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Abstract

Background: Integration of transcriptomic and metabolomic data improves functional interpretation of disease-related
metabolomic phenotypes, and facilitates discovery of putative metabolite biomarkers and gene targets. For this reason,
these data are increasingly collected in large (> 100 participants) cohorts, thereby driving a need for the development of
user-friendly and open-source methods/tools for their integration. Of note, clinical/translational studies typically provide
snapshot (e.g. one time point) gene and metabolite profiles and, oftentimes, most metabolites measured are not
identified. Thus, in these types of studies, pathway/network approaches that take into account the complexity
of transcript-metabolite relationships may neither be applicable nor readily uncover novel relationships. With
this in mind, we propose a simple linear modeling approach to capture disease-(or other phenotype) specific
gene-metabolite associations, with the assumption that co-regulation patterns reflect functionally related
genes and metabolites.

Results: The proposed linear model, metabolite ~ gene + phenotype + gene:phenotype, specifically evaluates
whether gene-metabolite relationships differ by phenotype, by testing whether the relationship in one phenotype is
significantly different from the relationship in another phenotype (via a statistical interaction gene:phenotype p-value).
Statistical interaction p-values for all possible gene-metabolite pairs are computed and significant pairs are
then clustered by the directionality of associations (e.g. strong positive association in one phenotype, strong
negative association in another phenotype). We implemented our approach as an R package, IntLIM, which
includes a user-friendly R Shiny web interface, thereby making the integrative analyses accessible to non-computational
experts. We applied IntLIM to two previously published datasets, collected in the NCI-60 cancer cell lines and in human
breast tumor and non-tumor tissue, for which transcriptomic and metabolomic data are available. We demonstrate that
IntLIM captures relevant tumor-specific gene-metabolite associations involved in known cancer-related pathways,
including glutamine metabolism. Using IntLIM, we also uncover biologically relevant novel relationships that could be
further tested experimentally.

Conclusions: IntLIM provides a user-friendly, reproducible framework to integrate transcriptomic and metabolomic data
and help interpret metabolomic data and uncover novel gene-metabolite relationships. The IntLIM R package is publicly
available in GitHub (https://github.com/mathelab/IntLIM) and includes a user-friendly web application, vignettes, sample
data and data/code to reproduce results.
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Background
Metabolomics data is increasingly collected in human
biospecimens to identify putative biomarkers in diseases
such as cancer [1–6]. Metabolites (small molecules <
1500 Da) are ideal candidates for biomarker discovery
because they directly reflect disease phenotype and
downstream effects of post-translational modifications
[6]. However, interpretation of metabolomics data, in-
cluding understanding how metabolite levels are modu-
lated, is challenging. Reasons for this challenge include
the presence of many (hundreds) of unidentified metab-
olites when untargeted approaches are applied [7, 8],
and the fact that metabolomics profiles generated in hu-
man biospecimens are typically ‘snapshots’ or time-
averaged representations of a disease state. Despite these
difficulties, analyzing metabolomics data in light of other
omics information, such as the transcriptome, can help
to functionally interpret metabolomics phenotypes [9–
15]. Data integration, or the use of multiple sources of
information or data to provide a better model and
understand a biological system [16], offers the opportun-
ity to combine metabolomics data with other omics
data-sets (e.g. transcriptome). Measurement and integra-
tion of the transcriptome and metabolome in the same
cells, samples, or individuals, are thus increasingly ap-
plied to elucidate mechanisms that drive diseases, and to
uncover putative biomarkers (metabolites) and targets
(genes).
Current approaches that integrate transcriptomic and

metabolomic data can be broadly categorized as numer-
ical or pathway/network based. Numerical approaches
include multivariate analyses (e.g. logistic regression,
principal component analysis, partial least squares) and
correlation-based approaches (e.g. canonical correla-
tions) [17–19]. Differential correlation or coexpression
methods have also been developed to capture changes in
relationships between conditions [20]. Open-source
tools, including MixOmics [21, 22] and DiffCorr [23],
are available for integrating data but generally require
in-depth statistical knowledge for their use and may not
be as accessible to non-computational experts. Of note,
such numerical approaches typically do not capture the
complex and indirect relationships between transcripts
and metabolites. For example, non-linear reaction kinet-
ics mechanisms, metabolite-metabolite connections that
regulate metabolite levels, and post-translational modifi-
cations all contribute to the complexity of gene-
metabolite relationships [24, 25]. To better capture these
complex relationships, pathway or network based ap-
proaches can be applied. Open-source tools such as
Metaboanalyst [26], INMEX [27], XCMS Online [28],
Metabox [29], and IMPALA [30] integrate transcrip-
tomic and metabolomics data at a pathway level. One
caveat of these approaches is that they rely on curated

pathways or reaction-level information (knowledge of
which enzymes produce a given metabolite) [18]. Path-
way approaches are thus limited to metabolites that are
identified and that can be mapped to pathways, which
represents a fraction of what can be measured. In fact,
of the 114,100 metabolites in the Human Metabolome
Database [31–33], only 18,558 are detected and quanti-
fied, and of those, only 3115 (17%) map to KEGG path-
ways. Further, network approaches that attempt to study
the complex many to many associations between genes
and metabolites may not scale well when tens of thou-
sands of gene-metabolite pairs are evaluated.
Importantly, previous studies have shown that function-

