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Abstract

Mast cells (MCs) play a pivotal role in inflammatory responses and had been studied in

inflammatory bone disorders, however, their role in alveolar bone loss induced by periodon-

tal disease (PD) is not yet fully understood. We, therefore, aimed to evaluate the effects of

MCs depletion in the PD-induced alveolar bone loss in Wistar (W) and Spontaneously

Hypertensive Rats (SHRs). PD was induced by ligating the lower first molars with silk thread

one day after the MCs depletion, by the pre-treatment with compound 48/80 for 4 days.

After 15 days of PD induction, the hemi-mandibles were surgically collected for qRT-PCR,

histological analyses, immunostaining, and ELISA. Systolic blood pressure (SBP) was veri-

fied by tail plethysmography to confirm the hypertensive status, and SHR presented SBP

>150 mmHg, and previous MC depletion alone or associated with PD did not alter this

parameter. SHRs showed a more severe alveolar bone loss compared to W, and MC deple-

tion significantly inhibited this response in both strains, with a more significant response in

SHRs. MCs were less abundant in 48/80+PD groups, thus validating the previous MCs

depletion in our model. PD increased the number of MC in the gingival tissue of SHR. Cyto-

kine production (TNF-α, IL-6, IL-1β, and CXCL3) was constitutively higher in SHR and

increased further after PD, which was also significantly reduced in the MCs-depleted ani-

mals. PD led to an increased expression of Opn, Rankl, Rank, Vtn, Itga5, Itgb5, Trap, and

Ctsk in the mandible of W and SHRs, which was reversed in MCs-depleted animals. These

results suggest that MCs significantly contributes to the PD-induced alveolar bone resorp-

tion, especially in the SHR, which is associated with a more severe PD progression com-

pared to Wistar, partly explained by these cells contribution to the inflammatory status and

mediator production, stimulating osteoclast-related response markers, which were reduced

after MC depletion in our experimental model.
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Introduction

Periodontal disease (PD) is an inflammatory disorder of the tissue surrounding and support-

ing the teeth, with alveolar bone resorption and teeth-loss as the most severe presentations [1].

The disorder is initiated by dental biofilm accumulation caused by bad oral care and is a public

health issue worldwide [2]. Although the disease progresses from a dynamic host-pathogen

interaction, depending on the microbial pathogenesis, an important concern is that it may be

aggravated by an exacerbated host immune response, like increased production of inflamma-

tory mediators [3, 4].

Various systemic conditions, like hypertension, may influence PD progression. These con-

ditions share many risk factors and are likely to coexist in many individuals [5]. Hypertension

increases the systemic inflammatory burden and may alter the response of the non-immune

host cells, like fibroblasts, epithelial cells, and recruited leukocytes, and also resident immune

cells, like macrophages and MCs [6, 7].

Mechanisms related to MCs induced inflammation are still not well understood, but they

act as the key effectors in tissue injury responses. They are mostly localized to blood vessels

surrounding the subcutaneous and mucous tissues and are well known for a wide spectrum of

stored preformed inflammatory mediators that are released upon stimulus [8]. Carranza and

Cabrini [9] demonstrated the presence of MCs in the periodontium and showed that gingivitis

severity correlates to increasing MCs numbers. Many studies have since reported evidence

supporting the significant role of MCs in inflammation-driven soft and hard tissue disruption

[10, 11]. However, despite sufficient knowledge on PD pathogenesis, the MCs-related mecha-

nisms are still not well understood.

The Spontaneously Hypertensive Rat (SHR) is a widely used animal model that shares sev-

eral characteristics with the physiology of human hypertension, like being multifactorial and

genetically determined [12]. It has also been shown that the SHR presents intrinsic bone alter-

ations and increased inflammatory status, which are related to the hypertensive genotype and

phenotype [13–15]. Furthermore, evidence has shown a relationship between hypertensive

conditions and a possible increased mast cell activity, mediated by mechanisms yet to be eluci-

dated [16, 17].

Compound 48/80 is an MC secretagogue agent, experimentally used to promote MC

degranulation, and has been used as an in vivo MC-depleting agent [18–20]. Therefore, this

model was chosen for our present study, in which we focused on the role of MCs in PD-

induced bone alterations in hypertensive rats.

Our data corroborate with a more severe PD-induced alveolar bone loss in the SHR, accom-

panied by increased production of inflammatory mediators and increased osteoclasts-related

mechanisms. Previously, these characteristics were significantly inhibited in rat mandibles

upon MC depletion and showed a more pronounced contribution of these cells in hyperten-

sive strains.

Materials and methods

Animals and experimental groups

A total of 66 age-matched (10-week-old) male rats from Wistar and SHR strains (Rattus norve-
gicus albinus) from the Central Animal Facility of School of Dentistry of Araçatuba (Unesp)

were used. Animals were housed in a controlled light, temperature, and humidity environment

(12h light/dark cycle, 22±2˚C, and 55±5%), and offered a standard pellet diet and drinking

water ad libitum. Animals from each strain (Wistar, W; and SHR, S) were randomly divided

into the following experimental groups: Control (C), animals with PD (PD), and mast cell-
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depleted animals with PD (48/80+PD). Additionally, for a mast-cell depleted control group

(without PD; W+48/80 and S+48/80) six male Wistar and six male SHR without PD were

used. Experimental protocols were in accordance with Brazil’s National Council for Animal

Experiments Control and were approved by the Ethics Committee on Animal Use from the

School of Dentistry of Araçatuba (Unesp) (Process FOA-00686-2016).

