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Abstract

Background: Using immune checkpoint modulators in the clinic to increase the number and activity of cytotoxic T
lymphocytes that recognize tumor antigens can prolong survival for metastatic melanoma. Yet, only a fraction of the
patient population receives clinical benefit. In short, these clinical trials demonstrate proof-of-principle but optimizing
the specific therapeutic strategies remains a challenge. In many fields, CAD (computer-aided design) is a tool used to
optimize integrated system behavior using a mechanistic model that is based upon knowledge of constitutive
elements. The objective of this study was to develop a predictive simulation platform for optimizing anti-tumor
immunity using different treatment strategies.

Methods: To better understand the therapeutic role that cytotoxic CD8+ T cells can play in controlling tumor
growth, we developed a multi-scale mechanistic model of the biology using impulsive differential equations and
calibrated it to a self-consistent data set.

Results: The multi-scale model captures the activation and differentiation of naïve CD8+ T cells into effector
cytotoxic T cells in the lymph node following adenovirus-mediated vaccination against a tumor antigen, the
trafficking of the resulting cytotoxic T cells into blood and tumor microenvironment, the production of cytokines
within the tumor microenvironment, and the interactions between tumor cells, T cells and cytokines that control
tumor growth. The calibrated model captures the modest suppression of tumor cell growth observed in the B16F10
model, a transplantable mouse model for metastatic melanoma, and was used to explore the impact of multiple
vaccinations on controlling tumor growth.

Conclusions: Using the calibrated mechanistic model, we found that the cytotoxic CD8+ T cell response was
prolonged by multiple adenovirus vaccinations. However, the strength of the immune response cannot be improved
enough by multiple adenovirus vaccinations to reduce tumor burden if the cytotoxic activity or local proliferation of
cytotoxic T cells in response to tumor antigens is not greatly enhanced. Overall, this study illustrates how mechanistic
models can be used for in silico screening of the optimal therapeutic dosage and timing in cancer treatment.
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Background
Cytotoxic CD8+ T cells are important effectors in the
adaptive immune response against intracellular pathogens
and play an important role in immunosurveillance against
malignancy [1, 2]. Modulating an immune checkpoint
to increase cytotoxic T lymphocytes (CTLs) that tar-
get malignant cells can cure patients of metastatic
melanoma [3, 4]. While this clinical success demonstrates
proof-of-principle, the clinical response is limited to a
subset of patients. Yet, these results encourage alterna-
tive approaches to direct host immunity against tumors,
including adoptive transfer of autologous T cells extracted
from a patient’s own tumor (e.g., [5]), engineering of T
cell receptors to recognize tumor antigens (e.g., [6, 7]), or
vaccination against tumor antigens (e.g., [8–11]). Cancer
vaccines based on patient-specific material is attractive
as it would enable personalized treatments that enhance
CTL response to the specific antigens expressed by a
patient’s tumor [12]. One approach is to use adenoviruses
that were initially developed as vehicles for gene therapy.
Attempts to replace missing or faulty genes by adenoviral
gene transfer were largely unsuccessful in experimen-
tal animals and human volunteers alike due to innate
and adaptive immune responses induced by the ade-
noviral antigens ([13]). Replication-deficient adenovirus
vectors have been pursued as vaccine carriers in the
clinic as they showed high efficiency in some rodent and
simian preclinical models [13, 14]. The profile of the
immune response elicited by adenovirus vaccines against
tumor antigens in murine models was investigated by
some research groups (see [15–17]). While the approach
seems promising, the results are suboptimal as simi-
larly observed for the immune checkpoint modulators. In
exploring one treatment variation, sequential treatments
involving adenovirus and oncolytic viruses may lead to
improved antitumor response [18]. However a more sys-
tematic approach to explore treatment variants may be
helpful to improve overall response.
As illustrated by [19–22], a variety of mathematical