ally related genes and metabolites show coherent co-
regulation patterns [20, 34, 35]. We make this functionality
assumption here and propose a linear modeling approach
for integrating metabolomics and transcriptomics data to
identify phenotype-specific gene-metabolite relationships.
Of note, typical numerical integration approaches uncover
patterns of molecular features that are globally correlated
or aim to predict phenotype [20]. However, these methods
do not directly and statistically test whether associations
between metabolites and gene expression differ by pheno-
type. This distinction is important because global associa-
tions between genes and metabolites may not only reflect
one phenotype of interest, but could reflect other features
(e.g., environment, histology). As for methods that un-
cover differentially correlated pairs between conditions
[35], they either do not capture pairs of features that are
correlated in one group and not correlated in another
group, or they bin relationships into different types (e.g.
positive correlation in one group, negative correlation in
another group), thereby making it difficult to compare
more than 2 phenotypes [20, 34, 35]. Further, these ap-
proaches are not implemented into user-friendly frame-
works. Our approach is thus advantageous because it
directly evaluates the relationship between genes and me-
tabolites in the context of phenotype, it can easily incorp-
orate potential covariates, and is applicable to categorical
(> = 2 groups) or continuous phenotypes. Further, our ap-
proach is implemented as a publicly available R package
IntLIM (Integration through Linear Modeling), available
at our GitHub repository [36], which includes an R
Shiny web interface making it user-friendly to non-
computational experts. In the wake of increasing
amounts of metabolomics and transcriptomic data
generated, availability of open-source, user-friendly,
and streamlined approaches is key for reproducibility.
Using IntLIM, we evaluated phenotype-specific rela-
tionships between gene and metabolite levels mea-
sured in the NCI-60 cancer cell lines [10], and in
tumor and adjacent non-tumor tissue of breast cancer
patients [9]. We demonstrate that IntLIM is useful
for uncovering known and novel gene-metabolite
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relationships (which would require further experimen-
tal validation).

Methods
NCI-60 cell line data pre-processing
The NCI-60 cancer cell line metabolomics (Metabolon
platform) and gene expression data (Affymetrix U133
microarray) were downloaded from the Developmental
Therapeutics Program (National Cancer Institute) web-
site [10, 37]. Metabolomics and gene expression data,
available in 57 cell lines, were pre-processed and nor-
malized according to the Metabolon and Affymetrix
MAS5 algorithms [38, 39], respectively. The metabolo-
mics data contains 353 metabolites, of which 198 are un-
identified. Each cell line is measured in triplicates
(technical replicates), except for A498 and A549/ATCC,
which had 4 and 2 technical replicates, respectively. The
median of coefficients of variation (CVs) within technical
replicate samples was calculated for each metabolite to
assess consistency of abundance measurements. Metabo-
lites with CVs < 0.3 were removed (280 metabolites
remaining), abundances were log2 transformed, and the
average technical replicate value was calculated for each
metabolite. Next, the number of imputed values was es-
timated for each metabolite. The standard imputation
method used by Metabolon is to impute missing values
for a given metabolite by the minimum value of that me-
tabolite across all samples. Thus, for each metabolite,
the number of samples with a value equal to the mini-
mum value (for that metabolite across all samples)
minus “1” (one of those values is the true minimum
value and should be subtracted) was used as an estimate
of the number of missing values per metabolite. Metabo-
lites with more than 80% imputed values were filtered
out resulting in 220 metabolites, 111 of which are un-
identified. Probes from the Chiron Affymetrix U133 mi-
croarrays were mapped to genes using the Bioconductor
Ensembl database hgu133.plus.db [40]. In cases where
more than one probe was matched to a given gene, the
probe with the highest mean expression across all sam-
ples was retained for analysis, resulting in 17,987 genes
with available expression. Lastly, we removed the 10%
(arbitrary cutoff ) of the lowest expressing genes, result-
ing in a total of 16,188 genes. For the linear modeling
analyses, 220 metabolites and 16,188 genes were input.
For the NCI-60 cell line data, the phenotypes com-

pared were leukemia cell lines vs. breast/prostate/ovarian
(BPO) cell lines. Because this dataset was used to de-
velop our approach, we purposefully chose cells from
cancers that are known to be highly different in terms of
their molecular profiles (e.g. blood cancer vs. solid
tumor). The breast, prostate, and ovarian cancer cell
lines were grouped together because they share suscepti-
bility loci [41] and our aim was to increase sample size.

