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Abstract: Autofocus is an essential technique for airborne synthetic aperture radar (SAR) imaging
to correct phase errors mainly due to unexpected motion error. There are several well-known
conventional autofocus methods such as phase gradient autofocus (PGA) and minimum entropy
(ME). Although these methods are still widely used for various SAR applications, each method has
drawbacks such as limited bandwidth of estimation, low convergence rate, huge computation burden,
etc. In this paper, feature preserving autofocus (FPA) algorithm is newly proposed. The algorithm
is based on the minimization of the cost function containing a regularization term. The algorithm
is designed for postprocessing purpose, which is different from the existing regularization-based
algorithms such as sparsity-driven autofocus (SDA). This difference makes the proposed method far
more straightforward and efficient than those existing algorithms. The experimental results show
that the proposed algorithm achieves better performance, convergence, and robustness than the
existing postprocessing autofocus algorithms.

Keywords: autofocus; feature preserving regularization; phase errors; synthetic aperture radar (SAR)

1. Introduction

Synthetic aperture radar (SAR) can create high cross-range resolution images through
coherent processing of the returned pulses received at different antenna position due
to a moving platform, which enables provision for the effect of a large virtual aperture
size [1–3]. To achieve full performance of SAR, the exact flight trajectory of the platform
should be provided to the signal processor for proper motion compensation. Especially in
the case of airborne SAR, the effect of the unexpected platform motion due to the factors
such as wind gusts and aircraft vibrations should be compensated before SAR processing.
These compensations for airborne SAR are usually performed by using the measured
navigation data such as the output of global positioning system (GPS), inertial navigation
system (INS), or embedded GPS/INS (EGI) [4]. However, these data also contain the
measurement errors due to the inaccuracy of the navigation sensors, and these residual
errors cause the phase errors of SAR data, which degrades the quality of the SAR image.
There are several methods to solve this kind of image quality degradation, which are
usually called autofocus.

Phase gradient autofocus (PGA) is one of the most widely used algorithms to esti-
mate the phase error [5]. The method assumes all the complex reflectivity in the image
windowed with appropriate window size, except the center-shifted point target at each
range bin, are distributed as zero-mean Gaussian random noises. These assumptions limit
the performance of the algorithm in spite of its robustness and fast convergence. The point
target and random noise assumption are inappropriate to the scene that contains dominant
targets close to each other in the azimuth direction. Quality phase gradient autofocus
(QPGA) and generalized phase gradient autofocus (GPGA) are proposed to alleviate this
problem [6,7]. However, both QPGA and GPGA use the limited window size, which also
limits the bandwidth of the estimated phase error. Therefore, these PGA-based methods
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are not suitable for estimating the phase error containing the high frequency components
such as the error generated by the GPS measurement update in EGI.

Optimization of sharpness metrics is also a well-known autofocus technique [8,9].
These kinds of methods are used to optimize the cost function, which enables the scene
to be well focused. One of the most commonly used cost functions is entropy, and such
methods are often called the minimum entropy (ME) method [10–15]. ME-based methods
are not restricted by the assumptions in PGA, so there is no limitation on the bandwidth
of estimation. There are various ways to achieve the optimization because these methods
have no closed-form solutions [8]. One way is to model the estimated error as a polynomial
and adjust the coefficients to minimize the entropy of the image [10]. Although this method
achieves appropriate performance, the higher order components of the phase errors are
difficult to estimate because of the limited order of the estimates, which is similar to the
bandwidth issue in PGA. Even though the order of the polynomial can be adaptively
increased, it would be computationally intensive. The optimization method based on the
trial and error [11] also experiences similar or a more extensive computational problem.

The most widely used ME methods can be divided into two categories. The first is
based on gradient searching. One of the well-known methods in this category is the mono-
tonic iterative algorithm (MIA) [12], which minimizes well-defined surrogate functions
instead of the entropy. An algorithm based on Newton’s method to obtain the phase esti-
mate, which makes the gradient of entropy zero, also provides reasonable performance [13].
These methods can be carried out through the fast Fourier transform (FFT), which enables
the fast phase estimation. Another category is based on the fixed-point iteration [14,15]. In
these methods, the fixed-point iteration is used to solve the implicit equation of the phase,
which makes the derivative of the entropy zero. Every iteration can also be conducted
through FFT. The algorithms in these two categories show similar estimation accuracy
and convergence.

