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ABSTRACT 
 
Socioeconomic status (SES) in childhood can impact behavioral and brain development. Past 
work has consistently focused on the amygdala and hippocampus, two brain areas critical for 
emotion and behavioral responding. While there are SES differences in amygdala and 
hippocampal volumes, there are many unanswered questions in this domain connected to 
neurobiological specificity, and for whom these effects may be more pronounced. We may be 
able to investigate some anatomical subdivisions of these brain areas, as well as if relations 
with SES vary by participant age and sex. No work to date has however completed these types 
of analyses. To overcome these limitations, here, we combined multiple, large neuroimaging 
datasets of children and adolescents with information about neurobiology and SES (N=2,765). 
We examined subdivisions of the amygdala and hippocampus and found multiple amygdala 
subdivisions, as well as the head of the hippocampus, were related to SES. Greater volumes in 
these areas were seen for higher-SES youth participants. Looking at age- and sex-specific 
subgroups, we tended to see stronger effects in older participants, for both boys and girls. 
Paralleling effects for the full sample, we see significant positive associations between SES and 
volumes for the accessory basal amygdala and head of the hippocampus. We more consistently 
found associations between SES and volumes of the hippocampus and amygdala in boys 
(compared to girls). We discuss these results in relation to conceptions of “sex-as-a-biological 
variable” and broad patterns of neurodevelopment across childhood and adolescence. These 
results fill in important gaps on the impact of SES on neurobiology critical for emotion, memory, 
and learning.  
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INTRODUCTION 
 

Socioeconomic status (SES) in childhood has been associated with multiple negative physical 
and mental health outcomes, with several meta-analyses noting these links 1,2. The mechanisms 
underlying these relations, however, are poorly understood. An emerging approach leverages 
precise quantitation of neurobiology to understand SES-gradients of health 3,4. Neuroscientific 
investigations may allow a more elemental focus, as the brain determines behavioral and 
physiological responses 5. This focus may be particularly valuable given the protracted nature of 
brain development and that the brain is shaped by experiences early in life 6. 
 
A growing body of research has found neurobiological alterations in samples exposed to poverty 
or lower SES conditions 6,7. Notably, childhood poverty has been implicated in structural 
differences across multiple brain regions, with differences in hippocampal and amygdala 
structure being commonly reported. The link between childhood poverty and smaller 
hippocampal volumes has been replicated by at least seven research groups 8–14. Studies 
examining the directional impact of childhood poverty on amygdala structure have produced a 
landscape of heterogeneous results, with reports of larger and smaller amygdalae 15. Given 
these areas’ connections to important socioemotional functions and learning, understanding 
how poverty may shape these regions could shed light onto the mechanisms of SES-related 
disparities 16. The amygdala is a central neural hub for vigilance and processing negative 
emotions 16,17. The hippocampus plays a critical role in memory representations and using 
previously acquired information in service of goal-directed behavior 18,19. As such, these brain 
areas are critical for emotion and behavioral responding. 
 
While there are SES differences in amygdala and hippocampal volumes, there are many 
unanswered questions in this domain connected to neurobiological specificity, and for whom 
these effects may be more pronounced. First, related to neurobiology, while research often 
treats the amygdala and hippocampus as unitary structures, they are complex and 
heterogeneous. Different amygdala nuclei have unique connectivity profiles, patterns of 
developmental changes, and behavioral correlates 17,20,21. Similarly, the hippocampus is 
composed of functionally distinct subregions, with differential connectivity and cytoarchitectonics 
22–24. The posterior hippocampus has been linked more to cognitive functions, while more 
anterior regions relate to stress and affect 25,26. Second, there may be potential 
sociodemographic subgroups where the effects are more pronounced; specifically, sex and age 
may both moderate the impact of SES on neurobiology. Motivated in part by sex disparities in 
many neuropsychiatric disorders 27, there has been a growing emphasis on sex as a biological 
variable. After stress exposure, sex differences in neuronal firing, dendritic spines, 
neurogenesis, and fMRI responsivity have been found in both the amygdala and the 
hippocampus 28–30. These sex differences may be due to different neuroendocrine processes, 
responses from the environment, or sex chromosome-specific neuroprogramming 31,32. Sex may 
also be related to differential responses to stress exposure, like those associated with lower 
SES 33. Related to age, there are non-linear trajectories for brain development, with many 
structures increasing in volume in childhood, and then showing lower volumes in adolescence 
and adulthood 34. The impacts of stress on neurobiology may vary with age and development 15. 
Stress may increase volumes in certain regions early in development, but then relate to 
“excitotoxic burnout” and smaller volumes later in time. As such, it will be critical to explore 
connections between neurobiology, age, sex, and SES.  
 