Breast cancer data pre-processing
Normalized gene expression (Affymetrix Gene Chip
Human Gene 1.0 ST Arrays) and metabolomics
(Metabolon) data in tumor and adjacent non-tumor tis-
sue of breast cancer patients are publicly available
through the Gene Expression Omnibus (GSE37751) and
the supplementary data of the original publication, re-
spectively [9, 42]. The data was normalized using the
Metabolon algorithm (metabolites) and RMA algorithm
[43] (genes), as previously described [9]. Both gene and
metabolite levels are available for 61 tumor and 47 adja-
cent non-tumor breast tissue. The metabolomics data
consists of 536 metabolites (203 of which are unidenti-
fied) in tumor and non-tumor tissue. Metabolites with
more than 80% imputed values were removed, resulting
in 379 metabolites, 119 of which are unidentified. Probes
from the gene expression data not mapping to a gene
symbol (Human Gene 1.0 ST Arrays) were removed.
Similar to the NCI-60 data pre-processing, the probe
with the highest mean expression was used for analysis
when multiple probes mapped to a single gene. This re-
sulted in 20,254 genes measured in tumor and non-
tumor tissue. After removing the 10% lowest expression
genes, we analyzed 18,228 genes. With this breast cancer
data, our aim was to compare gene-metabolite associa-
tions between tumor and non-tumor tissue. A total of
379 metabolites and 18,228 genes were used for this
analysis.

IntLIM: Integration through linear modeling approach
The linear model applied to integrate transcriptomic and
metabolomic data is:

m ¼ β1 þ β2g þ β3pþ β4 g : pð Þ þ ε ð1Þ

where “m” and “g” are normalized (see data pre-
processing above) and log2-transformed metabolite
abundances and gene levels respectively, “p” is pheno-
type (e.g. cancer type, tumor vs. normal), “(g:p)” is the
statistical interaction [44] between gene expression and
phenotype, and “ε” is the error term that is assumed to
be independent and normally distributed (ε =N(0, σ)) .
A statistically significant two-tailed p-value of the
“(g:p)” interaction term indicates that the slope relating
gene expression and metabolite abundance is different
from one phenotype compared to the other. Through
this model, we can identify gene-metabolite associations
that are specific to a particular phenotype (Fig. 1). This
model has been applied to all possible gene-metabolite
pairs including those involving unidentified metabolites
in the publicly available NCI-60 cancer cell line data
[10] as well as previously published data from a breast
cancer study [9]. Two-tailed p-values are subsequently
corrected for multiple comparisons using the method by
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Benjamini and Hochberg to control the false discovery
rate (FDR) [45]. Gene-metabolite pairs with an FDR-
adjusted interaction p-value less than 0.10 or 0.05 in the
NCI-60 cell line and breast cancer data, respectively,
were used to determine statistical significance. (Due to
the larger sample size in the breast cancer data set and
the much larger amount of significant gene-metabolite
pairs, our threshold for significance was more stringent).
To filter and cluster the list of statistically significant

gene-metabolite pairs, the difference in Spearman corre-
lations between the two phenotypic groups being com-
pared (leukemia vs. BPO for NCI-60 cells and tumor vs.
non-tumor for breast cancer tissue) was used as an ef-
fect size. Volcano plots of the difference in Spearman
correlations vs. the –log10 (FDR-adjusted p-values) are
depicted to visualize the distributions and help deter-
mine appropriate p-value and effect size cutoffs (Add-
itional file 1: Figure S3). For both datasets, a minimum
absolute difference in correlations of 0.5 was used as an
effect size cutoff.
The results can be visualized via a hierarchically clus-

tered heatmap of gene-metabolite Spearman correlations
calculated for each phenotypic group. Hierarchical clus-
tering is performed with the hclust function. The Euclid-
ean distance is used as the distance metric and the
complete linkage method is used for agglomeration. The
resulting dendrogram is used to create a heatmap that
helps visualize how relevant gene-metabolite pairs clus-
ter by their effect size (e.g. differences in Spearman cor-
relation between the two phenotypic groups).

IntLIM R package
A pipeline has been developed in the form of an R pack-
age to streamline integration of metabolomics and gene
expression data using IntLIM. The package has been op-
timized and can solve a high number of linear models
(3–7 million gene-metabolite pairs) in 2 to 6 min on a
laptop with 2.7GHz quad-core Intel Core i7 processor
and 16 GB, 2133 MHz memory. Of note, IntLIM re-
quires less than 3% of the time to solve all possible linear
models compared to iterating through each model using
the lm function in R for performing linear regression
analysis as it contains a matrix algebra implementation
of that function [46]. Extensive documentation is avail-
able in the package, including a vignette, and formatted
NCI-60 and breast cancer datasets are linked and avail-
able in the IntLIM GitHub repository [36]. The steps for
analysis are:

1) Load data: input CSV files containing normalized and
log2-transformed gene expression data, normalized and
log2-transformed metabolite abundance data, metadata
for the samples (e.g. cancer status), and optionally
metadata information on the genes and metabolites

2) Filter data: gene expression and metabolomics data
are optionally filtered by gene and metabolite
abundances and missing values

3) Run IntLIM: run linear models for all possible
gene-metabolite pairs and extract FDR-adjusted
interaction p-values and effect sizes (e.g. differences
in slope/correlations between the groups)

Fig. 1 IntLIM defines phenotype-specific gene-metabolite pairs by uncovering gene-metabolite pairs that show an association in one phenotype
(e.g. tumors) and another or no association in another phenotype (e.g. non-tumors)
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4) Filter gene-metabolite pairs: filter results by user-input
cutoffs of FDR-adjusted p-values and effect size. A
volcano plot (absolute difference in correlation vs.
–log10(FDR-adjusted p-values) is shown to help
users determine appropriate adjusted p-value and
effect size cutoffs. Resulting pairs are then clustered
with hierarchical clustering, based on correlations
within each, and visualized through heatmaps.