Regularization-based autofocus techniques are also proposed by some authors [16–22],
which are methods that are quite different from postprocessing autofocus such as PGA and
ME. These methods are based on a regularized reconstruction of the SAR images, which are
often called compressive sensing [22], sparsity-driven imaging [23], or feature-enhanced
SAR imaging [24–26]. Unlike the conventional SAR image formation such as the polar
format algorithm (PFA) [1], regularization-based imaging methods have advantages such
as high resolution, which is not limited by the SAR system bandwidth, and suppression
of the artifact owing to speckle and side-lobe, even if the datasets are nonuniform and
undersampled. Sparsity-driven autofocus (SDA), one of the well-known autofocus methods
in this area, is to minimize the cost function, composed of a fidelity and regularization term,
jointly with the estimate of image and the phase error [16]. SDA achieves quite accurate
phase estimation with preservation of the advantages of regularized reconstruction. Similar
approaches have been proposed such as optimization of cost function, including total
variation [17] and modified Tikhonov regularization-based autofocus [18,19] to improve
the performance and reduce the computational burden. Although the regularization-
based methods achieve high quality SAR images, these are hard to utilize for the SAR
mission, which requires on-board processing and a large scene size. The reason is that these
methods perform not only the estimation of phase error but also the reconstruction of the
image simultaneously, which requires huge computation power. The large computation
burden of regularized reconstruction is one of the reasons why PFA is still widely utilized
for on-board SAR image formation. If the SAR system is well designed to meet the
performance requirements, the only concern for image degradation is the phase error, not
the sparse sampling.

In this paper, we propose a new postprocessing autofocus algorithm for phase-
corrupted images. The algorithm is designed to minimize the cost function containing
regularization term based on l1-norm, which is similar to regularization-based autofocus
such as SDA. However, the proposed algorithm deals with the processed complex image
corrupted by the phase error, whereas SDA deals with returned pulse data before pro-
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cessing. This difference makes the proposed algorithm straightforward and requires only
simple calculation for FFT and soft-threshold. The equation for minimization of the cost
function is carried out through an indirect optimization manner, and fixed-point iteration
is used to obtain the optimal solution.

The rest of this paper is outlined as follows. In Section 2, the fundamental background
for the proposed algorithm, such as iterative shrinkage thresholding algorithm (ISTA)
and denoising [27], are explained. In Section 3, we define the cost function for the pro-
posed method and present the iterative algorithm to achieve the minimization. Then, we
demonstrate the performance, convergence, and robustness of the proposed algorithm
and compare them with those of the existing autofocus methods such as PGA, GPGA, and
ME through experimental results in Section 4. Finally, the conclusions are presented in
Section 5.

2. Fundamental Background
2.1. Phase Error Correction in SAR Images

The typical SAR image formations are achieved through the two-dimensional inverse
discrete Fourier transform (DFT) of the motion compensated echo signal formatted to
Cartesian coordinates. If we define the range-compressed, motion compensated echo signal
as G(n, m), where n and m are the indices of range cells of the scene and received pulses,
respectively, the complex image g(n, k) is formulated as

g(n, k) =
M−1

∑
m=0

G(n, m) exp
(

j
2π

M
km
)

(1)

where k is the indices of azimuth cells of the scene, M is the number of received pulses,
and j2 = −1. The residual phase errors after the motion compensation in the SAR image
are mainly due to the errors in the navigation data, and these errors corrupt each returned
pulse signal phase. Therefore, most of the phase distortions are in azimuth direction, and
the phase-corrected complex image can be formulated as

ĝ(n, k) =
M−1

∑
m=0

G(n, m) exp[jϕ(m)] exp
(

j
2π

M
km
)

(2)

where ϕ(m) is the estimated residual phase error. If we can obtain an accurate estimation
of the phase error, the corrected image is also obtained through (2), which can be carried
out through FFT.