Connected to neurobiological specificity, there is a growing body of past work examining 
amygdala and hippocampal subdivisions after childhood adversity. For the hippocampus, past 
projects have commonly reported smaller volumes in Cornu Ammonis (CA) 1 for those exposed 
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to high levels of adversity 35–38; however, results are not perfectly uniform with other studies only 
finding differences in CA3, and not CA1 39,40. With the amygdala, less work has been completed. 
Two studies reported smaller basolateral amygdala volumes after exposure to adversity 41,42, but 
these projects also reported stress was sometimes related to differences in accessory basal, 
central-medial, and paralaminar subdivisions. Related to SES, limited work has examined if 
there are potential alterations in volumes of amygdala and hippocampal subdivisions. Three 
past studies have found anterior hippocampal volumes (i.e., Dentate gyrus; CA1) were 
positively related to different operationalizations of SES, including parental education 43, family 
household income 44, and socioeconomic conditions in a census tract 45. Notably, no work to 
date has examined amygdala subdivisions in relation to SES. 
 
Attempting to overcome these limitations, here, we combined multiple, large neuroimaging 
datasets of children and adolescents with information about neurobiology and SES (N=2,765). 
To improve neurobiological specificity, we examined subdivisions of the amygdala and 
hippocampus. We aimed to richly probe the main effects of SES on these smaller areas of the 
amygdala and the hippocampus, as well as examine potential sex- or age-specific impacts of 
SES on these volumes. In keeping with past reports of smaller volumes in lower SES youth, we 
predicted lower SES would be related to smaller volumes in amygdala and hippocampus 
subdivisions. Related to past human and non-human research in stress-exposed groups 15, we 
also predicted that lower SES would be related to smaller volumes in the head of the 
hippocampus, as well as the basolateral and central amygdala. Finally, given potential 
neuroprotective effects of estrogen 46,47 and developmental trajectories of brain development 48, 
we predicted relations between SES and volumes would be stronger for older participants, 
especially boys.  
 

METHOD 
 

Participants. Participants between 5-18 years of age were drawn from four large neuroimaging 
projects: The National Consortium on Alcohol and Neuro-Development in Adolescence 
(NCANDA; 49), the Healthy Brain Network (HBN; 50), the Pediatric Imaging, Neurocognition, and 
Genetics (PING; 51), and the Human Connectome Project in Development (HCP-D; 52). Richer 
sample descriptions are in our supplemental materials. Across these studies, the total number 
of participants with usable data was N=2765 (44% Female; Mean Age= 11.9, Age SD= 3.5; Age 
Range = 5.04-17.99). Descriptive information for the combined sample is shown below in Table 
1. Information for each project is noted in our Supplement (Table S1). A histogram of participant 
age by study is shown in Figure 1. 
  