5) Visualize relevant gene-metabolite pairs:
user-selected gene-metabolite pairs can be visualized
through scatterplots, color-coded by phenotypic
groups of interest (e.g. leukemia vs. BPO, tumor vs.
non-tumor).

The IntLIM package also includes an RShiny web inter-
face, a powerful tool that transforms complex analysis
pipelines into interactive, user-friendly web applications
[47]. The App guides users through all steps available in
the package, as mentioned above. Of note, most plots are
coded in highcharter [48] or plotly [49, 50] so users can
promptly assess the effect of changing parameters on ana-
lysis results (e.g. immediate updates of tables and plots
resulting from user changes of effect size and p-value cut-
offs). We believe this interactivity accelerates data analysis
and hence discovery of phenotype-specific gene-
metabolite pairs. Further the app makes the analysis ac-
cessible to non-computational researchers. More informa-
tion can be found in the Additional file 2: IntLIM
documentation.

Pathway analysis
Pathway and upstream regulator analyses were performed
using the Ingenuity Pathway Analysis (IPA) software. The
list of genes or identified metabolites from each cluster
(e.g. highly correlated in one group but no correlation in
the other) of statistically significant gene-metabolite pairs
were input to conduct pathway analysis to analyze input
genes or metabolites in the context of biological pathways
or functions [51]. IPA also includes an upstream regulator
analysis to determine whether those molecules were asso-
ciated with a particular upstream regulator. P-values, cal-
culated from the Right-tailed Fisher’s Exact Test, reflect
whether the number of overlapping molecules associated
with a particular pathway or upstream regulator is greater
than expected by chance [52]. For upstream regulator ana-
lysis, both direct and indirect relationships between mole-
cules and their targets were considered (confidence =
Experimentally observed). [53].

Results
IntLIM (integration through LInear modeling)
Our goal is to find gene-metabolite pairs that have a
strong association in one phenotype (e.g. leukemia vs.
breast/prostate/ovarian cancers (BPO), tumor vs. non-

tumor) and an inverse or no association in another pheno-
type. We anticipate that gene-metabolite relationships that
are phenotype dependent will help interpret metabolomics
phenotypes and will highlight molecular functions and
pathways worth evaluating further. With accumulating
transcriptomic and metabolomics data generated in the
same samples, uncovering phenotype-specific relation-
ships could elucidate novel co-regulation patterns. Be-
cause commonly leveraged untargeted metabolomics
approaches produce large amounts of unidentified metab-
olites, approaches that rely on reaction-level or pathway
annotations may not be sufficient to capture all or novel
relationships. To accomplish our goal, we thus rely on nu-
merical data integration and developed a linear modeling
approach that predicts metabolite levels from gene expres-
sion in a phenotype-dependent manner (Fig. 1) (see
Methods). Unlike correlation-based and logistic regression
approaches, our approach specifically evaluates whether
the association between gene and metabolite levels is re-
lated to a phenotype. Furthermore, it is important to keep
in mind that metabolite abundances can be modulated by
a group of enzymes, which in turn are regulated by a
myriad of regulatory processes (e.g. transcription, post-
translational modifications). Thus, gene expression,
protein abundances, and metabolite levels do not always
have linear relationships. While these more complex rela-
tionships will not be readily detected using our approach
[14], co-regulated gene-metabolite relationships tend to
share biological functions [34] and we make this assump-
tion here. Our approach is implemented as an R package,
which is publicly available through GitHub (See Methods
and IntLIM Documentation in Additional file 2) [36].

Application to NCI-60 data
The NCI-60 cell lines [10] were developed as a drug-
screening tool focusing on a range of cancer types, includ-
ing renal, colon, prostate, breast, ovarian, leukemia, and
non-small cell lung cancer [54]. Transcriptomic (Affyme-
trix) and metabolomic (Metabolon) data are available for
57 of those cell lines [10] We applied IntLIM to identify
cancer-type specific gene-metabolite associations. The two
major subgroups compared were leukemia (6 cell lines:
CCRF-CEM, HL-60 (TB), K-562, MOLT-4, RPMI-8226,
SR) vs. the breast/prostate/ovarian (BPO) cancer cell lines
(14 total cell lines: BT-549, DU-145, HS 578 T, IGROV1,
MCF7, MDA-MB-231/ATCC, NCI/ADR-RES, OVCAR-3,
OVCAR-4, OVCAR-5, OVCAR-8, PC-3, SK-OV-3,
T-47D) consisting of 16,188 genes and 220 metabolites
(see Methods). The latter cancers were grouped together
as they share common susceptibility loci [41]. Unsuper-
vised clustering using principal components analysis
(PCA) on the log2-transformed and filtered metabolomics
and gene expression data (Additional file 3: Figure S1A
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and B) clearly delineates the two major subgroups
(Additional file 3: Figure S1C and D).
All possible combinations of gene-metabolite pairs