2.2. Phase Adjustment for Desired Image

If we have the desired complex image and want to obtain the phase adjustment for
minimizing the error between the desired and phase adjusted image, we can formulate the
following cost function:

J = 1
2

M−1
∑

k=0

N−1
∑

n=0
|ĝ(n, k)− h(n, k)|2

= Re
[

M−1
∑

k=0

N−1
∑

n=0
ĝ(n, k)h∗(n, k)

]
+ 1

2

M−1
∑

k=0

N−1
∑

n=0
|ĝ(n, k)|2 + 1

2

M−1
∑

k=0

N−1
∑

n=0
|h(n, k)|2

(3)

where h(n, k) is the desired complex image and N is the number of range cells of the
scene; (·)∗ and Re(·) denotes complex conjugate and the real part of the complex number,
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respectively. We assumed that the number of azimuth cells of the scene is equal to M. Let
the derivative with respect to ϕ(m) be zero to minimize the cost function in (3):

∂J
∂ϕ(m)

= ∂
∂ϕ(m)

{
Re
[

M−1
∑

k=0

N−1
∑

n=0
ĝ(n, k)h∗(n, k)

]}
= Re

[
M−1
∑

k=0

N−1
∑

n=0

∂ĝ(n, k)
∂ϕ(m)

h∗(n, k)
]
= 0

(4)

The second and third additive terms in (3) are ignored because the phase does not
have an effect to the variation of the total intensity. The derivative of ĝ(n, k) with respect
to ϕ(m) is derived from (2) as given in the following equation:

∂ĝ(n, k)
∂ϕ(m)

= jG(n, m) exp[jϕ(m)] exp
(

j
2π

M
km
)

(5)

Then, (4) becomes

∂J
∂ϕ(m)

= Im

{
exp[jϕ(m)]

N−1

∑
n=0

G(n, m)H∗(n, m)

}
= 0 (6)

where Im(·) denotes the imaginary part of the complex number and H(n, m) is defined as

H(n, m) =
M−1

∑
k=0

h(n, k) exp
(
−j

2π

M
km
)

(7)

H(n, m) in (7) can be computed through FFT. From (6), the sufficient solution for ϕ(m)
is obtained from the following equation:

ϕ(m) = ∠

[
N−1

∑
n=0

G∗(n, m)H(n, m)

]
(8)

where ∠(·) denotes the phase of the complex number. The result in (8) will be used in
Section 3 to explain the proposed method.

2.3. Brief Review of Regularized Reconstruction

SAR image formation is basically solving an inverse problem to obtain the image from
the returned signal. If we know the exact SAR observation model, SAR imaging is identical
to solving the following equation with respect to x [25]:

y = Cx + v (9)

where x, y, and v comprise an MN × 1 vector, which is the column stacked version of
the complex image, returned echo, and measurement noise, respectively, and C is the
discretized observation kernel. The following cost function is usually used to solve the
inverse problem in (9) [25]:

J =
1
2
‖y−Cx‖2

2 + λ‖x‖p
p (10)

where ‖ · ‖p denotes the lp-norm and λ is a weighting parameter for regularization term.
The first term represents the fidelity term for preserving the dependence on the observation
model and the second term is the regularization term for enhancement of the feature of the
image. The typical choice for p is 1 [26]. The optimization can be achieved through two
ways, one is the gradient descent algorithm [26] and the other is the iterative shrinkage
thresholding algorithm (ISTA) [28]. For p = 1, ISTA is represented as

xi+1 = Sλ

(
xi − αCH(Cxi − y)

)
(11)
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where α is a sufficiently small positive number, xi is estimate of x in i-th iteration, and Sλ(·)
is a soft-thresholding function defined as

Sλ(x) = exp[j(∠x)](|x| − λ)+(
(x)+ =

{
x if x ≥ 0

0 otherwise

)
(12)

Iteration in (11) achieves the optimal image for (10) if α is smaller than the largest
eigenvalue of CHC. Unlike the inverse problem of (9) and (10), if we already have the
complex image formatted by (1) and want to carry out the feature enhancement in postpro-
cessing, x and y become the column stacked version of the complex image before and after
the postprocessing, respectively, and kernel C becomes the identity matrix. Then, (10) is
rewritten as

J = 1
2‖y− x‖2

2 + λ‖x‖1

= 1
2

M−1
∑

k=0

N−1
∑

n=0

(
|g(n, k)− g(n, k)|2 + λ|g(n, k)|

) (13)

where g(n, k) is the postprocessed complex image. Unlike the iterative solution in (11), the
optimization of (13) can be achieved by the following the closed-form solution [27]:

g(n, k) = Sλ(g(n, k)) (14)

If we approximate |g(n, k)| to be [g∗(n, k)g(n, k) + ε]
1
2 for a sufficiently small positive

scalar ε, then it satisfies
∂J

∂g(n, k)

∣∣∣∣
g(n,k)=Sλ(g(n, k))

≈ 0 (15)

From (14), each element of g whose absolute value is smaller than λ is removed, and
the absolute value of the other elements are decrease by λ. This so-called “denoising” [28]
is an important procedure for the proposed algorithm described in the next section.