Mast cells depletion

Mast cells depletion was conducted by the mast cell degranulation-inducing drug, compound

48/80 (c48/80; Sigma-Aldrich; St. Louis, Missouri, USA) [21, 22]. Briefly, c48/80 was adminis-

tered intraperitoneally twice a day for four days, with increasing doses (day 1: 0.6; day 2 and 3:

1.2; and day 4: 2.4 mg/Kg), so that on day 5, periodontal disease was induced in the absence of

filled-vesicles mast cells. Non-treated animals only received the vehicle (sterile phosphate-buff-

ered saline, PBS).

Periodontal disease (PD) induction

PD was induced by bilateral ligature inserted around the lower first molars and kept for 15

days, as previously described [23]. Briefly, animals were anesthetized (ketamine and xylazine

hydrochloride association, 80 and 10 mg/Kg) and placed in ventral decubitus on a dental table

for rodents, with oral retractors supported on incisive teeth. A 4–0 silk thread (Shalon; Goiâ-

nia, Goiás, Brazil) was wrapped around the first inferior molars, carefully pushed into the gin-

gival sulcus, and knotted medially.

Non-invasive blood pressure measurement

To confirm the hypertensive phenotype systolic blood pressure (SBP) was verified by tail

plethysmography (NIBP and PowerLab System; ADInstruments; Sydney, Australia) after the

15 days of PD, pre-treated or not with c48/80, and animals were considered hypertensive

when SBP�150 mmHg [24].

Euthanasia and sample harvest

On day 15 after PD induction, animals were euthanized by inhalational anesthetic overdose

(Isoflurane, Cristália, Itapina, SP, Brazil), the presence of bilateral ligature was evaluated, and

animals in which it was absent were excluded from the study. The hemi-mandibles and gingi-

val tissue were surgically collected, and the right-sided bones were stored in PBS at -20˚C for

microtomography, or fixed in 10% buffered formaldehyde for histological processing, and left-

sided bones were immediately frozen in liquid nitrogen and stored at -80˚C, for gene expres-

sion analysis and cytokines quantitation.

Gingival mast cell count

Formaldehyde fixed gingiva was paraffin-embedded and 3-μm thick sagittal sections were

obtained and used for toluidine blue staining. For mast cell counting, representative slides

were photographed, the connective gingival tissue area was determined, and the mast cell

number (purpled-stained cells) were counted (n = 5/group), using the ImageJ software (v1.47,

National Institutes of Health).

Micro-computed tomography (microCT) analysis

Tomographic images from left hemi-mandibles (n = 5/group) were acquired using a SkyScan

1272 system (Bruker microCT; Kontich, Belgium) [70 kVp and 142 μA; 0.5 mm aluminum
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filter; 9 μm isotropic voxel; 1100 ms exposure time, 2 frames averaging, and 180˚ rotation (0.5˚

rotation step)], and three-dimensionally reconstructed (NRecon software; v1.6; Bruker

microCT). Alveolar bone loss was evaluated in the first molar region, a region of interest

(ROI) was standardized from defined anatomical points (upper limit: furcation roof; lower

limit: proximal root apex; distal limit: 2nd molar proximal root; proximal limit: 1st molar

proximal root, and vestibular and lingual limits: limits of the alveolar bone). A volume of inter-

est (VOI) was automatically delimited by the bone edges and the tooth volume exclusion. The

bone percentage (BV/TV), trabecular number (Tb.N), thickness (Tb.Th), and separation (Tb.

Sp) were analyzed [25].

Cytokine quantification

The left hemi-mandibles (n = 6/group) were sectioned from the mandibular branch and inci-

sor teeth, powdered in liquid nitrogen, and subsequently homogenized with a lysis buffer (100

mM Tris-HCl, 150 mM NaCl, 1% Tween 20, 0.5% sodium deoxycholate, 1 mM EDTA, pH

7.4). The samples were centrifuged and in the recovered supernatant, TNF-α, IL-6, IL-1β,

CXCL3/CINC-2, and CCL20/MIP-3α were quantified by enzyme-linked immunosorbent

assay (ELISA), with DuoSet1 ELISA (in order: DY510, DY506, DY501, DY540, and DY516;

R&D Systems, Minneapolis, MN, USA). Results were normalized by the total protein content,

determined by the Lowry method [26].

Gene expression analysis

Left hemi-mandibles (n = 6/group) were sectioned, excluding the mandibular branch and the

incisor tooth, powdered in liquid nitrogen, and total RNA was extracted using TRIzol reagent

(Invitrogen, Thermo Fisher Scientific; Carlsbad, CA, USA) following the manufacturer’s

instructions. RNA purity was assessed by 260/280 and 260/230 spectrophotometry ratio (satis-

factory between 1.8–2.0, and 2.0–2.2, respectively). Samples were treated with DNAse I

(Sigma-Aldrich), RNA was quantified (Quant-iT RiboGreen RNA Assay Kit, Invitrogen) and

2 μg of total RNA were reverse transcribed to complementary DNA (High Capacity RNA-to-

cDNA™ Kit; Applied Biosystems, ThemoFisher Scientific; Foster City, California, USA),

according to manufacturer’s instructions.