— Insert Table 1 Approximately Here—  
 

— Insert Figure 1 Approximately Here—  
 
MRI Data Acquisition and Imaging Processing. High-resolution T1-weighted structural 
images were acquired with varying parameters across each project. The majority of scans came 
from 3T scanners, with the exception of a 1.5T scanner used at one site. Scans resolution 
varied in in-plane resolution from 0.8 to 1.2mm. Information about MRI parameters are noted in 
our supplemental materials. These MRI scans were processed in Freesurfer 7.1, deployed via 
Brainlife.io 53. Freesurfer is a widely documented morphometric processing tool suite, 
http://surfer.nmr.mgh.harvard.edu/ 54,55. Based on hand-tracing on high-definition, ex-vivo T1-
weighted 7T scans, Freesurfer can output 12 subfields and 9 amygdala subnuclei (see Refs. 56 
and 57, for additional details). With the hippocampus, we focused on segmentation that divided 
this region into the head, body, and tail. This was motivated by: 1) work finding that 
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hippocampal organization and connectivity varies on its longitudinal axis (i.e., head/body/tail) 
22,58; and 2) commentary suggesting that segmentation of the longitudinal axis of the 
hippocampus is more appropriate, than much smaller (and potential less reliably segmented 
subfields, i.e., dentate gyrus, and subiculum) 59,60. With the amygdala, subnuclei volumes were 
grouped into 4 divisions: a “basolateral” complex (including lateral, basal, and paralaminar 
subnuclei); a “medial cortical” cluster (including medial, cortical, and corticoamygdaloid 
subnuclei); accessory basal; and the central amygdala. A basolateral grouping was motivated 
by human and nonhuman animal research finding these subnuclei play distinct roles in fear and 
safety 61,62. Our “medial cortical” group was motivated by research finding that medial portions of 
the amygdala: 1) send feedforward safety signals that oppose the fear responses signaled by 
the lateral portion; 2) are in close proximity to the cortical and superficial nuclei;; and 3) 
consistent clustering with superficial amygdala nuclei in graph theoretic analyses of human fMRI 
data 63. For the 3 hippocampal and the 4 amygdala subdivision groups, we calculated the total 
volume by summing volumes from the left and right hemispheres of each of these hippocampal 
or amygdala subdivisions. 
 

— Insert Figure 2 Approximately Here—  
 

To exclude particularly high-motion scans and limit the impact of image quality on subcortical 
segmentation, we generated a quantitative metric of image quality combining noise-to-contrast 
ratio, coefficient of joint variation, inhomogeneity-to-contrast ratio, and root-mean-squared voxel 
resolution 64. This was motivated by our work finding that T1-weighted image quality is related to 
Freesurfer outputs 65. Additional details about this metric, image processing in Freesurfer, and 
MRI Data Acquisition are noted in our supplemental materials. 
 
Measures of SES. We used a multimethod determination of SES, using metrics of both 
caregiver education and household income. For caregiver education, caregivers reported on 
how much school they completed (e.g., obtained a high school diploma; some college; graduate 
degree); this was converted into numbers of years (i.e., high school diploma = 12 years; some 
college = 14 years) and then took the highest value by either caregiver. For household income, 
caregivers selected an income range (i.e., $30,000-39,999/year; $50,000-$99,999/year), or 
reported a continuous value. In keeping with recommendations from demographers 66, we took 
the midpoint for reported ranges and then log-transformed this value ($30,000-
39,999=$34,999.5; log($34,999.5)=4.54406184). For continuous income reports, we also log-
transformed these values. Then, we created an SES composite by taking an average of z-
scored, log-transformed income and z-scored, maximum parental education.  
 
Analytic plan. To test relations between SES and volumes of the hippocampus and amygdala, 
we employed linear mixed effects models (LMEMs) using the lme4 R package 67. In all models, 
we included a random effect for study site, and examined the independent (fixed effect) 
variables of participant age (in years), participant sex (binary-coded), estimated Total 
Intracranial Volume (eTIV), image quality (CAT12 rating), and our SES composite. Analyses 
proceeded in two steps. First, we examined regions of interest for the full sample (N=2765). 
This was for 9 regions of interest (total hippocampal volume; 3 hippocampal subdivisions [head, 
body, and tail]; total amygdala volume, 4 amygdala subdivisions [accessory basal, central 
amygdala, basolateral complex, and medial cortical]. Second, to investigate potential sex and 
age effects, we separated our full sample by these variables. We created age tertiles with three 
groups and then divided those groups by sex (Age ranges and numbers of participants are 
detailed in our supplemental materials, specifically Table S2). We corrected these different 
steps of analyses for multiple comparisons using False Discovery Rate approaches 68 (9 
Comparison in Step 1; 54 in Step 2). In our supplement, we also completed analyses: 1) 
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focused on volumes and household income or education (as individual/separate variables); and 
2) for smaller parcellations of the hippocampus and amygdala output by Freesurfer. 
 