3. Proposed Method

In this section, we define a cost function and derive the equation for its optimality in
an indirect optimization manner. We then propose an algorithm to obtain the solution for
the equation.

3.1. Cost Function and Its Minimization

The phase-corrupted image, owing to the residual phase error, shows distorted fea-
tures such as degraded resolution and unexpected side-lobes, and hence the goal for phase
estimation can be interpreted as to remove these distortions. Therefore, the objective of our
method is a phase adjustment to achieve the feature enhancement, which can be realized
by concurrent optimization of (3) and (13), i.e., the following cost function:

J (g, ϕ) =
1
2

M−1

∑
k=0

N−1

∑
n=0

(
|ĝ(n, k)− g(n, k)|2 + λ|g(n, k)|

)
(16)

where ĝ is the function of ϕ according to (2). The minimization of (16) enables obtaining the
feature-enhanced image g and the phase adjustment ϕ to make the phase-corrected image
close to g. We can achieve the minimization through the following indirect optimization.

Let g be the solution of the necessary condition for the minimum of (16), i.e., ∂J/∂g = 0;
then, the solution is obtained from (14) as

g(n, k) = Sλ(ĝ(n, k)) (17)
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If (17) holds for every ϕ, then we can replace the cost function in (16) by the following
indirect cost function:

V( ϕ) =
1
2

M−1

∑
k=0

N−1

∑
n=0

(
|ĝ(n, k)− Sλ(ĝ(n, k))|2 + λ|Sλ(ĝ(n, k))|

)
(18)

The derivative of (18) with respect to ϕ is

∂V(ϕ)

∂ϕ
=

∂J(g, ϕ)

∂g
∂g
∂ϕ

+
∂J(g, ϕ)

∂ϕ
≈ ∂J(g, ϕ)

∂ϕ
(19)

because ∂J/∂g ≈ 0 for g in (17). Let (19) to be zero for minimization of V( ϕ), then
the condition for optimality can be derived by using the result in (6) as given in the
following equation:

∂J
∂ϕ(m)

= Im

{
exp[jϕ(m)]

N−1

∑
n=0

G(n, m)G∗(n, m)

}
= 0 (20)

where G(n, m) is defined as

G(n, m) =
M−1
∑

k=0
g(n, k) exp

(
−j 2π

M km
)

=
M−1
∑

k=0
Sλ(ĝ(n, k)) exp

(
−j 2π

M km
) (21)

The solution of (20) is the final phase error estimate of our proposed method.

3.2. Algorithm

The sufficient condition for (20) can be written in a manner similar to that in (8):

ϕ(m) = ∠

[
N−1

∑
n=0

G∗(n, m)G(n, m)

]
(22)

Equation (22) is not a closed-form solution of ϕ(m) unlike (8), because G(n, m) is
still the function of ϕ(m). This implicit equation can be solved by the fixed-point iteration
method, which has been applied to solve the similar problems for ME [13,14]. The flowchart
of the proposed algorithm is represented in Figure 1. The computation of (2) and (21) in
the algorithm can be carried out through FFT, which enables a fast iteration.

In every iteration, gi takes the same role of the desired complex image, i.e., h in (7),
which is the denoised image of ĝi. Because of the soft-thresholding function in (17), a few
elements of ĝi whose absolute value is larger than λ are preserved in gi and the others are
set to be zero. We call these preserved elements “features” in this paper. These remained
features are the reference for the phase estimation in every iteration. In other words,
the phase adjustment is achieved to fit the given image to the feature-preserved image.
Therefore, we refer to the proposed algorithm as “feature preserving autofocus (FPA)”
in this paper. Since the existing regularization-based autofocus algorithms such as SDA
deal with the returned pulse data before processing, image formation algorithms such as
the gradient descent algorithm and ISTA described in Section 2.3 are required for every
iteration. Therefore, these algorithms require huge computation for a large scene size.
Meanwhile, the proposed FPA requires only one soft-thresholding to obtain the reference
image for phase adjustment. This simple iteration sequence makes the proposed algorithm
more suitable for on-board SAR processing.
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3.3. Selection of the Threshold