models based on ordinary differential equations (ODEs)
have been developed to better understand cancer pro-
gression and response to immunotherapy in the last
couple of decades. Early work employed Lotka-Volterra
equations to describe the interactions between tumor and
the immune system where effector cells acted as preda-
tors and tumor cells as prey ([21, 23]). The immune
surveillance phenomena was described qualitatively in
[23] where low doses of tumor cells can escape immune
defenses and grow into a larger tumor whereas larger
doses of tumor cells are eliminated. The simple predator-
prey model was generalized by Kirschner [21, 24], de
Pillis et al. [25], Eftimie et al. [26], Wilson and Levy [27],
and other researchers where different components of the
immune system, such as particular cytokines or natural

killer cells, were introduced into the model depending on
different cancer treatment strategies. The effect of time
delay in the immune response was considered in [20, 28, 29]
where authors found that impact of time delay on tumor
growth is almost negligible.
Mathematical modeling and computer simulations can

be powerful tools in optimizing therapeutic strategies.
Mathematical modeling and simulations can be used to
screen in silico parameter regions that seemmost promis-
ing for optimal timing and dosage of therapy and clinical
trials can be focused on those regions [30–32]. In [33],
the authors explore how the timing of oral insulin deliv-
ery and immunomodulatory drugs can be optimized for
maximum effect. Moreover, an in silico approach can sug-
gest targeted experiments and then minimize the number
of needed experiments [34]. It can also be applied to com-
bine in a virtual way different modes of actions that are
well characterized in isolation, such as immunotherapy
and chemotherapy, and see how they may be combined
to maximum benefit. For instance, Eftimie et al. explored
how vaccination using two different viruses that carry
the same tumor antigen achieves a greater therapeutic
response than if one virus is used alone [26]. In this
paper, we use simulations to investigate the impact of
multiple adenovirus vaccinations on CD8+ T cell prolif-
eration and recruitment to the tumor microenvironment
and to identify important parameter ranges that control
tumor growth through vaccination-induced anti-tumor
immunity.
The structure of this paper is as follows. First, we present

a multi-scale mechanistic model of anti-tumor immunity
and tumor growth based on a set of coupled impulsive
ODEs. Second, we describe how we calibrated the param-
eters of the model against published experimental data
using a genetic algorithm. Next we investigate the stability
of tumor-free and high tumor equilibria based on the lin-
earized system. Finally, we used the simulation platform
to explore the impact of multiple adenovirus vaccina-
tions on T cell proliferation and recruitment to the tumor
microenvironment to control tumor growth.

Methods
Here, we developed a multi-scale impulsive ODE model
based on our mechanistic understanding of underly-
ing biology and calibrated the model using existing
experimental data. This multi-scale mathematical model
represents the cytotoxic T cell response to adenovirus
vaccination against a tumor antigen and subsequent con-
trol of the growth of B16F10 tumors. For the reported
experiments, the B16F10 cell line was purchased from
American Tissue Culture Collection (ATCC, Bethesda,
MD). Numerical solutions of the model were obtained
using simulators generated by C Sharp. Simulations start
on day 0, the time of tumor implantation and conclude
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on day 49. At the initial time point, we assume that there
is no activated tumor specific effector T cells present
in the blood and at the site of the tumor. A genetic
algorithm was used to find parameter sets that closely
match the experimental data [15, 16]. Each parameter
set was modeled using an individual chromosome in
order to apply the algorithm to search in the parameter
space. For each generation, the impulsive ODE set was
solved using the Runge-Kutta method of order four for
each parameter set. The fitness function value, or vari-
ance, was calculated using a linear combination of sum
of error squared and sum of differences between slopes
of lines of experimental data and corresponding model
predictions. The calibrated mechanistic model was then
used to investigate the long-term behavior through sta-
bility analysis. Finally, we used the calibrated model to
explore the impact of multiple vaccinations on tumor
growth to improve anti-tumor immunity, a scenario that
is difficult to test experimentally using pre-clinical mouse
models but could be potentially used in the clinic to
treat patients. Details of model development, parameter
calibration, stability analysis, and numerical simulations
of multiple vaccinations are described in the following
sections.