Gene expression analysis of bone markers and cytokines was performed by qRT-PCR, in

StepOne PlusTM Real-Time PCR Systems, with TaqManTM Gene Expression Assays (FAM

fluorophore reporter / non-fluorescent quencher MGB) (Applied Biosystems, Thermo Fisher

Scientific). Targets expression was normalized by Actb expression, as the housekeeping gene,

and relative transcripts abundance was determined by the 2(-delta Ct) method [27]. Assay refer-

ences are listed in Table 1.

Immunohistochemistry assays

Formaldehyde fixed mandibles (n = 5/group) were decalcified in 10% EDTA-buffered solution

(Titriplex1 III; Merck Millipore; Burlington, MA, USA), for paraffin histological processing.

Mandibles 3-μm thick sagittal sections were obtained and used for hematoxylin and eosin

staining, and immunostaining of bone markers. Briefly, tissue sections were deparaffinized,

rehydrated, and submitted to endogenous peroxidase blocking, and hot citric acid buffer anti-

gen retrieval. immunostaining was performed by primary antibody incubation (references

listed in Table 2) and detected by Histofine1 Simple Stain™ kit (Nichirei Biosciences Inc.;

Tokyo, Japan), followed by the chromogenic substrate (3,3’-diaminobenzidine-tetrahy-

drochloride; Dako Corp., Carpinteria, CA, USA), according to manufactures instruction. Har-

ry’s hematoxylin was used as counterstaining, and all assays were accompanied by a negative
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control slide which was submitted to the same procedures, except for the primary antibody

incubation.

For IHC analysis, slides were blindly analyzed (n = 5/group) in 400X magnification bright-

field microscopy in the region of interest (middle third of the first molar furcation region),

and expression was based on the immunostaining pattern [negative (−); low staining (+); mod-

erate staining (++); strong staining (+++)] [28]. Image boards present a photographed repre-

sentative section, after digital correction for brightness and contrast, and black arrows indicate

positive-stained cells.

Statistical analysis

Data are expressed as mean and standard error of the mean (SEM), and were analyzed by one-

way ANOVA, followed by Šidak post hoc test for multiple comparisons, after being tested for

normality distribution by Shapiro-Wilk test. Statistical difference is represented by brackets

labelled by � p<0.05, �� p<0.01, ��� p<0.001, and ���� p<0.0001, comparing Control, PD and

48/80+PD, or Wistar and SHR in the same experimental condition. All analysis was performed

on Graph Pad Prism v8.0 (GraphPad Software Inc.; San Diego, California, USA).

Table 1. Taqman1 assay reference list for qRT-PCR.

Transcription factors

Runx2 Runt-related transcription factor 2 Rn01512298_m1
Osx/Sp7 Osterix/Sp7 transcription factor Rn02769744_s1
Ctnnb β-catenin/Cadherin associated protein beta 1 Rn00584431_g1

Bone formation markers

Alp Bone alkaline phosphatase Rn01516028_m1
Col1a1 Collagen type I alpha 1 Rn01463848_m1
Opn/Spp1 Osteopontin/secreted phosphoprotein 1 Rn00681031_m1
Ocn/Bglap Osteocalcin/Bone gamma-carboxyglutamate protein Rn00566386_g1
Bsp/Ibsp Bone sialoprotein/Integrin-binding sialoprotein Rn00561414_m1
Bmp2 Bone morphogenetic protein 2 Rn00567818_m1

Bone formation/remodeling markers

Opg Tumor necrosis factor receptor superfamily member 11b Rn00563499_m1
Rankl Tumor necrosis factor ligand superfamily member 11 Rn00589289_m1
Rank Tumor necrosis factor receptor superfamily member 11a Rn04340164_m1
Oscar Osteoclast associated immunoglobulin-like receptor Rn01530958_m1
Vtn Vitronectin Rn01466920_g1
Itgav Integrin, alpha V Rn01485633_m1
Itgb5 Integrin, beta 5 Rn01439348_m1
Mmp2 Matrix metalloproteinase 2 Rn01538170_m1
Mmp9 Matrix metalloproteinase 9 Rn00579162_m1
Trap/Acp5 Acid phosphatase 5, tartrate resistant Rn00569608_m1
Ctsk Cathepsin K Rn00580723_m1

Cytokines

IL-1β Interleukin-1β Rn00580432_m1
TNF-α Tumor necrosis factor Rn01525859_g1
IL-6 Interleukin-6 Rn01410330_m1

Housekeeping gene

Actb β-actin Rn00667869_m1

https://doi.org/10.1371/journal.pone.0247372.t001
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Results

Previous mast cells depletion does not alter blood pressure after PD

To ensure the SHR phenotype, we evaluated the systolic blood pressure (SBP) after 15 days of

PD. As expected, all SHR groups presented elevated SBP, compared to W groups (Table 3), but

previous mast cell depletion alone or associated with PD did not alter this parameter.

Mast cells are more abundant in SHR inflamed gingival tissue

The presence of MCs in the gingival tissue was verified by toluidine blue staining (Fig 1A and

1B). Few MCs were observed in the control groups (WC and SC). However, they were more

abundant in groups with PD, especially in the SPD group, suggesting participation in PD

inflammatory responses. As expected, MCs were less abundant in 48/80+PD groups, thus vali-

dating the previous MCs depletion in our model.

Table 2. Antibody reference list for immunohistochemistry assays.

Primary antibody Source Reference Manufacturer

Anti-RUNX2 (F-2) Mouse sc-390351 Santa Cruz Biotechnology.