It is worth noting that a careful choice of the threshold, i.e., λ, is recommended for
the proposed FPA. A choice of small λ enables the features to contain a sufficiently large
number of scatterers, which achieves accurate estimation. However, if λ is too small, the
remaining features would also contain the artifacts of the SAR image such as side-lobes
even though their magnitude are reduced. Thus, it may cause low speed of convergence,
and insufficient estimation accuracy if the artifacts still remain in the features at the final
iteration. On the other hand, if λ is too large, some dominant scatterers for phase estimation
would be removed from the features. In this case, the estimation is too concentrated in a
few remained strong scatterers, which leads to local optimal estimation even if it enables to
achieve faster convergence rate.

To solve these tradeoffs, we propose varying the threshold to satisfy both fast con-
vergence and optimal performance. The fast convergence can be achieved by setting a
large λ at the initial iteration loop, and the accurate estimation can be carried out through
gradually decreasing the value of λ for the rest of the iterations. For example, we suggest a
simple asymptotically decreasing model for λ:

λi = αλi−1 = αiλ0 (23)

where α and λi represent the positive forgetting factor less than 1 and the threshold for i-th
iteration, respectively. The threshold for the initial loop, i.e., λ0, would be a user-defined
sufficiently large positive value, but small enough to achieve an appropriate number
of features containing the main scatterers. There are various ways to select the main
scatterers, such as the methods in [6,7,13]. Any of these methods would work to select
the appropriate initial threshold. Alternatively, we observed that the proposed algorithm
with an initial threshold slightly smaller than the maximum amplitude of the image, which
enables the features to contain at least one scatterer, performs sufficient convergence and
performance for every case in this paper. The performance comparison for constant and
varying threshold is described in the next section.
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4. Experimental Results

In this section, some experimental results are demonstrated to verify the benefits of
our proposed algorithm. In Section 4.1, we verify the performance and characteristics
of the proposed method with a different threshold λ, and explain the tradeoff between
the convergence and accuracy. Then, we compare the results for the constant threshold
with those of the varying threshold to compromise the tradeoff, which is introduced in
the previous section. In Section 4.2, we demonstrate the convergence and the performance
of the proposed method with various types of the phase error, and compare them with
those of the existing autofocus algorithms. PFA is utilized for SAR imaging to all the
experimental results. The quantitative measures to verify the performance of the autofocus
algorithm are defined as

IC (ĝ) =

√
E
(
[|ĝ(n,k)|−E{|ĝ(n,k)|}]2

)
E[|ĝ(n,k)|]

IE (ĝ) = −
M−1
∑

k=0

N−1
∑

n=0

|ĝ(n, k)|2

E
[
|ĝ(n, k)|2

] ln

(
|ĝ(n, k)|2

E
[
|ĝ(n, k)|2

]
) (24)

where E(·) represents the spatial mean operator, and IC(ĝ ) and IE(ĝ ) represent the
contrast and entropy of the image ĝ , respectively. The initial image g is scaled to have a
maximum magnitude of 1 for all the cases of the experiment, which makes the threshold λ
for the soft-threshold function within 0 to 1. The constant µ for stop criteria is set to be 10–4

for all cases.

