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Marta Rosikiewicz1,2,y, Aurélie Comte1,2,y, Anne Niknejad1,2, Marc Robinson-Rechavi1,2 and
Frederic B. Bastian1,2,*

1Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland and 2Swiss Institute of Bioinformatics,

1015 Lausanne, Switzerland

*Corresponding author: Tel: þ41 21 692 4221; Fax: þ41 21 692 4165; Email: frederic.bastian@unil.ch

yThese authors contributed equally to this work.

Submitted 30 November 2012; Revised 16 January 2013; Accepted 19 February 2013

Citation details: Rosikiewicz,M., Comte,A., Niknejad, A. et al. Uncovering hidden duplicated content in public transcriptomics data. Database (2013)

Vol. 2013: article ID bat010; doi:10.1093/database/bat010

.............................................................................................................................................................................................................................................................................................

As part of the development of the database Bgee (a dataBase for Gene Expression Evolution), we annotate and analyse

expression data from different types and different sources, notably Affymetrix data from GEO and ArrayExpress, and

RNA-Seq data from SRA. During our quality control procedure, we have identified duplicated content in GEO and

ArrayExpress, affecting �14% of our data: fully or partially duplicated experiments from independent data submissions,

Affymetrix chips reused in several experiments, or reused within an experiment. We present here the procedure that we

have established to filter such duplicates from Affymetrix data, and our procedure to identify future potential duplicates

in RNA-Seq data.

Database URL: http://bgee.unil.ch/
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Introduction

Bgee (a dataBase for Gene Expression Evolution) (1) is a

resource to perform high-throughput and automated

comparisons of gene expression patterns between species.

To this end, it integrates expression data of different types

(ESTs, in situ hybridization, Affymetrix and RNA-Seq data,

as of Bgee release 12), from different species (fruit fly,

human, mouse, Xenopus and zebrafish, as of Bgee release

12). Each data type is analysed using dedicated statistical

tests, to generate present/absent expression calls, and

differential expression calls (overexpression and underex-

pression). These data are then integrated into a homology

framework (relations of homology between organs and

between genes), facilitating the comparison of gene

expression patterns, between and within species, as well

as the study of their evolution.

To date, we have manually curated 15 988 Affymetrix

chips from 1285 experiments, retrieved from Gene

Expression Omnibus (GEO) (2) and ArrayExpress (3). The cur-

ation process includes the following: (i) controlling for sam-

ples ‘normality’ (e.g. no treatments, no diseases, wild type

genotypes); (ii) mapping the chips to anatomical and devel-

opmental ontologies, to determine ‘where and when’

genes are expressed; and (iii) performing quality controls

to remove low-quality and incompatible chips (detailed in

the documentation section of our website; http://bgee.unil.

ch/?page=documentation#AffyQC).

Following improvements in our quality control proced-

ures, we noticed that many chips shared identical values of

quality parameters, which was highly unlikely. After further

examination, we found that these chips were truly

identical. Indeed, it seems to be common practice among

the community to reuse data, especially those used as con-

trols, and to resubmit them to public repositories into new

experiments. Although this might not be an issue when

analysing individual experiments, it is a problem when

performing meta-analyses. Moreover, as this practice is
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not documented, it is misleading for the construction of

secondary databases such as Bgee based on the primary

transcriptome data. We therefore developed a pipeline to

filter for such duplicates.

Bgee release 12 also integrates some RNA-Seq data from

Sequence Read Archive (SRA) (4). In future releases, this is

expected to be the fastest growing data type. Although we

have not yet detected problems of duplicated runs, we

have also built a pipeline to allow their detection. This is

even more important for RNA-Seq data, as we cannot

always store the extremely large run files locally, but we

need to re-download and re-process the data at each new

release. We therefore need not only to check for run file

identity but also to track any change between releases in

the run files that constitute a sample.

Materials and methods

Affymetrix data

We have established a procedure to detect duplicated

Affymetrix data. The procedure is different depending on

whether the raw CEL files or only the processed MAS5 files

(5) are available.

When raw CEL files are available:

(1) Computation of the present/absent MAS5 calls, and

retrieval of the percentage of probesets flagged as

‘present’ for each chip.