Anti-OSTERIX (Y-21) Rabbit sc-133871 Santa Cruz Biotechnology

Anti-CTNNB (12F7) Mouse sc-59737 Santa Cruz Biotechnology

Anti-COL1A1 (L-19) Goat sc-8783 Santa Cruz Biotechnology

Anti-OPN Rabbit ab8448 Abcam

Anti-OPG (N-20) Goat sc-8468 Santa Cruz Biotechnology

Anti-RANKL (N-19) Goat sc-7628 Santa Cruz Biotechnology

Anti-RANK (H-300) Rabbit sc-9072 Santa Cruz Biotechnology

Anti-VTN (EP873Y) Rabbit ab45139 Abcam

Anti-ITGαVβ3 (23C6) Mouse sc-7312 Santa Cruz Biotechnology

Anti-MMP2 (2C1) Goat sc-13594 Santa Cruz Biotechnology

Anti-MMP9 (C-28) Goat sc-6841 Santa Cruz Biotechnology

Anti-TRAP (N-17) Goat sc-30832 Santa Cruz Biotechnology

Anti-CTSK (N-20) Goat sc-6507 Santa Cruz Biotechnology

Anti-BMP2 Rabbit ab1493 Abcam

Anti-OCN (FL-95) Rabbit sc-30045 Santa Cruz Biotechnology

Anti-BSP (M-154) Rabbit sc-292394 Santa Cruz Biotechnology

https://doi.org/10.1371/journal.pone.0247372.t002

Table 3. Systolic Blood Pressure (SBP) of Wistar and SHR with PD, depleted from mast cells (48/80+PD).

SBP

Mean (mmHg) SEM n
WC 102,40a 3,20 6

W+48/80 (without PD) 104,70 a 4,08 6

WPD 116,30 a 5,03 6

W48/80+PD 109,80 a 3,31 6

SC 162,30 b 2,58 6

S+48/80(without PD) 159,50 b 3,95 6

SPD 157,90 b 3,20 6

S48/80+PD 157,80b 1,18 6

SBP measured by tail plethysmography are shown as mean and SEM (n = 6). Significant statistical differences are

represented by a different superscript letter (a and b; p<0.001).

https://doi.org/10.1371/journal.pone.0247372.t003
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Mast cells depletion prevented PD-induced alveolar bone loss in SHR

We analyzed the alveolar bone loss and bone architecture parameter by microCT (Fig 1C–

1H). As expected, WPD and SPD groups showed significant bone loss with lower %BV/TV

and Tb.Th, compared to their respective controls (Fig 1E and 1G), while Tb.Nb and Tb.Sp

were not significantly altered (Fig 1F and 1H). Although WC and SC had similar alveolar bone

structures (Fig 1C–1E), bone loss was more severe in SPD, as compared to WPD. Interestingly,

MCs depletion was able to prevent this loss, more significantly in S48/80+PD, but the trabecu-

lar architecture was not significantly altered (Fig 1F–1H). We also evaluated if previous MC

depletion alone would alternate the alveolar bone loss, which was not noticed (S1 Fig).

Mast cells depletion reduced PD-induced inflammation in SHR

To assess the inflammatory process, we evaluated the gene expression of Tnfa, Il6, and Il1b by

qRT-PCR, and the production of TNF-α, IL-6, IL-1β, CXCL3/CINC-2, and CCL20/MIP-3α by

ELISA in the rat mandibles (Fig 2A–2H). Tnfa, Il6, and Il1b expression were higher in PD

groups, compared to their respective controls (Fig 2A–2C). MCs depletion only reduced the

expression of Il6 and Il1b in S48/80+PD group, compared to SPD (Fig 2B and 2C). When

quantified at the protein level, TNF-α, IL-6, and IL-1β were also increased in WPD and SPD

compared to their controls, and were significantly higher in SPD, compared to WPD (Fig 2D–

2F). In S48/80+PD, all mediators were reduced, compared to SPD, while in W48/80+PD only

IL-6 was reduced, compared to WC (Fig 2D–2F).

The chemotactic proteins CXCL3/CINC-2 and CCL20/MIP-3α were also quantified, which

are associated with neutrophil and macrophage infiltrate, respectively. CCL20 was not altered

in PD, but had inherently higher levels in SHR groups, compared to Wistar groups (Fig 2H).

CXCL3, however, was significantly increased in PD groups but was partially prevented in 48/

80+PD groups.

H&E staining corroborated and further demonstrated the periodontal inflammation

response (Fig 2I–2N). Histological observation showed increased leukocyte infiltration and

periodontal ligament disorganization to be more severe in SPD (Fig 2M), compared to WPD

(Fig 2J), which was prevented in 48/80+PD groups (Fig 2K and 2N).

Mast cells depletion reduced Ctnnb expression

To study the mechanisms modulated by MCs in the PD-associated alveolar bone loss, we ana-

lyzed the expression of the main bone markers in the rat mandibles by qRT-PCR and immu-

nostaining. The transcription factors Runx2, Osx, and Ctnnb were initially analyzed (Fig 3A–

3C). SC had a lower Runx2 expression compared to WC (Fig 3A), while Osx and Ctnnb expres-

sion were similar in both groups (Fig 3B and 3C). PD led to an increased Ctnnb expression in

SPD only. However, MCs depletion was able to significantly reduce its expression in WPD and

S48/80+PD (Fig 3C). Immunostaining confirmed this response (Fig 3F) as CTNNB showed no

alteration in WPD compared to WC, but weaker staining in the W48/80+PD, while it was

increased in SPD as compared to SC, which was partially prevented in S48/80+PD (Fig 3D).