4.1. Performance and Convergence of the Proposed Method

The SAR image used for the proposed FPA is shown in Figure 2a. The size of the
image is 4000 × 4000 pixels. The vertical and horizontal coordinates of the image represent
the range and azimuth, respectively. The definitions of coordinates are the same for all
of the other SAR images in this paper. Figure 2b,c shows the image enlarged at the point
near the center of the image both without and with the phase error of Figure 3, respectively.
The images corrected by FPA are shown in Figure 4, and the variation of contrast and
entropy at each iteration are represented in Figure 5. The images in Figure 4a–d are the
results for a constant threshold λ fixed by 0.01, 0.1, 0.3, and 0.9, respectively. Although
the images look similar to each other, their contrast and entropy are slightly different,
as shown in Figure 5 and Table 1. For a small value of λ, the convergence rate is low,
even though the measures tend to converge to its optimal value. On the contrary, a large
value of λ enables fast convergence, whereas the final performances are degraded. The
reason for these characteristics can be explained by the number of features in Figure 5c. It
shows that the smaller value of the threshold applied, the larger the number of features
the algorithm uses for each iteration. As mentioned in the previous section, the features
may contain the artifacts if the number of features is too large, which causes an adverse
effect on the convergence rate. In the case of a small number of features, on the other hand,
some dominant scatterers are omitted and it may interfere with the global optimality of the
estimation, even if it achieves fast convergence.
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As explained in the previous section, we applied a varying threshold to the proposed
FPA to satisfy both fast convergence and optimal performance. We set the threshold λ
for initial iteration to a relatively large value, and gradually decrease the value at each
iteration as in (23). The initial threshold λ0 and the forgetting factor α are set to 0.9 and 0.5,
respectively, and the corrected image from this method is shown in Figure 4e. As shown
in Figure 5a,b, the quantitative measures reach the optimal value with an appropriate
iteration number. Unlike the fixed threshold cases, the number of features increases for
each iteration, as shown in Figure 5c, which enables the features of the current iteration to
contain the dominant scatterers omitted at the previous iteration.
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Table 1. Quality of the images with different conditions.

Conditions for Image Formation Contrast Entropy

Original image reconstructed by PFA 1.901 11.601
Phase-corrupted image 1.753 12.271
Image corrected by FPA with λ = 0.01 1.900 11.613
Image corrected by FPA with λ = 0.1 1.895 11.611
Image corrected by FPA with λ = 0.3 1.889 11.617
Image corrected by FPA with λ = 0.9 1.883 11.630
Image corrected by FPA with varying λ 1.901 11.601

4.2. Comparison with Existing Autofocus Algorithms

We have compared the proposed method with existing postprocessing autofocus
methods of PGA [5], GPGA [7], and ME [12]. Constant false alarm rate (CFAR) detection
was used to select the strongest scatterers for GPGA, which is a modified algorithm of PGA.
The stop conditions for PGA, GPGA, and ME were the same as that of proposed FPA, and
we used the varying threshold for FPA as described in Section 3.3. The value of λ0 and α
for FPA were the same as the previous experiment.

We added various types of phase errors as shown in Figure 6 to the scene in Figure 2a.
The images corrected by PGA, GPGA, ME, and the proposed FPA are shown in Figure 7.
The contrast and entropy variation for each iteration are represented in Figures 8 and 9,
respectively. The performance measures of the images for each method and phase error are
represented in Table 2, and the number of iteration and total computing time are shown
in Table 3. The computation time was measured with a workstation equipped with Intel®

Xeon® Gold 6140 CPU. MATLAB was used as the programming language.
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Figure 7. Phase-corrected images for different types of errors and autofocus algorithms: first row—without autofocus;
second row—phase gradient autofocus (PGA); third row—generalized phase gradient autofocus (GPGA); fourth row—
minimum entropy (ME); fifth row—proposed FPA. (a) Results for quadratic error. (b) Results for uniformly distributed
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Table 2. Comparison of performance for different autofocus algorithms.

Autofocus
Algorithm

Contrast Entropy

(a) (b) (c) (d) (a) (b) (c) (d)

No autofocus 1.778 0.961 1.665 1.671 12.198 14.768 12.414 12.535
PGA 1.900 1.006 1.883 1.890 11.604 14.504 11.626 11.617

GPGA 1.900 0.979 1.886 1.892 11.602 14.764 11.620 11.612
ME 1.900 1.900 1.900 1.891 11.604 11.604 11.612 11.614

Proposed FPA 1.901 1.901 1.901 1.901 11.603 11.601 11.601 11.601

(a)–(d) denote the types of phase errors, same as Figure 6.

Table 3. Comparison of the number of iterations and computation time for different autofocus algorithms.

Autofocus
Algorithm

Number of Iterations Computation Time (s)

(a) (b) (c) (d) (a) (b) (c) (d)

No autofocus - - - - - - - -
PGA 7 20 7 7 51.7 146.8 58.6 55.9

GPGA 5 2 5 5 77.0 37.0 89.9 84.5
ME 65 5 17 96 252.6 22.3 65.5 344.7

Proposed FPA 8 8 8 8 33.9 31.9 33.4 26.8

(a)–(d) denote the types of phase errors, same as Figure 6.