(2) Computation of the ‘Inter Quartile Range of average

rank’ (arIQR), a new quality score, which we have

developed. Briefly, it is obtained by ranking all the

probes intensities from a given array, then computing

the average rank for each probeset; arIQR is the inter-

quartile range of the probesets average ranks for a

given array (M. Rosikiewicz and M. Robinson-Rechavi,

unpublished). For the purpose of this article, the

important feature is that it is very unlikely that two

CEL files have the same arIQR.

(3) Generation for each chip of an expression based

unique identifier, by concatenating the percentage

of present probesets and the arIQR score.

(4) Computation of the SHA512 checksum [a cryptographic

hash function, which will provide a unique identifier

for each unique data file (6)] of the CEL files.

(5) Retrieval of the scan dates (second accuracy) from the

CEL files.

If the checksums or the expression based unique identifiers

are equal between two chips, they are likely identical and

are manually checked by curators. The unique identifier

approach might seem redundant to the SHA512 checksum,

but it allowed us to detect duplicates for which the files

were different, because of differences in the CEL file

format used (i.e. CEL format version 3 and 4 generated

with MAS5 and Gene Chip Operating Software, respect-

ively). Although scan date equality is a useful red flag, it

is not sufficient to consider two chips identical and is there-

fore mostly used as a control (two chips can be scanned

together at the same time).

When only processed MAS5 files are available:

(1) Generation of an expression based unique identifier

for each MAS5 file, by concatenating the number of

‘present’ calls, ‘absent’ calls, ‘marginal’ calls and

‘undefined’ calls.

(2) Computation of the SHA512 checksum of the original

MAS5 files.

(3) Standardization of the original files to make them

comparable. Depending on which software was used

[e.g. MAS5, R (7)], the files generated from a same

sample can be slightly different: change of the

header line, change in the order of the probesets,

changes in the values representing the calls. This

limits the use of a checksum for file comparison. We

thus modify all MAS5 files: (i) only the columns of the

probeset identifiers, the signal intensities and the

MAS5 calls are kept; (ii) all lines with non-standard

formats are removed (this notably removes the

header line); (iii) lines are ordered based on the pro-

beset identifiers; (iv) all calls are standardized (‘p’ and

‘present’ in different cases transform to ‘present’; ‘a’

and ‘absent’ in different cases transform to ‘absent’;

‘m’ and ‘marginal’ in different cases transform to

‘marginal’; ‘u’, ‘undefined’ and ‘rp’, in different

cases, transform to ‘undefined’).

(4) Computation of the SHA512 checksum of the standar-

dized files.

If any of the checksums or the expression based unique

identifiers are equal between two chips, they are likely

identical and are manually checked by curators.

The information generated for all CEL files and MAS5

files used in Bgee release 12 are available as supplementary

material (see Supplementary Table S1).

RNA-Seq data

RNA-seq samples are often composed of several runs. As

the run files are re-downloaded and re-processed for each

new release of Bgee, it is important, not only to identify

duplicated run files but also to track changes in the run

composition of samples, between releases. We thus estab-

lished a procedure to uniquely identify run files:

(1) Computation of the SHA512 checksum of the run files.

(2) Retrieval of the size (in bytes) of the run files.

If the checksums are equal between two runs, they are con-

sidered identical. If the sizes are equal, an inspection of the

data is required. This procedure is preliminary, and other

.............................................................................................................................................................................................................................................................................................

Page 2 of 5

Original article Database, Vol. 2013, Article ID bat010, doi:10.1093/database/bat010
.............................................................................................................................................................................................................................................................................................

http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bat010/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bat010/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bat010/-/DC1


parameters, such as expression-based unique identifiers,

might be added in the future.

To track potential changes in sample composition, at

each release of Bgee, we store the identifiers of the runs

associated with each sample, and for each run identifier,

the checksum and the size of the related file. We then

compare this information between releases: (i) addition

or deletion of a run file associated with a sample and

(ii) change in the checksum or the size of a run file.

The information generated for the run files used in Bgee

is available as supplementary material (see Supplementary

Table S2).

Results

Identification of duplicated data

Using the procedure described earlier in the text, we have

identified in our data set (Bgee release 12) 1065 groups

of two to four identical Affymetrix chips, reused in one to

four experiments (see Table 1, Supplementary Tables S3

and S4). All files were manually confirmed to be duplicates.