Fig 1. Mast cell count in the gingival tissue of Wistar and SHR with PD, depleted from mast cells (48/80+PD). (A) Representative images of

toluidine blue stained gingival section. The black arrows indicate mast cells (purple-stained cells). (B) Graph shows mean ± SEM (n = 5) of mast cell

count per mm2, and statistical differences are represented by brackets labeled by �p<0.05, ��p<0.01, ���p<0.001, and ����p<0.0001.

Microtomography analysis of mandible of Wistar and SHR with PD, depleted from mast cells (48/80+PD). (C) Mandible three-dimensional

reconstruction in lingual view with sagittal cut detail, (D) Volume rendering of the analyzed region (first molar teeth in white and surrounding

alveolar bone in brown), and graphs showing (E) %BV/TV, (F) Tb.Nb, (G) Tb.Th, and (H) Tb.Sp as mean ± SEM (n = 5). Statistical differences are

represented by brackets labeled by � p<0.05, �� p<0.01, ��� p<0.001, and ���� p<0.0001.

https://doi.org/10.1371/journal.pone.0247372.g001
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RUNX2 and OSX labeling did not show significant differences between any groups (Fig 3D

and 3E).

Mast cells modulate Opn expression in the alveolar bone

We then analyzed the expression of bone formation markers Alp, Bmp2, Col1a1, Opn, Ocn,

and Bsp (Fig 4A–4F). We observed a significant decrease in Alp expression in PD groups com-

pared to control groups, but MCs depletion did not modulate this response (Fig 4A). Bmp2,

Col1a1, Ocn, and Bsp were not altered in PD (Fig 4B, 4C and 4F). However, the S48/80+PD

group showed a decreased expression of Bmp2 and Col1a1 (Fig 4B and 4C). IHC analysis did

not show significant differences in the BMP2 staining (S2 Fig), however, COL1A1 staining was

increased in PD groups, but only reduced in S48/80+PD, compared to SPD (Fig 4G).

SC showed an inherently lower Opn expression compared to WC, but PD led to an

increased expression in WPD and SPD, compared to the respective controls (Fig 4D). Interest-

ingly, MCs depletion significantly reduced Opn expression in WPD and S48/80+PD (Fig 4D).

IHC analysis confirmed the OPN response, by and increased staining in WPD compared to

WC, mostly seen in the bone adjacent connective tissue, while it was reduced in W48/80+PD

in both the connective tissue and bone cells (Fig 4H). SC presented a constitutive higher OPN

staining, which was further increased in bone cells in the SPD group, but reduced in S48/80

+PD (Fig 4H).

Mast cells depletion prevented altered Opg/Rankl/Rank axis expression

We also evaluated the Opg/Rankl/Rank axis expression in rat mandibles (Fig 5), which plays a

major role in bone remodeling and resorption. We noticed a constitutive lower Opg expression

in SC compared to WC, but Rankl and Rank expression was similar (Fig 5A–5C). In Wistar

rats, WPD showed a reduced Opg and increased Rankl and Rank expression. MCs depletion

further decreased Opg expression and prevented increases in Rankl and Rank expression (Fig

5A–5C). Conversely in SHR, SPD groups had increased expression of all three axis compo-

nents, which were reduced in the MCs-depleted group (Fig 5A–5C).

Immunostaining was performed to better observe this response (Fig 5D–5F). WPD showed

weaker OPG staining in bone cells compared to WC, which was partially prevented in the

W48/80+PD (Fig 5D). Interestingly, SC had constitutive higher OPG staining in the bone

adjacent connective tissue, also observed in the SPD, but with weaker OPG staining in the

bone cells (Fig 5D), and average weaker staining was observed in S48/80+PD (Fig 5D).

RANKL, in turn, had a weak immunostaining pattern. However, increased staining was

noticed in the PD group bone cells and adjacent connective tissues, which was slightly reduced

in 48/80+PD groups (Fig 5E). Interestingly, RANK had an average intenser staining in SHR

groups. In the PD groups, an increased staining was observed compared to the respective con-

trol groups, which was partially prevented in the 48/80+PD groups (Fig 5F).

Mast cells depletion prevented an increase in resorption markers

Finally, we evaluated the markers associated with bone resorption, including markers of osteo-

clast recruitment and activation, namely Oscar, Vtn, Itga5, and Itgb5 (Fig 6A–6F); organic

Fig 2. Inflammatory status in mandibles of Wistar and SHR with PD 15d, depleted of mast cells (48/80+PD).

qRT-PCR for (A) Tnfa, (B) Il6, and (C) Il1b, and ELISA for (D) TNF-α, (E) IL-6, (F) IL-1β, (G) CXCL3 and (H)

CCL20. Graphs shown mean ± SEM (n = 6), and statistical difference are represented by brackets labeled by � p<0.05,
�� p<0.01, ��� p<0.001, and ���� p<0.0001. (I-N) H&E staining of the first mandibular molar, in the furcation region,

image board shows representative images from each experimental group (n = 5).

https://doi.org/10.1371/journal.pone.0247372.g002
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matrix degradation, Mmp2 and Mmp9 (Fig 7A and 7D); and osteoclast function Trap and Ctsk
(Fig 8A–8D).