It is well-known fact that PGA shows fast convergence and sufficient performance
for low-frequency errors, such as the quadratic error shown in Figure 6a, which can be
observed from the results in Figures 7a, 8a and 9a, and Tables 2 and 3. GPGA shows almost
the same result with PGA with less iteration, but requires more computation time due to the
additional process such as the strongest peak selection through CFAR for every iteration.
The proposed method shows a similar trend with less computation time, because both
PGA and GPGA require additional procedure for center-shifting, windowing, elimination
of linear phase, etc. Meanwhile, ME requires more iterations due to the large phase error,
even though it slowly converges to the optimal performance as shown in those figures.
Unlike the quadratic error case, the image with random phase error cannot be corrected
by PGA and GPGA, as shown in Figures 7b, 8b and 9b, and Tables 2 and 3. It is a natural
result because of the assumptions and limited window size of PGA, described in Section 1.
Meanwhile, ME and FPA show nearly optimal performance with few iterations. Therefore,
it can be inferred from these results that the performance and convergence rate of the
proposed FPA are not limited by the bandwidth of the phase error, unlike PGA and ME.

In a practical SAR system, Wiener process and discontinuous phase error can occurr
because of the navigation systems for motion compensation. If we use an INS system,
the Wiener process errors are generated due to the integration of IMU measurements
that contain the Gaussian white noises. Furthermore, the navigation data experience
some discontinuities if the system uses GPS measurement updates. The phase errors in
Figure 6c,d are this kind of error, and the autofocus results for these errors are represented
in (c) and (d) of Figures 7–9, and Tables 2 and 3. These results verify that FPA also shows
the best performance with appropriate iteration number and computation time. Therefore,
we verified the performance and convergence of the proposed FPA as well as its robustness
for most types of phase errors through these results. We performed the same procedure
for two more scenes in Figure 10 to verify the reliability of the algorithm. Scenes A and B
are selected to have a higher and lower value of entropy, i.e., lower and higher contrast,
than those of the image in Figure 2a. The results for these two scenes are represented
in Tables 4–7, and similar trends of performance and convergence are observed when
compared to that of the results in Tables 2 and 3. FPA shows best performance with
sufficiently small iterations and computation time for all cases, and it verifies that FPA
produces reliable performance.



Sensors 2021, 21, 2370 15 of 17

Sensors 2021, 21, x FOR PEER REVIEW 15 of 17 
 

 

iterations and computation time for all cases, and it verifies that FPA produces reliable 
performance. 

  
(a) (b) 

Figure 10. Additional scene to verify the reliability of FPA: (a) scene A and (b) scene B. 

Table 4. Comparison of performance for different autofocus algorithms for scene A. 

Autofocus Algorithm 
Contrast Entropy 

(a) (b) (c) (d) (a) (b) (c) (d) 
No autofocus 1.590 0.873 1.519 1.544 12.965 15.209 13.164 13.194 

PGA 1.616 0.893 1.614 1.619 12.715 15.269 12.710 12.702 
GPGA 1.616 0.930 1.616 1.620 12.713 14.908 12.704 12.698 

ME 1.615 1.626 1.624 1.618 12.726 12.690 12.699 12.821 
Proposed FPA 1.624 1.626 1.626 1.626 12.707 12.687 12.687 12.687 

(a)–(d) denote the types of phase errors, same as Figure 6. 

Table 5. Comparison of the number of iterations and computation time for different autofocus algorithms for scene A. 

Autofocus Algorithm 
Number of Iterations Computation Time (s) 

(a) (b) (c) (d) (a) (b) (c) (d) 
No autofocus - - - - - - - - 

PGA 6 3 7 7 49.8 24.9 59.3 61.0 
GPGA 6 6 6 6 101.4 101.5 111.8 114.5 

ME 83 12 23 99 325.9 52.4 109.9 465.0 
Proposed FPA 10 9 9 9 35.7 39.4 40.6 46.2 

(a)–(d) denote the types of phase errors, same as Figure 6. 

Table 6. Comparison of performance for different autofocus algorithms for scene B. 