(3,561,360 models run) were evaluated, using “BPO”
and “leukemia” as cancer type. We identified 1009
cancer-type dependent gene-metabolite associations
(FDR-adjusted p-value < 0.1 and correlation difference
effect size > 0.5, Additional file 4: Data S1, Additional
file 1: Figure S3A) involving 785 genes and 68 metab-
olites, of which 37 are unidentified. Clustering of these
pairs by the direction of association (e.g. positive or
negative correlation) within each cancer type subgroup
revealed two major clusters (Fig. 3). First, the “leukemia
correlated cluster” consists of 545 gene-metabolite pairs
(429 unique genes and 54 unique metabolites of which 31
are unidentified) with relatively high positive correlations
in leukemia cell lines and low or negative correlations in
BPO cell lines (Fig. 2a). Second, the “leukemia anti-
correlated cluster” consists of 464 gene-metabolite pairs
(356 unique genes and 45 unique metabolites of which 24
are unidentified) with relatively high negative correlations
in leukemia cell lines and positive or low negative correla-
tions in BPO cell lines. Two of the top ranked gene-

metabolite pairs (ranked in descending order of absolute
value of Spearman correlation differences between BPO
and leukemia) in the leukemia correlated and leukemia
anti-correlated clusters are FSCN1-malic acid (Fig. 2b) and
DLG4-leucine (Fig. 2c), respectively. FSCN1 and malic
acid (Fig. 2b) are positively correlated in leukemia (r =
0.94) but negatively correlated in BPO cancers (r = − 0.75)
(Fig. 2b). FSCN1 is associated with the progression of
prostate cancer [55], while malic acid (or ionized malate)
is an intermediate involved in glutamine metabolism path-
ways that play major roles in cancer metastasis [56, 57].
DLG4 and leucine (Fig. 2c) are negatively correlated in
leukemia (r = − 0.92) but positively correlated (r = 0.78) in
BPO cancers (Fig. 2c). DLG4 is downregulated in human
cervical cancer cell lines infected with human papillomavi-
rus and may act as a tumor suppressor [58], while leucine
deprivation inhibits cell proliferation and induces
apoptosis in breast cancer cells [59]. Interestingly, leucine
supplementation has been shown to enhance pancreatic
cancer growth in mouse models [60]. These opposing cor-
relations of DLG4-leucine and FSCN1-malic acid between
leukemia and BPO suggest possible tissue-specific relation-
ships that can be differentially targeted.

a

b c

Fig. 2 Results of IntLIM applied to NCI-60 data. a Clustering of Spearman correlations of 1009 identified gene-metabolite pairs (16,188 genes and 220
metabolites, 57 cell lines) (FDR adjusted p-value of interaction coefficient < 0.10 with Spearman correlation difference of > 0.5) in “BPO” and leukemia
NCI-60 cell lines. Examples of two gene-metabolite associations with significant differences: (b) FSCN1 and malic acid (FDR adj. p-value = 0.082, BPO
Spearman Correlation =− 0.75, Leukemia Spearman Correlation = 0.94), (c) DLG4 and leucine (FDR adj. p-value = 0.0399, BPO Spearman Correlation = 0.78,
Leukemia Spearman Correlation =− 0.93)
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Pathway analysis on 419 unique and mappable genes
in the “leukemia correlated cluster” showed enrichment
of the following pathways: acute phase response signal-
ing, 1D–myo-inositol hexakisphosphate biosynthesis,
hepatic fibrosis/hepatic stellate cell activation, CDK5 sig-
naling, and PAK signaling (Additional file 5: Table S1).
The “leukemia anti-correlated cluster” genes (N = 351)
were enriched for endothelial NOS signaling, CREB sig-
naling in neurons, dTMP de novo biosynthesis, Hun-
tington’s Disease signaling, and the P2Y purigenic
receptor signaling pathway (Additional file 5: Table S1).
Most of these pathways are relevant to cancer biology.
For example, nitric oxide has been found to have both
tumor suppressive (e.g. promoting apoptosis, inhibition
of cancer growth) and tumor promoting properties (pro-
motion of angiogenesis, DNA repair mechanisms) [61].
cAMP-regulator element binding protein (CREB) has
been shown to be over-expressed and phosphorylated in
several cancers (including acute myeloid leukemia) and
might play a role in cancer pathogenesis [62]. These pre-
liminary results demonstrate how different pathways
may be differentially regulated in a cancer-type
dependent manner. Since only 9 of 54 and 10 of 45

metabolites in the leukemia correlated and leukemia
anti-correlated clusters, respectively, could be mapped
to Human Metabolome Database (HMDB) IDs [31–33],
pathway analyses were not possible for the metabolites.