The results showed SC to have a higher constitutive expression of Oscar, Mmp9, Trap, and

Ctsk, compared to WC (Figs 6A, 7A, 8A and 8B). In WPD, there was an increased expression

of all analyzed markers, compared to WC, except for Vtn (Fig 6B). We observed a reduced

Vtn, Itga5, Itgb5, Mmp2, and Trap expression in W48/80+PD, compared to WPD (Figs 6B–6D

and 7A). SHR showed a slightly different response, where PD increased the expression of all

analyzed targets, except for Mmp2 (Fig 7A), while in S48/80+PD there was a reduced expres-

sion of Vtn, Itga5, Itgb5, Trap, and Ctsk (Figs 6B–6D, 8A and 8B).

To further confirm these tissue responses in the previous MCs-depleted animals, we evalu-

ated the immunostaining of the main altered markers. Immunostaining confirmed the

response patter of VTN and ITG, showing an increased staining in the PD groups, while

reduced in 48/80+PD. However, ITG staining alterations were concentrated in the bone cells,

while VTN was equally distributed in bone cells and the adjacent connective tissue (Fig 6E and

6F).

MMP2 staining patterns alteration were more evident in the bone cells, while for MMP9 it

was in the adjacent connective tissue. Different from gene expression analysis, MMP2 showed

to be slightly higher in SC, compared to WC, while MMP9 showed a similar staining intensity

between the control groups. Interestingly, IHC confirmed a MMP2 reduction in W48/80+PD,

but MMP9 showed no significant changes in the 48/80+DP (Fig 7C and 7D).

Regarding the osteoclast functional markers, constitutive differences between WC and SC

were not as apparent as in the gene expression of those markers. However, as expected, PD

groups had more abundant TRAP- and CTSK-positive cells, especially in SPD, compared to

SC and WPD. The response was prevented in W48/80+PD and S48/80+PD, which showed

less stained cells compared to PD groups (Fig 8C and 8D).

Discussion

In the present study, the MCs number was higher in inflamed gingival tissues of the SPD

group, than in WPD, and also SPD presented an increased inflammatory response and severe

alveolar bone loss compared to WPD, suggesting a pronounced role of MCs in the hyperten-

sive rat.

The SHR has already been shown to have exacerbated periodontal inflammation [23, 29]

and the hypertensive genotype and phenotype have been associated with intrinsic bone

impairments [15, 30]. Even though we did not observe any differences in the alveolar bone

microstructure between control groups, SC had an inherently lower Opn and Ocn expression,

and increased expression of the resorption markers Trap, Ctsk, Mmp2, Oscar, and Vtn, com-

pared to WC. This partly explains the increased susceptibility to bone destruction observed in

SPD.

We then assessed the PD consequences in the alveolar bone of SHR previously depleted

from MCs. Malcolm, Millington [31] reported that MCs-deficient mice (c-Kit knockout) were

protected from PD-induced alveolar bone loss, which supports our data. Interestingly, the pre-

ventive effects of MCs depletion were more significant in SHR (S48/80+PD) compared to

W48/80+PD, suggesting a more pronounced role of these cells in the hypertensive strain.

Fig 3. Transcription factors expression in mandibles of Wistar and SHR with PD, depleted of mast cells (48/80

+PD). qRT-PCR for (A) Runx2, (B) Osterix, (C) Catnb, (D) immunostaining for (D) RUNX2, (E) OSTERIX, and (F)

CTNNB. Graphs shown mean ± SEM (n = 6), and statistical difference are represented by brackets labeled by � p<0.05,
�� p<0.01, ��� p<0.001, and ���� p<0.0001. The image boards show representative images from each experimental

group (n = 5), and tables describe the average immunostained pattern of each target.

https://doi.org/10.1371/journal.pone.0247372.g003
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These cells released a variety of stored, preformed mediators upon activation [32], which can

directly mediate bone resorption or activate other cells to produce more mediators [33]. Addi-

tionally, the SHR has a pre-established low-grade systemic inflammatory status [34], which

may contribute to a more pronounced MCs response. Although MC depletion released a lot of

mediators, these were not able to alter the SHR hypertensive phenotype confirmed by the

higher SBP in SHR animals even in the presence of 48/80 compound.

MCs are known to produce TNF-α, IL-6, and IL-1β, important mediators that are increased

in different PD models, favoring bone resorption [35–37]. In the current study, these mole-

cules have an increased expression, mainly in SPD, which was significantly prevented in MCs-

depleted animals, especially in S48/80+PD. The histological analysis supported these findings,

thereby strengthening our hypothesis. Furthermore, the alteration in CXCL3 expression in

MCs-depleted animals may contribute to an important effect on leukocyte recruitment, possi-

bly involving neutrophils, since CCL20 was not altered. Hypertension-related mechanisms,

like the renin-angiotensin axis, adrenergic tonus, and electrolytes imbalance are known to be

up-regulated in the SHR phenotype [38–40] and contribute to the low-grade systemic inflam-

mation [41]. Although the exact mechanisms remain unclear, it can be speculated that mecha-

nisms involving MCs response, favoring mediator release could be involved.