Autofocus Algorithm 
Contrast Entropy 

(a) (b) (c) (d) (a) (b) (c) (d) 
No autofocus 9.087 4.053 8.046 8.306 6.540 10.951 6.934 7.139 

PGA 9.624 4.261 9.314 9.466 5.611 10.371 5.652 5.634 
GPGA 9.622 4.333 9.349 9.485 5.612 10.175 5.646 5.631 

ME 9.634 7.812 9.623 9.459 5.617 6.058 5.627 5.663 

Figure 10. Additional scene to verify the reliability of FPA: (a) scene A and (b) scene B.

Table 4. Comparison of performance for different autofocus algorithms for scene A.

Autofocus
Algorithm

Contrast Entropy

(a) (b) (c) (d) (a) (b) (c) (d)

No autofocus 1.590 0.873 1.519 1.544 12.965 15.209 13.164 13.194
PGA 1.616 0.893 1.614 1.619 12.715 15.269 12.710 12.702

GPGA 1.616 0.930 1.616 1.620 12.713 14.908 12.704 12.698
ME 1.615 1.626 1.624 1.618 12.726 12.690 12.699 12.821

Proposed FPA 1.624 1.626 1.626 1.626 12.707 12.687 12.687 12.687

(a)–(d) denote the types of phase errors, same as Figure 6.

Table 5. Comparison of the number of iterations and computation time for different autofocus algorithms for scene A.

Autofocus
Algorithm

Number of Iterations Computation Time (s)

(a) (b) (c) (d) (a) (b) (c) (d)

No autofocus - - - - - - - -
PGA 6 3 7 7 49.8 24.9 59.3 61.0

GPGA 6 6 6 6 101.4 101.5 111.8 114.5
ME 83 12 23 99 325.9 52.4 109.9 465.0

Proposed FPA 10 9 9 9 35.7 39.4 40.6 46.2

(a)–(d) denote the types of phase errors, same as Figure 6.

Table 6. Comparison of performance for different autofocus algorithms for scene B.

Autofocus
Algorithm

Contrast Entropy

(a) (b) (c) (d) (a) (b) (c) (d)

No autofocus 9.087 4.053 8.046 8.306 6.540 10.951 6.934 7.139
PGA 9.624 4.261 9.314 9.466 5.611 10.371 5.652 5.634

GPGA 9.622 4.333 9.349 9.485 5.612 10.175 5.646 5.631
ME 9.634 7.812 9.623 9.459 5.617 6.058 5.627 5.663

Proposed FPA 9.647 9.647 9.647 9.640 5.614 5.612 5.612 5.649

(a)–(d) denote the types of phase errors, same as Figure 6.
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Table 7. Comparison of the number of iterations and computation time for different autofocus algorithms for scene B.

Autofocus
Algorithm

Number of Iterations Computation Time (s)

(a) (b) (c) (d) (a) (b) (c) (d)

No autofocus - - - - - - - -
PGA 7 10 7 7 49.9 65.3 53.6 55.8

GPGA 6 5 7 7 108.3 97.1 110.2 118.8
ME 70 5 16 94 201.2 11.5 67.6 420.5

Proposed FPA 9 9 9 8 25.6 27.6 25.4 35.7

(a)–(d) denote the types of phase errors, same as Figure 6.

5. Conclusions

In this paper, we proposed and demonstrated a new autofocus method for postpro-
cessing of a phase-corrupted SAR image based on minimization of the cost function that
consists of fidelity and regularization terms. The equation to achieve the optimality is
derived by indirect optimization, and the algorithm to solve the equation is proposed. Each
iteration in the proposed algorithm requires only one soft-thresholding for the reference
image formation, and it enables more efficient processing than the existing regularization-
based autofocus such as SDA. The tradeoff between the performance and convergence for
the proposed FPA can be compromised by selecting proper constant threshold or using an
asymptotically decreasing threshold with appropriate initial value and forgetting factor.
The experimental results verified its better performance, convergence, and robustness
when compared to the existing methods of PGA and ME. We verified the reliability of the
proposed method by performing additional two experiments with a different scene.

Although the proposed FPA shows sufficient performance and convergence for these
experiments, there are still remaining factors to improve, such as selection of features and
determining the threshold for each iteration. These factors would depend on the scene.
Hence, the modifications through adaptive methods would improve the performance and
convergence of the proposed algorithm, which are the future works for this study.
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