Application to breast cancer data
We further applied IntLIM to a previously published
breast cancer study [9]. Gene expression and metabolo-
mics profiling of tumor (n = 61) and adjacent non-tumor
tissue samples (n = 47) was measured in tissue from
breast cancer patients [9]. Importantly, gene expression
and metabolomics were measured in the same tissue
biospecimens. The original study identified a relation-
ship between MYC activation and 2-hydroxyglutarate
(2-HG) accumulation as associated with poor prognosis
in breast cancer [9]. Studies involving MYC overexpres-
sion and knockdown in human mammary epithelial and
breast cancer cells further corroborated this relationship
[9]. When assessing the relationship between MYC gene
expression and 2-HG though, we did not observe this
association at the transcription level (Fig. 3c). Our goal
was thus to identify other potential regulators of
2-hydroxyglutarate accumulation in breast cancer tissue,

a

b c

Fig. 3 Results of IntLIM applied to a breast cancer datase. a Clustering of Spearman correlations of 2842 identified gene-metabolite pairs(18,228 genes and
379 metabolites, with 61 tumor and 47 non-tumor samples) (FDR-adjusted p-value of interaction coefficient < 0.05 with Spearman correlation difference of
> 0.5) in tumor and non-tumor tissue from breast cancer tissue. b GPT2 association with 2-hydroxyglutarate (FDR-adjusted p-value = 0.046, Normal
Spearman Correlation =− 0.11, Tumor Spearman Correlation = 0.40). c Lack of association between 2-hydroxygutarate with MYC (FDR adj. p-value = 0.90,
Normal Spearman Correlation =− 0.20, Tumor Spearman Correlation = 0.04)
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and to assess whether other gene-metabolite associations
were specific to either tumor or non-tumor tissue. The
data consists of 18,228 genes and 379 metabolites (119
unidentified) measured in 61 tumor samples and 47
adjacent non-tumor samples (Additional file 6: Figure
S2A and B). Unsupervised clustering of gene and metab-
olite abundances separated tumor from non-tumor tis-
sue (Additional file 6: Figure S2C and D).
IntLIM was applied to all possible combinations of

gene-metabolite pairs (6,908,412 models), with tumor and
non-tumor as the phenotype. Our approach identified
2842 tumor-dependent gene-metabolite correlations (FDR-
adjusted interaction p-value < 0.05, and a Spearman correl-
ation difference > 0.5) involving 761 genes and 212 metabo-
lites of which 48 are unidentified. (Additional file 7: Data
S2, Additional file 1: Figure S3B). The resulting heatmap of
gene-metabolite Spearman correlations for tumor and non-
tumor groups is divided into two major clusters (Fig. 3a).
The first is a “tumor-correlated cluster” of 1038 gene-
metabolite pairs (288 unique genes and 155 metabolites of
which 35 are unidentified) with relatively high correlations
in tumor samples and mostly negative correlations in
non-tumor samples. The second major cluster, “tumor
anti-correlated cluster”, comprises 1804 gene-
metabolite pairs (479 unique genes and 188 metabolites
of which 39 are unidentified) with high negative correla-
tions for tumor samples and mostly negative correlations
for non-tumor samples.
Upstream analysis of the genes involved in the tumor-

correlated cluster (N = 283) did identify MYC as an up-
stream transcriptional regulator (Right-tailed Fisher’s
Exact Test p-value = 6 × 10− 3), even though MYC and
2-HG are not differentially associated (Fig. 3c). 2-HG
was, however, found to be associated with GPT2 (FDR
adj p-value = 0.046, r = 0.40 in tumors, and r = − 0.11 in
non-tumors) (Fig. 3b, Additional file 7: Data S2). GPT2
plays a role in glutamine metabolism and encodes a
glutamic-pyruvic transaminase that catalyzes reverse
transamination between alanine and 2-oxoglutarate to
generate pyruvate and glutamate [63]. Cancer cells ex-
hibit a metabolic reprogramming that results in in-
creased lactate acid production in the Warburg effect
and the use of glutamine to replenish the tricarb-
oxylic acid cycle (TCA) [64, 65]. The role of GPT2
serves to drive the utilization of glutamine as a car-
bon source for TCA analplerosis [63, 65]. While the
exact mechanisms underlying increased levels of 2-
hydroxyglutarate in breast cancer cells are not all
known, our results suggest that metabolic reprogram-
ming changes the relationship between GPT2 and 2-
hydroxyglutarate. Furthermore, GPT2 is found to be
in 18 (FDR adjusted p-value < 0.05 and correlation
difference > 0.5) other tumor-specific gene-metabolite
associations (Additional file 7: Data S2).

In addition to GPT2 and 2-HG, we identified 15 other
gene-metabolite pairs involving metabolites linked to
glutamine metabolism. Of those genes paired with
glutamine, ASNS, which encodes asparagine synthe-
tase, is directly involved in metabolizing glutamine
[66] and SLC7A1 is involved in glutamine transport
[64] (Additional file 7: Data S2). Furthermore, there
are 65 gene-metabolite pairs with glutamate and 25
pairs involving alanine (Additional file 7: Data S2),
and 5 gene-metabolite pairs involving the WIF gene,
which is part of the Wnt signaling pathway [9]
(Additional file 7: Data S2).
Pathway analysis revealed that genes in the “tumor-cor-