This represents 2173 chips from 111 experiments (13.6%

of our annotated chips and 8.6% of our annotated experi-

ments, respectively). These experiments included from 1 to

340 chips used more than once (see Table 2).

We have identified several typical scenarios explaining

data duplication:

Error in data submission: this is for instance the case

with samples GSM8982 and GSM8979 from experi-

ment GSE591 (8). They are supposed to be two repli-

cates of the expression profiles of 3-week-old female

wild type FVB mice while they are actually identical.

As the experiment includes other wild type samples

with true replicates, this is likely an error. Of note, a

simple checksum comparison of the two files in MAS5

format would have been misleading as the headers of

the files are different (they include the identifier of

the sample). The expression-based identifier and the

checksum of the filtered MAS5 file allowed us to iden-

tify the correspondence between these samples.

Reuse of samples in several experiments: this is for

instance the case in the five experiments, used as

the core data of five papers, GSE9692 (9), GSE26378

(10), GSE8121 (11), GSE13904 (12), and GSE26440 (13).

It appears that over the 101 samples that we have

annotated from these experiments, 72 were reused

several times: 15 were duplicated in four experiments

(60 annotated samples, GSE9692, GSE8121, GSE13904,

GSE26440); three were duplicated in two experiments

(six annotated samples, GSE13904 and GSE26440),

leading these experiments to have a total of 18 sam-

ples in common; yet, three others in two experiments

(six annotated samples, GSE26378 and GSE26440). The

reason is that these experiments reused blood samples

from healthy individuals to be compared with blood

samples from septic shock patients.

Complete duplication of an experiment: all of the 120

samples of the experiment GSE9676 (14) were reused

in the experiment GSE10760 (15). The former experi-

ment studied expression profiles of healthy human

skeletal muscles, whereas the latter compared expres-

sion profiles of muscle samples affected by faciosca-

pulohumeral dystrophy with control samples that

were being reused.

Improvement of the Bgee data set

When files have been manually confirmed to be redundant,

only one representative of the group is kept. When a chip is

duplicated between different experiments, the one that is

part of the experiment with the largest number of remain-

ing chips is kept, as normalization procedures are more

efficient with a larger number of chips. This led us to

remove 1119 chips from our data set (7% of our annotated

chips, see Supplementary Table S4).

In some cases, the information provided about dupli-

cated samples was inconsistent or provided with different

granularity, depending on the focus of the study for which

they were used. For instance, although the samples

GSM322066 and GSM336955 from experiment GSE12826

Table 2. Distribution of pairs of experiments sharing identical chips

Number of shared identical chips 1 2 3 4 5 6–10 11–20 21–50 51–340

Number of experiment pairs 2 5 14 8 3 14 13 3 4

Note that an experiment can be part of several pairs, depending on the number of experiments it shares chips with, and that the four

experiments using duplicated chips within themselves (GSE591, GSE9750, GSE6196 and GSE6490) are not considered.

Table 1. Distribution of groups of identical Affymetrix chips

Number of

chip groups

Number of chips

per group

Number of experiments

per group

4 2 1

13 3 3

15 4 4

1033 2 2

.............................................................................................................................................................................................................................................................................................

Page 3 of 5

Database, Vol. 2013, Article ID bat010, doi:10.1093/database/bat010 Original article
.............................................................................................................................................................................................................................................................................................

http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bat010/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bat010/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bat010/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bat010/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bat010/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bat010/-/DC1


(16) and GSE13348 (17) are identical, the first one is sup-

posed to have been obtained from a whole zebrafish em-

bryo and the second one from the brain of a zebrafish

embryo. We have tracked annotation inconsistencies

between identical chips and have corrected them in Bgee.

Discussion

The problem of redundancy has long been identified in

sequence databases [e.g. (18)] but has not been addressed

as far as we know at the level of functional genomics data.

Detecting redundancy in these data can be more compli-

cated than for DNA or protein sequences, but it is import-

ant to allow unbiased meta-analyses and comparisons of

results between conditions or species. For example, dupli-

cated samples might provide a false sense of confidence in

a result, which is in fact only supported by one experimen-

tal data point.