To better understand the specific effect of MCs on the bone tissue under inflammation, a

panel of bone markers to highlight possible mechanisms that explain the observed responses

were used. Transcription factors regulate bone metabolism by controlling the genes directly

involved in bone responses [42]. We observed an increase in Ctnnb expression in the mandi-

bles from SPD only. Currently, there is no evidence to suggest that MCs regulate this factor,

but periodontal ligament cells isolated from inflamed tissues and stimulated by LPS have a

higher Catnb expression, and showed an inhibitory effect on the non-canonical Wnt pathway,

favoring proliferation but not osteoblast differentiation [43]. Therefore, upon the limitation of

our study, it was hypothesized that a pool of inflammatory mediators might affect the expres-

sion of transcription factors.

PD groups showed a reduced expression of Alp. Clinical studies have correlated PD severity

to higher ALP activity in the crevicular fluid and saliva, which is explained by an increased

enzymatic pool derived from polymorphonuclear cells, osteoblasts, and fibroblasts in the peri-

odontium as analyses were done by non-specific biochemical methods [44]. However, studies

have shown that ALP was inhibited in human osteoblastic cells by TNF-α and IL-1β [45, 46],

corroborating our data, which were also significantly increased in PD groups in the present

study. Some studies show an increased Alp expression in the alveolar bone at later periods of

alveolar bone repair, after dental extraction or orthodontic movement [45, 46]. In contrast, the

lower Alp mRNA observed in our model may reflect the ongoing inflammatory process, in

which a repair response would not take place due to the maintenance of the deleterious stimu-

lus. Unaltered expression of Bmp2 (an important endogenous osteoinductor) and Col1a1 (the

main bone matrix organic component) in PD groups additionally support the fact that bone

formation or repair attempts are absent, and Ocn and Bsp expression, markers of bone matrix

formation and maturation, were not altered either.

Opn was significantly elevated in PD groups, corroborating other studies that correlate an

increased Opn in saliva, crevicular fluid, and serum, to PD progression in humans [47, 48].

Fig 4. Bone formation markers expression in mandibles of Wistar and SHR with PD, depleted of mast cells (48/80

+PD). qRT-PCR for (A) Alp, (B) Bmp2, (C) Col1a1, (D) Opn, (E) Ocn, and (F) Bsp, and immunostaining for (G)

COL1A1, and (H) OPN. Graphs shown mean ± SEM (n = 6), and statistical difference are represented by brackets

labeled by � p<0.05, �� p<0.01, ��� p<0.001, and ���� p<0.0001. The image boards show representative images from

each experimental group (n = 5), and tables describe the average immunostained pattern of each target.

https://doi.org/10.1371/journal.pone.0247372.g004
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Fig 5. Opg, Rankl and Rank axis in mandibles of Wistar and SHR with PD, depleted of mast cells (48/80+PD).

qRT-PCR for (A) Opg, (B) Rankl, (C) Rank, and immunostaining for (D) OPG, (E) RANKL, and (F) RANK. Graphs

shown mean ± SEM (n = 6), and statistical difference are represented by brackets labeled by � p<0.05, �� p<0.01, ���

p<0.001, and ���� p<0.0001. The image boards show representative images from each experimental group (n = 5), and

tables describe the average immunostained pattern of each target.

https://doi.org/10.1371/journal.pone.0247372.g005
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Fig 6. Osteoclast recruitment and activation markers expression in mandibles of Wistar and SHR with PD,

depleted of mast cells (48/80+PD). qRT-PCR for (A) Oscar, (B) Vtn, (C) Itga5, (D) Itgb5, and immunostaining for

(E) VTN, and (F) ITGαVβ3. Graphs shown mean ± SEM (n = 6), and statistical difference are represented by brackets

labeled by � p<0.05, �� p<0.01, ��� p<0.001, and ���� p<0.0001. The image boards show representative images from

each experimental group (n = 5), and tables describe the average immunostained pattern of each target.

https://doi.org/10.1371/journal.pone.0247372.g006
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Fig 7. Organic matrix degradation markers expression in mandibles of Wistar and SHR with PD, depleted of

mast cells (48/80+PD). qRT-PCR for (A) Mmp2 and (B) Mmp9, and immunostaining for (C) MMP2, and (D)

MMP9. Graphs shown mean ± SEM (n = 6), and statistical difference are represented by brackets labeled by � p<0.05,
�� p<0.01, ��� p<0.001, and ���� p<0.0001. The image boards show representative images from each experimental

group (n = 5), and tables describe the average immunostained pattern of each target.

https://doi.org/10.1371/journal.pone.0247372.g007
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Although Opn is present in the bone tissue, it is also related to inflammatory responses, by

mediating recruitment, adhesion, and activation of immune cells [49, 50]. MCs-depleted

groups had a significant reduction in Opn expression that could be explained by the lower

inflammatory status, hinting at an important role of MCs in the modulation of cell recruitment

in both strains. Conversely, decreased expression of Bmp2 and Col1a1 in S48/80+PD suggests

a difference in the modulation of bone dynamics under inflammatory conditions, which could

be further evaluated in future studies.

Concerning the aforementioned, the Opg/Rankl/Rank axis regulates bone remodeling and

dynamics, thus maintaining its structure, mass, and strength [51]. In the present study PD

induced significant increases in Rankl and Rank expression in the mandible of WPD and SPD,

which can be explained by increased inflammatory mediators production [52]. Opg was

decreased in WPD, while increased in SPD. It can be speculated that bone turnover is

increased in SHR due to Opg/Rankl/Rank elevation during PD since they indicate poor quality

of the extracellular matrix, different from W animals. MCs depletion led to reduced expression

of all axis components, suggesting that MCs play an important role in bone remodeling

dynamics, as previously reported [53].

