions and other factors between
the introduction area and the origin habitat (Hui, Yang & Du, 2006). The previous study
inferred that the climate conditions of the most suitable area for the ‘‘straight type’’ were as
follows: (1) the average temperature in the coldest month was ≥13 ◦C; (2) the days of the
daily minimum temperature ≤ 0 ◦C were not more than 1 day; (3) frost did not happen
throughout the year; and (4) the annual precipitation was ≥ 1200 mm (Hui, Yang & Du,
2006). From 2000 to 2003, the scientists introduced and cultivated ‘‘straight type’’ at 12
predicted suitable areas in eight counties of Yunnan Province (Hui, Yang & Du, 2006; An
& Chen, 2010). After 15 years, the introduced bamboo clumps of D. sinicus survived only
at two sites: Ning’er County (23◦32′N) and Xinping County (24◦04′N), in which clumps
could bear new shoots normally and the culms grew up to 20 cm in diameter. Moreover,
approximate 10% introduced clumps bloomed and died in 1–2 years after cultivating.
The above results suggested the strict conditions for the introduction and cultivation of
D. sinicus. On the other hand, based on the MaxEnt model, we predicted the optimal
climate conditions of highly suitable areas for ‘‘straight type’’ were: (1) the Temperature
Annual Range was <23.9 ◦C; (2) the Precipitation of Wettest Month was >282 mm and
(3) the Annual Precipitation was >1,418 mm, respectively. Compared with the empirical
climate variables for highly suitable areas of ‘‘straight type’’, our climate conditions based
on MaxEnt model were more strict. However, our results were also more consistent with
the actual outcomes, indicating our results had a higher reliability.

Change trend on suitable habitat of “straight type” under different
climate change scenarios
The adaptation to climate and climate change is vital to plant growth, geographical
distribution and biodiversity (Liu et al., 2022; Lv & Wu, 2009; Yi et al., 2017). In the present
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study, the potential suitable distribution area of ‘‘straight type’’, predicted by MaxEnt
model, were different under two climate change scenarios (Table 6). Compared with the
current distribution, the total suitable habitat of ‘‘straight type’’ would increase in 2050 and
decrease in 2090 under same radiation intensity. Furthermore, the total suitable habitat
would increase slightly (2050) and decrease dramatically (2090) under high radiation
intensity (SSP5−8.5) (Table 6), implying that higher radiation intensity (SSP5−8.5) would
limit distribution of the ‘‘straight type’’. The previous studies indicated that global warming
would increase, fluctuate or decrease the distribution range of species (Thomas et al., 2004;
Yuan, Wei & Wang, 2015). Our results also suggested that the impact of climate change on
plant distribution might be a long-term process. The slow increase of radiation intensity in
a short period would not give rise to significant changes in distribution area of species. This
is because plants possess certain capacity of self-regulation and diffusion (Liu et al., 2021b),
which result in fluctuated suitable distribution area. In extreme cases, for example, excessive
radiation intensity will affect the growth and development of plants, and eventually lead
to death. In turn, the distribution area of plants will reduce or disappear (Li, Fan & He,
2020).

In summary, our results confirmed that the ‘‘straight type’’ had poorer heat resistance
than ‘‘bending type’’, which is important to instruct future introduction and cultivation
planning of D. sinicus. In addition, we should also realize that the MaxEnt model does not
consider the factors such as soil and soil microorganisms at specific sites, so the accuracy
of this prediction is limited.

CONCLUSIONS
Based on D. sinicus occurrence records and bioclimatic variables, the current and future
suitable habitat of D. sinicus in China and adjacent regions was modeled using MaxEnt
model for the first time. The bioclimatic variables of temperature annual range and
isothermality were revealed to have crucial effect on D. sinicus distribution. In the next 70
years, the habitat suitability of this woody bamboo may be different with climate change.
The prediction of this study is of strategic significance for further germplasm conservation,
introduction and cultivation planning of this rare and precious bamboo species.
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