Results
Amulti-scale model of CD8+ T cell control of tumor growth
Our mathematical model is based on the experimen-
tal data presented by Bramson and coworkers [15, 16]
using the B16F10 model for metastatic melanoma. The
B16F10 model is one of a number of transplantable mod-
els of cancer that have been used as pre-clinical models
to test anti-tumor immunotherapies [35]. In these mod-
els, a malignant cell line derived from a spontaneous
mouse cancer is cultured in vitro and then injected back
into syngeneic immunocompetent mice. The B16 model
was used to help demonstrate the efficacy of anti-CTLA4
therapy [36], a drug that has revolutionized the treat-
ment of metastatic melanoma in humans [4, 37]. As an
alternative approach to enhance anti-tumor immunity,
Bramson and coworkers examined how a cytotoxic CD8+
T cell response directed against a tumor antigen using a
recombinant adenovirus vector can help control tumor
growth. This adenovirus vector induces both the tran-
sient expression of a defined tumor antigen and triggers
innate immunity to initiate a primary adaptive immune
response against this tumor antigen. A primary adaptive
immune response is organized spatially: presentation of
antigen and initial activation of naïve CD8+ T cells occurs
in the secondary lymphoid organs, activated effector T
cells circulate in the blood and peripheral tissues in search
of tumor antigens, and effector T cells remain in tissues
that express tumor antigens and selectively kill cells that
express the cognate tumor antigen [38]. In order to better

understand the dynamics of the primary response to
adenovirus-mediated induction of an anti-tumor immune
response, we developed a three-compartment mathe-
matical mode to quantify the cytotoxic CD8+ T cell
response to adenovirus vaccination and subsequent inhi-
bition of tumor cell growth, as shown schematically
in Fig. 1. Among these three compartments, we con-
sider the dynamics of nine state variables that are regu-
lated by the following governing biological processes and
assumptions:

1). Naïve CD8+ T cells (TN , units: cells per mm3). As
the immunization protocol induces the clonal
expansion of small subset of CD8+ T cell clones
rather than globally changing T cell numbers, we
assumed that naïve CD8+ T cells expressing the T
cell receptor that recognizes the epitope derived from
the immunized tumor antigen are produced at a
constant rate c1 from thymus and die naturally at a
rate kd1TN . Naïve CD8+ T cells are maintained at a
constant level in the absence of adenovirus, i.e.,
c1 = kd1TN (0). Naïve CD8+ T cells are recruited to
the lymph node and activated by adenovirus
vaccination and become effector CD8+ T cells (TE1)
when they encounter adenovirus-induced antigen
expression (LV) at a rate proportional to TN and a
saturable adenovirus-induced antigen (LV) term
defined by LV

LV+γ
.

2). Effector CD8+ T cells in lymph node (TE1, units:
cells per mm3). The increase in the rate of
concentration of effector CD8+ T cells in the lymph
node due to activation of naïve CD8+ T cells from
the blood stream is given by c2 TNVolb

Volln
LV

LV+γ
, where

Volb = 1.4 ∗ 103mm3 is the volume of the blood
compartment ([39]) and Volln = 0.25mm3 is the
volume of the lymph node compartment ([40]). We
assume that the natural death of effector T cells in the
lymph node is negligible. Effector CD8+ T cells in the
lymph node proliferate at a rate proportional to TE1,
a saturable adenovirus-induced antigen term defined
by LV

LV+γ
, and an immune checkpoint term defined by

α

α+T2
E1
, where α is the square root of the saturation

constant of TE1. We also assume that influx rate of
effector CD8+ T cells from blood to lymph node is
a21 TE2Volb

Volln and a12 · TE1 is the efflux rate.
3). Adenovirus in lymph node (LV, units: Relative