RESULTS 
 

Robust Relations of SES and Volume (N=2,765) 
SES was associated with both amygdala and hippocampus volumes. Specifically, higher SES 
was related to larger (whole regional) volumes in both areas (amygdala: 𝛽=0.06, p<0.001; 
hippocampus: 𝛽=0.06, p<0.001). For all amygdala subnuclei, SES was related to volume 
(accessory basal: 𝛽=0.07, p<0.001; central amygdala: 𝛽=0.06, p<0.001; basolateral complex: 
𝛽=0.05, p<0.001; medial cortical cluster: 𝛽=0.05, p<0.001). Among hippocampal subfields, SES 
was only related to volumes in the head of the hippocampus (𝛽=0.09, p<0.001). After correcting 
for multiple comparisons, all p-values remained significant (p-fdr<0.001). All analyses were 
controlled for age, sex, image quality, and total brain volume, and all of these relations are 
displayed in Table 2. 
 

— Insert Table 2 Approximately Here—  
 
Relations For Sex- and Age-Specific Subgroups 
Relations between SES and whole regional volumes were non-significant for pre- and early 
adolescent girls (all p’s>.05). During pre- and early adolescence, statistical testing suggested 
relations between SES and hippocampus volumes for boys, but the effects did not survive 
correction for multiple comparisons (preadolescence: 𝛽=0.08, p=0.04, p-fdr=0.13; early 
adolescence: 𝛽=0.08, p=0.03, p-fdr=0.10). For the whole amygdala, the association between 
SES and volume was significant for boys and girls in late adolescence (boys: 𝛽=0.10, p=0.01, p-
fdr=0.04; girls: 𝛽=0.12, p<0.01,p-fdr=0.02). The relation between SES and whole hippocampal 
volumes was also significant for both sexes in late adolescence (boys: 𝛽=0.11, p<0.01, p-
fdr=0.03; girls: 𝛽=.10, p=0.01, p-fdr=0.047). In both sexes, higher SES was related to larger 
amygdala and hippocampus detectable by late adolescence, and the trend toward enlargement 
at all ages makes delayed maturation unlikely 69. 
 
Similarly, amygdala subnuclei were most related to SES in late adolescent participants, 
compared to younger in either sex. Among pre-adolescent boys, the association between SES 
and central amygdala (𝛽=0.11, p=0.01, p-fdr=0.03) volumes was found to be significant, 
whereas among pre-adolescent girls, there were no significant associations between SES and 
amygdala subnuclei. In early adolescence, there were no significant relations between SES and 
any amygdala subnuclei for either boys or girls. However, in late adolescent boys, SES was 
found to be significantly associated with accessory basal volumes (𝛽=0.11, p=0.01, p-fdr=0.04). 
Statistical analyses initially indicated that SES was also significantly associated with volumes in 
the basolateral complex (𝛽=0.10, p=0.01, p-fdr=0.06) and the medial cortical cluster (𝛽=0.09, 
p=0.02, p-fdr=0.08) in late adolescent boys, but these associations did not survive correction for 
multiple comparisons. SES was not found to be significantly related to central amygdala 
volumes in late adolescent boys. In late adolescent girls, SES was significantly associated with 
accessory basal (𝛽=0.13, p<0.01, p-fdr=0.02), central amygdala (𝛽=0.11, p<0.01, p-fdr=0.02), 
and basolateral complex (𝛽=0.12, p<0.01, p-fdr=0.02) volumes, and these more robust findings 
in girls survive correction for multiple comparisons. Only the association between SES and 
medial cortical cluster volumes (𝛽=0.08, p=0.04, p-fdr=0.13) did not survive correction for 
multiple comparisons in late-adolescent girls. In summary, the most common manifestation of 
higher SES among amygdala subnuclei was greater volumes in the accessory basal nucleus, 
known to play a key role in social safety learning, by late adolescence. 
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Among hippocampal subfields, only hippocampal head volumes were found to be significantly 
related to SES in either sex, in any age cohort. In pre-adolescent boys, SES had a significant 
effect on hippocampal head volumes, but this effect did not survive correction for multiple 
comparisons (𝛽=0.08, p=0.03, p-fdr=0.09). In pre-adolescent girls, the relation between SES 
and hippocampal head volumes was found to be nonsignificant. Among early adolescents, the 
association between SES and hippocampal head volume was found to be significant for early 
adolescent boys (𝛽=0.12, p<0.01, p-fdr=0.02), but not for early adolescent girls. In late 
adolescence, SES was found to be significantly associated with hippocampal head volumes for 
boys (𝛽=0.17, p<0.01, p-fdr<0.01) and also for girls (𝛽=0.14, p<0.01, p-fdr=0.01). Relations 
between SES and all subdivisions for each sex- and age-specific subgroups are displayed in 
Table 3.  
 