related cluster” (283 mapped into IPA out of 288 genes)
were enriched for oxidative phosphorylation, mitochon-
drial dysfunction, protein ubiquitination pathway, GDP-
mannose biosynthesis, and the pyridoxal 5′-phosphate sal-
vage pathway (Additional file 8: Table S2). Genes in the
“tumor anti-correlated cluster” (468 mapped onto IPA out
of 479 genes) were enriched for hepatic fibrosis/hepatic
stellate cell activation, FAK signaling, actin cytoskeleton
signaling, signaling by Rho family GTPases, and circadian
rhythm signaling (Additional file 8: Table S2). Expectedly,
we find that pathways such as FAK signaling, actin cyto-
skeleton, the protein ubiquitination pathway, and circa-
dian rhythm signaling have strong links to breast cancer
pathogenesis [67–71]. Of note, the top two pathways
in the tumor-correlated cluster (oxidative phosphoryl-
ation and mitochondrial dysfunction) play roles in
cellular energetics [72].
Pathway analysis of the metabolites in the “tumor-corre-

lated cluster” (100 mapped onto IPA out of 155 metabo-
lites) resulted in enrichment of pathways related to tRNA
charging and nucleotide degradation (Additional file 9:
Table S3). The “tumor anti-correlated cluster” (115 mapped
onto IPA out of 188 metabolites) was also enriched for
tRNA charging, citrulline metabolism, urea cycle, purine
nucleotide degradation, and purine ribonucleosides degrad-
ation to ribose-1-phosphate (Additional file 9: Table S3).
Pathways related to tRNA and the urea cycle have been im-
plicated in cancer [73–75]. Citrulline metabolism and the
urea cycle have also been linked to glutamine metabolism
[57, 76, 77]. These findings are consistent with previous
studies [9, 57, 63, 64] that highlight the role of glutamine
metabolism in cancer cell proliferation and maintenance,
especially with regards to breast cancer [9]. Further,
the urea cycle has been shown to be implicated in
breast cancer and is linked to glutamine metabolism
[77]. Notably, our IntLIM results identify 2 gene-
metabolite pairs with urea and 5 gene-metabolite
pairs with arginine (FDR-adjusted p-value of 0.05 or
less, absolute Spearman Correlation difference > 0.5), a
major metabolite in the urea cycle (Additional file 7:
Data S2) [77].
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Discussion
As more and more transcriptomic and metabolomic data
are collected in the same samples or individuals, there is
a need for streamlined methods and associated user-
friendly tools that integrate these data. We implemented
a novel linear modeling approach into an IntLIM R
package that includes a user-friendly web interface, to
statistically test whether gene and metabolite associa-
tions differ by phenotype. Formally testing this depend-
ency on phenotype differentiates our approach from
other numerical integration approaches such as logistic
regression and canonical correlations. Compared to
other existing methods that take into account phenotype
dependency [20, 34], IntLIM is user-friendly, it uses a
well-developed methodology (linear model interactions),
can easily account for other covariables (e.g. gender,
BMI, etc.), and can be applied to phenotypes that have
more than two categories or are continuous. Ultimately,
uncovering phenotype-specific relationships can provide
insight into how metabolites are being regulated by
genes and on which pathways may be involved in these
phenotype-specific changes.
While knowledge of relevant pathways is powerful in

developing potential disease interventions and treat-
ments, pathway enrichment analyses are hampered by
the large fraction of metabolites that are identified or
cannot be mapped to pathways. Importantly, IntLIM un-
covers phenotype-dependent gene-metabolite associa-
tions without a priori curated information on pathways
and networks, allowing discovery of potentially novel as-
sociations (that would require further experimental val-
idation). Because untargeted metabolomics data
produces many unidentified features, phenotype-specific
associations with IntLIM could help further characterize
these unidentified molecules. These data-driven discov-
eries would require further experimental validation and
could generate new hypothesis to be tested. When path-
way annotations are available though, pathway enrich-
ment analysis of genes and metabolites that show similar
patterns (e.g. positive correlation in tumors but no cor-
relation in non-tumors) can offer greater insight onto
pathways that are altered between phenotypes. With this
in mind, IntLIM produces a list of relevant genes and
metabolites that could be input into pathway integration
approaches and software [26, 28–30].
To demonstrate the utility of IntLIM to uncover

cancer-relevant gene-metabolite relationships, we evalu-
ated transcriptomic and metabolomics data measured in
the NCI-60 cell lines [10] and breast tumor/adjacent
non-tumor tissue [9] (Figs. 2 and 3). In both these data
sets, we uncovered biologically relevant gene-metabolite
relationships and pathways. For example, glutamine me-
tabolism clearly stood out as an altered pathway in the
breast cancer data, in line with previous published

results [9]. Interestingly, we also uncovered novel puta-
tive associations, such as the possible modulation by
GPT2 of 2-hydroxyglutarate accumulation in breast can-
cer tissue (validation of this relationships would require
further experimentation).
While this first iteration of IntLIM uncovers phenotype-