Light Units (RLU) per mm3). Since the adenovirus
used in the calibration experiments are
replicate-defective and include a GFP expression
plasmid, we assume an exponential decay model for
LV. We also used a difference equation
�LV(t) = LV(t+) − LV(t−) = LVk to reflect the
abrupt change of the concentration of adenovirus
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Fig. 1 The mechanics of the interactions of three compartments. Naïve CD8+ T cells (TN) are activated and become CD8+ T effectors (TE1) when
they encounter antigen introduced by the adenovirus (LV) in the lymph node. Once activated from naïve cells, effector CD8+ T cells circulate within
the blood (TE2) and enter tumor microenvironment (TE3) where they are retained upon recognition of the corresponding tumor-associated antigen.
Effector CD8+ T cells secrete Interferon gamma (IFNγ ) and Tumor Necrosis Factor alpha (TNFα ), which assist with the CD8+ T cell-directed lysis of
tumor cells (CMHCI+ and CMHCI− ) through increased presentation of tumor-associated antigens by Major Histocompatibility Complex protein class I
(MHCI)

during vaccination at time tk , where LVk represents
the dosage of vaccination at tk with k = 1, 2, . . . , n.

4). Effector CD8+ T cells in blood (TE2, units: cells
per mm3). We assume the effector CD8+ T cells die
naturally at a rate kd3TE2 in blood. The influx rate of
effector CD8+ T cells from lymph node to blood is
equal to a12 TE1Volln

Volb and the efflux rate of effector
CD8+ T cells from blood to lymph node is equal to
a21TE2. The influx rate of CD8+ T effectors from the
tumor to blood is a32

CMHCI−
ε+C(t)

TE3Volt
Volb and the efflux

rate of CD8+ T effectors from blood to tumor is
a23TE2, where C(t) = CMHCI− + CMHCI+ is the
number of tumor cells, CMHCI+ is the number of
major histocompatibility complex (MHC) class I
positive tumor cells, CMHCI− is the number of MHC
class I negative tumor cells, and ε is a small positive
constant representing a small volume of tissue that
excludes tumor and effector CD8+ T cells in the
tumor compartment.

5). MHC class I positive tumor cells (CMHCI+ , units:
cell number). MHC class I positive tumor cells are
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converted from MHC class I negative tumor cells
(CMHCI− ) with the assistance of Interferon γ (IFNγ )
at a rate c3 IFNγ

k1+IFNγ
CMHCI− and the effector CD8+ T

cell-mediated MHC class I positive tumor cells death
rate is c4TE3

CMHCI+
ε+C(t) . We assume that the dilution rate

of MHC class I positive tumor cells due to
proliferation is kp2CMHCI+ . The natural death rate of
MHC class I positive tumor cells is assumed to be
kd4CMHCI+ .

6). MHC class I negative tumor cells (CMHCI− , units:
cell number). MHC class I negative tumor cells are
converted to MHC class I positive tumor cells with
the assistance of Interferon gamma (IFNγ ) at a rate
c3 IFNγ

k1+IFNγ
CMHCI− . We assume that the proliferation

rate of MHC class I positive tumor cells is equal to
2kp2CMHCI+ . As MHC class I positive tumor cells
proliferate, they lose MHC class I expression and
become MHC class I negative cells. A logistic growth
pattern is assumed for the number of MHC class I
negative tumor cells in the absence of vaccination
treatment.

7). Effector CD8+ T cells in tumor
microenvironment (TE3, units: cells per mm3). We
assume that effector CD8+ T cells can proliferate
locally upon recognition of the corresponding tumor
antigen presented by MHCI positive tumor cells at a
saturable rate equal to kp3

CMHCI+
ε+C(t) TE3. Effector CD8+

T cells have a finite lifespan and die within the tumor
microenvironment as a rate equal to kd5 · TE3. The
influx rate of effector CD8+ T cells from the blood to
tumor is defined by a23 TE2Volb

Volt , where
Volt = ε + stC(t) + ViTE3mm3 is the volume of the
tumor compartment, ε is a small positive constant
representing a small volume of tissue that excludes
tumor and effector CD8+ T cells in the tumor
compartment, st = 6 ∗ 10−7mm3 is the average size
of a B16F10 tumor cell ([41]), and Vi = 10−7mm3 is
the average size of a T effector cell ([42]). The efflux
rate of effector CD8+ T cells from the tumor to blood
is a32TE3

CMHCI−
ε+C(t) .