— Insert Table 3 Approximately Here—  
 

DISCUSSION 
 
This study investigated associations between SES and volumetric variations in the 
hippocampus and amygdala. Notably, we parcellated the hippocampus and amygdala into 
smaller subdivisions, aiming to increase neurobiological specificity. With the amygdala, we saw 
that SES was related to differences in all of the subnuclei investigated. For the hippocampus, 
effects were localized to the head of the hippocampus, with higher SES being associated with 
larger volumes in that subdivision. Looking at age- and sex-specific subgroups, we tended to 
see stronger effects in older participants, for both boys and girls. Paralleling effects for the full 
sample, we see significant positive associations between SES and volumes for the accessory 
basal amygdala and head of the hippocampus. Interestingly, some suggestive associations 
emerged for younger boys, in both pre- and early-adolescence. In both of these subgroups, 
there were relations between SES and volumes for the head of the hippocampus. Our findings 
are partially in line with our a priori predictions. We predicted that associations between SES 
and volumes of the hippocampus and amygdala would be stronger for boys compared to girls; 
connected to this, we did see consistent relations between SES and volumes of the head of the 
hippocampus.  
 
With the hippocampus, our results are similar to previous projects that have found relations 
between SES and volumetric differences in the whole hippocampus 3,10–14. With subfields and 
specific subdivisions, our results are mostly in line with the small number of publications focused 
on this question. However, each of these papers varies in the parcellation of the hippocampus 
and the SES variable examined. Specifically, Merz and colleagues found lower parental 
education was related to smaller volumes in the dentate gyrus and CA1 subfields of the 
hippocampus 43. The CA1 subfield is squarely in the anterior (head) portion of the hippocampus, 
while their dentate gyrus subfield can span the head and body of the hippocampus. Botdorf and 
coworkers found smaller anterior and posterior volumes in the hippocampus with greater area 
deprivation index, a census-based index of SES 45. Decker et al. found that lower household 
income was related to smaller anterior hippocampal volumes 44. Clearly, the preponderance of 
the evidence favors smaller volumes in the head of the hippocampus. 
 
Regarding the amygdala, there is a raft of inconsistencies in past work focused on amygdala 
volumes, SES, and stress exposure (see 15. Multiple groups have reported smaller (whole) 
amygdala volumes in lower SES youth 11–13, but results have not been perfectly uniform (for 
review, see 15). There has been no published work to date focused on SES and amygdala 
subnuclei. In adult samples exposed to childhood adversity, smaller volumes of basal and 
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accessory basal portions of the amygdala have been reported 41,42. Oshri and colleagues also 
found high levels of adversity were related to smaller volumes in central-medial portions of the 
amygdala. Our findings extend these relations to multiple amygdala subdivisions and use the 
statistical power of a large sample to identify late adolescence as the period these changes are 
most evident.  
 
Related to age-specific effects, we see more consistent associations in older participants, and 
this is broadly in accord with past work. For example, Merz et al. found lower SES was 
significantly associated with smaller amygdala volumes in adolescent participants, but there 
were no significant associations at younger ages 70. However, results are not perfectly uniform 8, 
and findings should be interpreted with caution given the cross-sectional nature of our work. 
Regarding sex-specific effects, limited work has specifically considered relations between SES 
and these volumes in males versus females. There are inconsistencies in past studies 
examining SES effects in males compared to females (with Ref. 71 noting larger structural 
effects for boys, but Refs. 72,73 noting the opposite for functional brain activity). Looking at 
preclinical work and considering “sex as a biological variable”, stress exposure often causes 
more significant neurobiological alterations in males compared to females 74. Chronic stress 
exposure causes dendritic atrophy and spine elimination in male rodents 75. However, in female 
rats, only slight changes in dendritic branch number were found 76. This would fit with potential 
neuroprotective effects of estrogen 77. It is also possible that relations may depend on both the 
age and sex of a participant. For example, adversity exposure before 8 years of age was more 
likely to impact hippocampal volumes in males, while adversity after 9 years of age impacted 
females more significantly 78. Additional work, especially longitudinal studies will be critical to 
providing clarity about the neurobiological impacts of SES and also exposure to stress in 
different age- and sex-subpopulations. 
 