specific gene-metabolite pairs, the approach can easily be
extended to other omics data (e.g., metabolomics/micro-
biome data, metabolomics/proteome, proteome/transcrip-
tome). Of note, because IntLIM makes use of a linear
model, we assume that the independent variables (e.g. me-
tabolite levels) are normally distributed to meet the normal-
ity assumption. We have verified the normality assumption
in the NCI-60 and breast cancer datasets and leave it up to
the user to appropriately transform and check the normal-
ity of their data prior to using IntLIM. Furthermore, our
current linear model does not make use of the fact that
some of the samples may be paired. In our breast cancer
data [9], only a subset of the patients (N = 41) have both
tumor and adjacent non-tumor available. It would be feas-
ible to take into consideration the paired nature of the sam-
ples using a mixed model methodology, and thereby
increase our power to detect significant relationships. Fi-
nally, future developments of IntLIM will accommodate
greater flexibility in defining models. For example, we will
include the capability of testing whether phenotype-specific
gene-metabolite associations are independent of other pu-
tative confounders (e.g. age, gender, race, etc). Further,
while IntLIM currently only supports a binary phenotype, it
is readily generalizable to multicategorical phenotypes.
Like most approaches, IntLIM and the studies con-

ducted are not without limitations. The biochemical
pathways that drive gene expression to protein produc-
tion to post-translational modifications to metabolite
production/consumption are complex [24]. The abun-
dance of a given metabolite typically depend on a group
of enzymes that produce/consume that metabolite.
Additionally, those enzymes have distinct kinetic param-
eters, and their activity depends on a range of posttrans-
lational modifications and regulatory processes. As a
result, transcript levels are not the only factors that
modulate metabolite abundance, and the gene-
metabolite relationship may not be linear. In this regard,
IntLIM may not adequately capture these complex rela-
tionships. Nonetheless, linear-based approaches are well-
developed, have successfully been applied when integrat-
ing omics data, and co-regulated genes and metabolites
tend to be associated with functional roles [10, 20, 34].
Further, we demonstrate that this simple approach can
identify biologically meaningful, putative phenotype-
dependent gene-metabolite relationships that can be in-
vestigated with further experiments. Another limitation
is that IntLIM does not take into consideration time-
dependency of biochemical reaction steps, especially
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given the time delay between gene expression and pro-
tein production and further on metabolite production/
consumption. However, in clinical and translational
applications, metabolomic and transcriptomic data is
typically collected at a “snapshot” in time, where time-
dependent analyses are not possible [78]. Lastly, our ap-
proach, along with other numerical and pathway based
integration approaches, does not take into account cellu-
lar heterogeneity in specimens analyzed, even though
this heterogeneity could impact gene-metabolite correla-
tions in different regions of cells or tissues [79]. Because
IntLIM remains agnostic to the input, especially with
regards to cell/tissue heterogeneity, it is the user’s
responsibility to interpret the data as well as design fu-
ture experiments to test findings from results. Despite
these limitations, IntLIM provides a user-friendly, repro-
ducible framework to integrate metabolomics and tran-
scriptomics data, or other omics data and provides a
readily implementable first step in integration.

Conclusions
Metabolomics and transcriptomic data are increasingly
collected in the same samples to uncover putative metab-
olite biomarkers and gene therapeutic targets. User-
friendly approaches that integrate these data types will
thus facilitate data interpretation in these studies, and
could generate data-driven hypothesis. With this in mind,
we developed a novel linear modeling approach that sta-
tistically tests whether gene-metabolite associations are
specific to particular phenotypes (tumor vs. non-tumor,
cancer-type, etc.). Our approach is available as a publicly
available R package, IntLIM, with an associated user-
friendly web application. We applied IntLIM to two can-
cer datasets and uncovered known and novel gene-
metabolite pairs and pathways that were associated with
cancer phenotypes. It is our hope that IntLIM will assist
researchers, with or without computational expertise, in
formulating novel hypothesis and proposing new studies
especially with regards to the gene-metabolite pairs identi-
fied. Integrating the results with pathway analysis tools
will provide further insight. The IntLIM R package and
App are available for download via GitHub and a sample
data-set and vignette are provided for users.
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cell lines with 220 filtered metabolites and 16,188 genes. A) Distribution

of normalized (Metabolon method) metabolite abundances among NCI-
60 cell lines. B) Distribution of normalized (MAS5 algorithm) gene expres-
sion data. C, D) Principal component analysis of metabolomics and gene
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Additional file 4: Data S1. NCI-60 Results with FDR Adjusted p-value
< 0.10 and Correlation Difference > 0.50. (XLSX 104 kb)

Additional file 5: Table S1. NCI-60 Data pathway analysis results of
genes. Ingenuity Pathway Analysis Canonical Pathways from Genes involved
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Anti-Correlated Cluster. P-values are all calculated from right-tailed Fisher’s
Exact Test. (PDF 56 kb)

Additional file 6: Figure S2. Preliminary analysis of filtered breast cancer
data involving 108 samples (61 tumor and 47 non-tumor) with 379
metabolites and 18,228 genes. A, B) Distribution of normalized metabolite
levels (Metabolon method) and RMA-normalized gene expression levels for
all samples, respectively. C,D) Principal component analysis of metabolomics
and gene expression data, respectively. In the IntLIM package Rshiny app,
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Additional file 7: Data S2. Breast Cancer Results. FDR Adjusted p-value
< 0.05 and Spearman Correlation > 0.5. (XLSX 220 kb)

Additional file 8: Table S2. Breast Cancer Data pathway analysis results
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Tumor Anti-Correlated Cluster. P-values are all calculated from right-tailed
Fisher’s Exact Test. (PDF 55 kb)
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(PDF 53 kb)
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