8). Interferon gamma (IFNγ , units: moles per mm3).
We assume that Interferon γ is secreted solely by
effector CD8+ T cells within the tumor at a rate
proportional to the concentration of effector CD8+ T
cells within the tumor microenvironment and decays
at a rate proportional to its concentration. While this
assumption may not hold in all model systems, the
presence of IFNγ in the tumor was dependent on
CD8+ T cell activation [43].

9). Tumor Necrosis Factor α (TNFα, units: moles per
mm3). We assume that Tumor Necrosis Factor α

decays naturally at a rate proportional to its
concentration and is secreted solely by effector CD8+

T cells in the tumor at a rate that includes both
autocrine and constitutive production terms:(
kc2 TNFα

k2+TNFα + k3
)
TE3. While this assumption may

not hold in all model systems, the presence of TNFα
in the tumor was also dependent on CD8+ T cell
activation [43].

Based on the governing biological processes and
assumptions described above, the dynamics of these cyto-
toxic T cell, tumor cell, and cytokine state variables are
represented by a mass-action formalism and encoded by
the following impulsive ordinary differential equations:

dTN
dt

= c1 − kd1TN − c2TN
LV

LV + γ
, (1)

dTE1
dt

= c2
TNVolb
Volln

LV
LV + γ

+ kp1TE1
LV

LV + γ

α

α + T2
E1

+ a21
TE2Volb
Volln

− a12TE1, (2)

dLV
dt

= −kd2LV, t �= tk , k = 1, 2, . . . , n, (3)

dTE2
dt

= −kd3TE2 + a12
TE1Volln
Volb

− a21TE2

+ a32
CMHCI−

ε + C(t)
TE3Volt
Volb

− a23TE2,
(4)

dCMHCI+

dt
= c3

IFNγ

k1 + IFNγ

CMHCI− − kp2CMHCI+

− kd4CMHCI+ − c4TE3
CMHCI+

ε + C(t)
, (5)

dCMHCI−

dt
= −c3

IFNγ

k1 + IFNγ

CMHCI− − kd4CMHCI−

+ kp2CMHCI− − r2C2
MHCI− (6)

+ 2kp2CMHCI+ ,

dTE3
dt

= a23
TE2Volb
Volt

− a32TE3
CMHCI−

ε + C(t)

+ kp3
CMHCI+

ε + C(t)
TE3 − kd5TE3, (7)

dIFNγ

dt
= −kd6IFNγ + kc1TE3, (8)

dTNFα

dt
= −kd7TNFα + kc2

TNFα

k2 + TNFα

TE3 + k3TE3,

(9)

�LV(t) = LVk , t = tk , k = 1, 2, 3, · · · , n, (10)
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where �LV(t) = LV(t+) − LV(t−) reflects the abrupt
change of adenovirus at vaccination time t and LVk is the
dosage of the adenovirus vaccination at the administration
time tk with k = 1, 2, 3, · · · , n.

Model calibration
Next, we calibrated model parameters against self-
consistent experimental data. These data were acquired
from two papers. The first paper described the general
dynamics of a CD8+ T cell response to vaccination with
a recombinant human adenovirus serotype 5 (rHuAd5)
vector that can be used as a general delivery vehicle to
express human tumor antigens [16]. The second paper
describes using this adenovirus vector to induce a CD8+
T cell response to the human dopachrome tautomerase
antigen (hDCT; vector: rHuAd5-hDCT) [15]. In con-
trast, the same adenovirus vector engineered to vaccinate
against the glycoprotein gp100 (rHuAd5-hgp100) was
unable to control the growth of B16F10 in prophylactic
and neo-adjuvant settings. The B16F10 cell line exhibits
a defect in the processing and presentation of pep-
tides derived from gp100 through the Major Histocom-
patibility Complex class I pathway [44]. Together these
results suggest that the control of tumor growth induced
by rHuAd5-hDCT is through tumor-specific CD8+
T cells.
The experimental data used in calibrating the mathe-

matical model are listed as follows:

• CD8+ T cells in the secondary lymph nodes (TE1)
and effector CD8+ T cells in the blood (TE2) are
obtained from Figure 1(A) of Yang’s paper ([16]).