We have implemented different measurements to iden-

tify redundant content, through several iterations, as we

noticed that some of them failed to detect duplicated

Affymetrix chips. For instance, using the SHA512 checksums

failed most of the time to identify duplicated MAS5 files, as

the chip identifier from the source database seems to

be automatically added to the header of these files. Such

duplicates were identified owing to the expression-based

unique identifier approach and to the SHA512 checksums

from the standardized MAS5 files. These two measure-

ments have been so far always congruent but are neverthe-

less both useful. We cannot rule out that two files from

different samples could contain the same number of

expression calls (used to build the expression-based

unique identifier of MAS5 files), or that our filtering step

of the original files could fail to standardize some of them.

Similarly, a third of the CEL files found to be duplicated

were not identified using their SHA512 checksums, but

using their expression-based unique identifiers (all the

other CEL files were identified by both these measure-

ments). This is likely caused by the generation of CEL files,

from a same scan, using different software. The scan date is

in such cases a useful control, which so far always confirmed

the identity revealed by the expression-based unique iden-

tifier. But this scan date is not sufficient to consider two

files as duplicated: in one case, it was identical between

two different CEL files, from a same experiment.

Of note, our pipeline is currently only suitable for the

comparison of MAS5 files on the one hand, and of CEL

files on the other hand, and is not applicable to other file

types. The normalization of a same chip using different

procedures [e.g. gcRMA, RMA (19,20)] leads to slightly dif-

ferent results, which are neither reversible nor comparable.

If two files were generated from a same chip, but using

different normalization procedures, they would not be

identified as duplicates. This is one of the reasons why

raw CEL files are always included preferentially in Bgee,

as the normalization step, irreversibly hiding information,

is not yet performed.

Our pipeline is also only capable of detecting different

files generated from a same assay. It is neither capable of

detecting, for instance, technical replicates, where a same

sample is assayed on different chips, nor is it aimed at

detecting them.

Using this approach, we were able to identify duplicated

content that would have otherwise remained unnoticed.

Indeed, only in a few cases did the authors take care to

link their duplicated samples when submitting their data.

For instance, the samples GSM2334, GSM2335, GSM2336,

from the experiments GSE760 (21) and GSE75 (22), have

the same identifiers and are clearly part of the two experi-

ments. But this represents only 55 groups of duplicated

chips out of 1065 (5%).

In some other cases, the authors mentioned the data

duplication in the full text description of the experiment,

as for the experiment GSE10760 (see example earlier in the

text). Yet this information is not available to automatic

tools; in the majority of cases, the authors did not update

the first experiment submitted to add links to the later one

(i.e. GSE9676 has no link to GSE10760).

Most often, it is nowhere explicitly stated that some sam-

ples are redundant: the identifier of the samples are differ-

ent; the names of the data files are different. By a careful

examination of the experiments descriptions, it might be

possible to realize that the data have been submitted by

the same authors, and that one experiment studied healthy

samples, whereas the other one used healthy samples as a

control. But without a control procedure, such as the one

we have established, this cannot be distinguished from the

case of a laboratory submitting several different experi-

ments related to its research subject.

Conclusion

We have set up procedures to identify duplicated content in

Affymetrix and RNA-Seq data and to track changes in run

composition of samples used in RNA-Seq analyses. We have

discovered that a large number of Affymetrix chips were

actually redundant in the GEO and ArrayExpress reposi-

tories. As far as we know, this issue has not previously

been reported, and the present study provides insight into

precautions that should be taken when using public data.

As our data set is focused on ‘normal’ samples (e.g. no

drug treatments, no gene knock-outs), which are more

likely to be reused as control samples in different experi-

ments, our result that 13.6% of Affymetrix data content

is duplicated might represent an upper boundary; but it

remains clear that a large proportion of these public data

are redundant, and that precautions should be taken when

performing meta-analyses on them.
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We have not identified such problems with RNA-Seq

data so far, but our data set is much smaller, as this data

type was added into Bgee recently (Bgee release 12), and

includes for now only 33 samples from one experiment (23),

composed of 39 runs. Similar issues are likely to appear for

RNA-Seq in the future.

By removing duplicated content from our database and

by correcting annotations inconsistencies between identical

samples, Bgee provides now what we believe to be a

unique data set of duplicate-free, high quality Affymetrix

data. This will enable us to prevent such problems from

appearing in our growing RNA-Seq data set.

All Bgee data are freely available from our website

(http://bgee.unil.ch/).

Supplementary Data

Supplementary data are available at Database Online.
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