Given our results, it will be crucial to think about how these neurobiological alterations may 
influence future behavior. We did not explore relations between volume and behavior, as 
specific behavioral measures greatly varied by project. In thinking about relations between SES 
and the head of the hippocampus, a growing literature suggests that this hippocampal 
subdivision may be more related to emotion and stress responding 24,79,80. Lesions to this region 
in rodents 81, as well as variations in human functional connectivity of this area 82–84, have been 
linked to alterations in stress responding and emotional behavior. Thinking about the amygdala, 
we find multiple subnuclei are related to SES and these different divisions have been implicated 
in different aspects of fear responsivity and reward valuation 85. More basal portions of the 
amygdala may serve in sensory gating for the amygdala, while the central nucleus relays 
emotional information to the cortex. Collectively, these alterations could create attentional 
biases toward negative valenced stimuli, potentially contributing to challenges in emotion 
regulation 42,86,87. Preclinical work supports these broad presumptions, as mice with smaller 
basolateral volumes show significantly greater levels of conditioned freezing compared to those 
larger volumes 88. These different behavioral processes will be important to interrogate in future 
work connecting SES and medial temporal lobe neurobiology. 
 
Considering the strengths of our work, the current study benefited from a large sample size, 
well-used methods, and an SES composite considering both parental education and income. 
However, we must consider potential issues with the work. First, our work was cross-sectional in 
nature, based on a single MRI scan. Volumetric differences could “equalize” over time; this may 
be particularly true of the hippocampus, where research has demonstrated reversibility in 
volumetric differences if given a “stress-free” period 89. In future work, we hope to assess other 
structural and functional properties of the amygdala and hippocampus through the use of 
longitudinal functional MRI and magnetic resonance spectroscopy 90. Second, automated 
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methods, like Freesurfer, may be less accurate than hand-delineation of these subdivisions 91. 
Quantification of these areas by hand is not feasible in such a large sample, but there may be 
novel automated approaches that more accurately quantify small amygdala and hippocampal 
subdivisions 92,93. Finally, it will be important to think mechanistically about how lower SES may 
be impacting neurobiology. Lower SES encompass a host of challenges likely to impact 
development, including higher levels of stress, food insecurity, residential instability, community 
violence, and structural disadvantage 94,95. This fits with past work finding relations between 
hippocampal volumes and rich measures of stress exposure 11. Similarly, environmental 
stimulation is another proximal factor through which SES may impact these volumes, especially 
the hippocampus. Economically marginalized families may have lower levels of cognitive 
stimulation in the home, including fewer toys and educational resources 95,96. Environmental 
enrichment and stimulation can impact hippocampal structure, including dendritic branching, 
neurogenesis, synaptic density (for review, see 97,98). Probing different dimensions of 
experience, common to poverty (e.g., stress exposure; environmental stimulation) to understand 
the patterns reported here will be critical moving forward 99,100. In our supplement, we examined 
income and parental education independently and these are important sets of results to also 
consider. Thoroughly isolating major drivers of neurobiological and behavioral differences could 
be particularly powerful, especially if this information can be translated into effective 
interventions to lessen different SES-related disparities. 
 
These limitations notwithstanding, our results provide data about neurobiological alterations 
seen in relation to SES. Few investigations have examined subdivisions of the amygdala and 
hippocampus in relation to SES; and no projects to our knowledge have examined sex- and 
age-specific subgroups for these associations. Such neurobiological differences may connect to 
SES-gradients in health and well-being. Additional research is needed to clarify the complex 
relations among early poverty exposure and long-term mental health difficulties; our data are, 
however, a needed step in the ability to understand the impact of SES on neurobiology critical 
for emotion, memory, and learning. 
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Table and Figure Legend 
 
Table 1. Demographic information for the full sample, including the means and standard 
deviations for age (in years), income (in US dollars), highest parental education (in years), 
image quality, and total brain volume, as well as the distribution of sex in this sample. 
 