• Antigen expression derived from adenovirus
vaccination (LV) corresponds to data presented in
Figure 3(B) of Yang’s paper ([16]).

• Total volume of B16F10-derived tumors was
calibrated against data shown in Figure 1(B) of
McGray’s paper ([15]).

• The concentration of effector CD8+ T cells present
within the tumor (TE3) are found in Figure 4(A) of
McGray’s paper ([15]).

• Expression of Interferon gamma (IFNγ ) and Tumor
Necrosis Factor alpha (TNFα) genes within the
tumor are obtained from Figure 1(E) of McGray’s
paper ([15]).

As there are more data points (93) than parameters (27)
parameters, the mechanistic model is identifiable in the-
ory.
Simulation results for the modeled variables along

with their corresponding experimental measurements are
shown in Fig. 2, where t0 = 0 is the day of tumor

inoculation, t = 5 is the day of adenovirus immuniza-
tion. The starting concentration of naïve CD8+ T cells
(TN (0) = 0.0714 cells permm3) was estimated by assum-
ing that the number of naïve CD8+ T cells in a mouse
is 100 and the volume of the blood system of a mature
mouse is 1.4 ∗ 103mm3). Initially, 2 × 106 tumor cells
were injected into mice and assumed to not express
tumor antigens (CMHCI− ). The remaining state variables
were initially zero. Vaccination was simulated by abruptly
changing the concentration of adenovirus (LV ) at the
administration time (t1 = 5, the 5th day after tumor
implantation) using an impulse dose equal to LV1 (LV1 =
1.100× 106 RLUpermm3). The calibrated parameter val-
ues obtained using the genetic algorithm are listed in
Table 1.

Stability analysis
The dynamics of the nonlinear ODE model comprised of
equations (1) - (9) are complicated. To gain insight into
the behavior of the system, we explored the steady state
solutions of the system using stability analysis. By set-
ting the right hand sides of the ODE system (1) - (9)
to 0 and solving the equations simultaneously, we notice
that the system of ODEs (1) - (9) only has a tumor-free
equilibrium −→X 0:

−→X 0 = (
TN , TE1, LV , TE2, C+

MHCI , C
−
MHCI , TE3,

IFNγ , TNFα

)T
=

(
c1
kd1

, 0, 0, 0, 0, 0, 0, 0, 0
)T

,

and a high-tumor equilibrium −→X 1:

−→X 1 = (
TN , TE1, LV , TE2, C+

MHCI , C
−
MHCI , TE3,

IFNγ , TNFα

)T
=

(
c1
kd1

, 0, 0, 0, 0,
kp2 − kd4

r2
, 0, 0, 0

)T
.

We note that the tumor-free equilibrium has only one
none-zero element: the naïve T cells TN , this occurs when
there are no tumor cells present and no adenovirus immu-
nization treatment is administered and also corresponds
to tumor-specific effector CD8+ T cells and cytokines
being equal to zero. The high tumor equilibrium −→X 1 has
two non-zero elements: the naïve T cells TN and theMHC
class I negative tumor cells C−