To further support this hypothesis, we analyzed bone resorption markers, including mark-

ers of osteoclast recruitment, activation, and activity. Oscar is an FcRγ-associated receptor that

mediates co-stimulation of osteoclasts differentiation [54], and have also been associated with

several bone loss conditions [55, 56]. An increase in Oscar expression in PD groups, with more

prominent expression in SPD, was observed. However, previous MCs depletion did not modu-

late this response. The higher Oscar expression in SHR could be an intrinsic alteration and

may not be attributed to the increased inflammatory status since Oscar expression remained

unaltered even though MCs depletion reduced inflammatory mediator production. Further

studies are required to better understand this difference between normotensive and hyperten-

sive strains.

Integrins function as Vtn receptors and mediate cell adhesion, migration, and cell-cell

interactions in a variety of cells [57]. Only SPD showed a significant increase in Vtn expres-

sion, while Itga5 and Itgb5 were increased in W and SPD. Notably, animals depleted of MCs

had lower expression of all three markers. Lakkakorpi, Horton [58] showed that although Vtn
is not present in the osteoclast adhesion zone membrane, expression in other membrane loca-

tions possibly influences the osteoclast migration and permanence in the resorption site. Integ-

rins have an important role in bone physiology, El Azreq, Arseneault [59] demonstrated a

functional relationship between Th17-type immune response and α2β1 integrin in osteoclast

activity. Functional studies of integrin subunits in the alveolar bone remain scarce. Specifically,

the aspects evaluated in this study are absent in the literature, possibly due to the difficulties

involved in generating knockout models, as stated by Larjava, Koivisto [57]. However, our

data support the participation in PD-induced alveolar bone resorption and suggest a signifi-

cant involvement of MCs in the modulation of these responses.

Subsequently, in addition to cell recruitment, bone organic matrix degradation and remod-

eling are crucial steps in PD progression [60, 61]. Mmp9 expression was increased in both PD

groups, but Mmp2 was only increased in SPD. MCs depletion was able to regulate the expres-

sion of these enzymes in a strain-specific manner between W and SHR, with a reduction in

Fig 8. Osteoclast function markers expression in mandibles of Wistar and SHR with PD, depleted of mast cells (48/80+PD).

qRT-PCR for (A) Trap and (B) Ctsk, and immunostaining for (C) TRAP, and (D) CTSK. Graphs shown mean ± SEM (n = 6), and

statistical difference are represented by brackets labeled by � p<0.05, �� p<0.01, ��� p<0.001, and ���� p<0.0001. The image boards

show representative images from each experimental group (n = 5), and tables describe the average immunostained pattern of each

target.

https://doi.org/10.1371/journal.pone.0247372.g008
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Mmp2 and Ctsk, respectively, while Mmp-9 was not altered. SHR presents a lower matrix qual-

ity production, reflecting a more fragile mineral structure [30]. This effect, in combination

with an increased expression of matrix enzymes, explains the greater susceptibility to bone

destruction.

To study the effects on osteoclast maturation and activity, we analyzed Trap and Ctsk
expression, two of the main bone resorption markers [61–63]. PD groups showed increased

expression of both osteoclast markers, as previously reported [64, 65]. Increased Trap expres-

sion was significantly reduced in MCs depleted groups. Biosse-Duplan, Baroukh [66] reported

the involvement of histamines, a major MCs-derived soluble mediator, in the recruitment and

differentiation of TRAP-positive osteoclasts in rat mandibles, suggesting a possible mechanism

that explains this response. PD induces an increase in Ctsk expression and is highly expressed

in osteoclasts, contributing to the degradation of the extracellular matrix and alveolar bone

resorption [67]. Interestingly in the current study, Ctsk expression was reduced in S48/80+PD,

while it remained unaltered in W48/80+PD, compared to WPD. MCs depletion reversal was

more significant in the SHR, which could be explained by the Ctsk response [68], but was not

present in the W group, although the underlying mechanism of the Ctsk unaltered response

remains unclear.

These results suggest that MCs modulate the PD-induced alveolar bone resorption, espe-

cially in the SHR, which is associated with a more severe PD progression compared to W. This

can be partly explained by lower inflammatory mediator production that led to a reduced

expression of osteoclast-related response markers. In addition, our data suggest that MCs

response modulation could be a potential therapeutic approach to inflammation-driven bone

resorption disorders.

Supporting information

S1 Fig. Absent of alveolar bone loss in Wistar and SHR (10-week-old) after 15 days from

c48/80 treatment. Hemimandibles cleaned from soft tissue, further defleshed in 5% hydrogen

peroxide solution for 24 hours and stained in 0.5% methylene blue solution for 30 seconds.

The specimens were photographed in 1.5x magnification in a stereomicroscope (Olympus;

SZ61), and the area from the cementoenamel junction (CEJ) to the alveolar bone crest (ABC)

in the first molar was measured using ImageJ software (v1.47, National Institutes of Health)

(n = 6).

(TIF)

S2 Fig. Immunolabeling for (A) BMP2, (B) OCN, and (C) BSP in the furcation region of the

lower first molar of Wistar and SHR with PD, depleted of mast cells (48/80+PD). The image

board show representative images from each experimental group (n = 5).

(TIF)
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