Table 2. Beta (standardized) coefficients, t-statistics, p-values, and FDR-corrected p-values for 
all linear mixed effects models of the relations between socioeconomic status and volumes of 
the whole amygdala; whole hippocampus; amygdala subnuclei; and hippocampal subfields. 
Significant (uncorrected) p-values are shaded in yellow-green, and significant FDR-corrected p-
values are shaded in green. 
 
Table 3. Beta (standardized) coefficients for relations between SES and whole volume or 
subregional volume of the hippocampus or amygdala. These are divided by age and sex 
subsamples. Beta (standardized) coefficients are shaded yellow-green where the corresponding 
p-values were initially significant but did not survive corrections for multiple comparisons, and 
green where the corresponding p-values were significant after correction (using FDR methods).  
 
Figure 1. Stacked histogram depicting the number of participants at each age, for each study, 
between the ages of 5 and 18. The top set of bins represents the numbers of participants in the 
HBN study at each age (colored in blue); stacked below are the bins for the HCPD (purple), 
NCANDA (green), and HBN (orange) studies, respectively. The dashed and dotted lines display 
the mean ages for each study (with each color corresponding to a different study; blue = HBN; 
purple = HCPD; green = NCANDA; orange = PING). 
 
Figure 2. Depiction of our amygdala and hippocampal regions of interest. The left side of this 
figure shows our 4 amygdala subnuclei groups (Group 1: a basolateral complex [red]; Group 2: 
a medial cortical cluster [orange]; Group 3: the accessory basal subnuclei [blue]; Group 4: 
central amygdala subnuclei [green], overlaid on an average T1-weighted scan. The right side of 
this figure shows our 3 hippocampal subdivisions (Hippocampal head [yellow]; hippocampal 
body [turquoise]; hippocampal tail [magenta]).  
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Table 1. Demographic information for the full sample, including the means and standard 
deviations for age (in years), income (in US dollars), highest parental education (in years), 
image quality, and total brain volume, as well as the distribution of sex in this sample. 
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Table 2. Beta (standardized) coefficients, t-statistics, p-values, and FDR-corrected p-values for 
all linear mixed effects models of the relations between socioeconomic status and volumes of 
the whole amygdala; whole hippocampus; amygdala subnuclei; and hippocampal subfields. 
Significant (uncorrected) p-values are shaded in yellow-green, and significant FDR-corrected p-
values are shaded in green. 
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Table 3. Beta (standardized) coefficients for relations between SES and whole volume or subregional volume of the hippocampus or 
amygdala. These are divided by age and sex subsamples. Beta (standardized) coefficients are shaded yellow-green where the 
corresponding p-values were initially significant but did not survive corrections for multiple comparisons, and green where the 
corresponding p-values were significant after correction (using FDR methods).  
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Figure 1. Stacked histogram depicting the number of participants at each age, for each study, between the ages of 5 and 18. The top 
set of bins represents the numbers of participants in the HBN study at each age (colored in blue); stacked below are the bins for the 
HCPD (purple), NCANDA (green), and HBN (orange) studies, respectively. The dashed and dotted lines display the mean ages for 
each study (with each color corresponding to a different study; blue = HBN; purple = HCPD; green = NCANDA; orange = PING). 
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Figure 2. Depiction of our amygdala and hippocampal regions of interest. The left side of this 
figure shows our 4 amygdala subnuclei groups (Group 1: a basolateral complex [red]; Group 2: 
a medial cortical cluster [orange]; Group 3: the accessory basal subnuclei [blue]; Group 4: 
central amygdala subnuclei [green], overlaid on an average T1-weighted scan. The right side of 
this figure shows our 3 hippocampal subdivisions (Hippocampal head [yellow]; hippocampal 
body [turquoise]; hippocampal tail [magenta]).  
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