MHCI , which reflects the
status of the steady state when the one-time adenovirus
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Fig. 2Model predictions are compared with experimental data. Comparison between model predictions (solid lines) and experimental data
(symbols) reported for (a) CD8+ T cells lymph nodes (Fig 1A in [16]), (b) CD8+ T cells in blood (Fig 1A in [16]), (c) CD8+ T cells in tumor (Fig 4A in
[15]), (d) antigen expression derived adenovirus vector (Fig 3B in [16]), (e) B16 tumor volume (Fig 1B in [15]), (f) Interferon-gamma gene expression
in tumor (Fig 1E in [15]), (g) Tumor necrosis factor alpha gene expression in tumor (Fig 1E in [15]). The symbols represent the mean +/- SEM. Values
of calibrated model parameters can be found in Table 1
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Fig. 3 Prediction of effect of multiple vaccinations with increasing dosage using the calibrated model. Model predictions were obtained with
adenovirus vaccination with a dose of 1 × 1010 RLU permm3 (purple lines), a dose of 1 × 108 RLU permm3 (green lines), and a dose of
1 × 106 RLU permm3 (red lines) every 5 days for a total of 10 times following the initial vaccination with a dose of 1.1 × 106 RLU permm3 on day 5
after tumor implantation. a TE1, b TE2, c TE3, d LV, e Total tumor cells (CMHCI+ + CMHCI-), f IFNG, g TNFA, and h TN
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Fig. 4 Prediction of effect of multiple vaccinations with increasing time between successive vaccinations. To examine the impact of the time
between successive vaccinations, model predictions were obtained with adenovirus vaccination every 5 days (red lines), 10 days (aqua lines), 15 days
(orange lines), 20 days (blue lines) with dose 1 × 106 RLU permm3 for 10 times following the initial vaccination with dose of 1.1 × 106 RLU permm3

on day 5 after tumor implantation. a TE1, b TE2, c TE3, d LV, e Total tumor cells (CMHCI+ + CMHCI-), f IFNG, g TNFA, and h TN
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Table 1 Parameter values determined by calibrating model against experimental data

Parameter Units Description Calibrated values

kd1 day−1 Naïve CD8+ T cell natural death rate constant 3.809 × 10−3

kd2 day−1 Adenovirus natural death rate constant 0.364

kd3 day−1 Blood T effector natural death rate constant 1.80 × 10−2

kd4 day−1 Tumor cell natural death rate constant 2.08 × 10−6

kd5 day−1 Tumor T effector natural death rate constant 0.800

kd6 day−1 Interferon γ natural degradation rate constant 0.082

kd7 day−1 Tumor Necrosis Factor α natural degradation rate constant 3.10 × 10−6

kp1 day−1 Lymph node T effector proliferation rate constant due to adenovirus
vaccination

12.017

kp2 day−1 Tumor cell proliferation rate constant 0.5

kp3 day−1 Tumor T effector proliferation rate constant due to tumor growth 5.73 × 10−6

a12 day−1 Rate constant for T cell flow from lymph node to blood 5.706

a21 day−1 Rate constant for T cell flow from blood to lymph node 3.540 × 10−3

a23 day−1 Rate constant for T cell flow from blood to tumor 5.546 × 10−2

a32 day−1 Rate constant for T cell flow from tumor to blood 6.89 × 10−18

c1 cell · mm−3 · day−1 Naïve T cell natural production rate 2.719 × 10−4

c2 day−1 T cell to lymph node T effector transfer rate constant 0.5263

c3 day−1 MHC class I negative to positive tumor cells transfer rate constant 0.8759

c4 mm3 · day−1 MHCI positive tumor death rate due to T effector (in tumor) lysis 2.49 × 10−13

α (cell · mm−3)
2

Lymph node T effector saturation constant 6.520 × 1010

k1 moles · mm−3 Interferon γ saturation constant 3.69 × 10−9

k2 moles · mm−3 Tumor Necrosis Factor α saturation constant 6.924 × 106

k3 moles · day−1 · cell−1 Constitutive Tumor Necrosis Factor α production rate constant 2.634 × 10−4

kc1 moles · day−1 · cell−1 Cellular Interferon γ production rate constant 7.295 × 108

kc2 moles · day−1 · cell−1 Autocrine Tumor Necrosis Factor α production rate constant 9.939 × 108

γ RLU · mm−3 Adenovirus saturation constant 2.905 × 103

β1 AU Constant of proportionality in calculating TCRα gene expression 8.79 × 10−6

r2 cell−1 · day−1 Constant in tumor logistic growth (or MHC class I negative tumor

growth rate divided by the carrying capacity K , i.e., kp2−kd4
K )

3.34 × 10−10

vaccination treatment failed to completely eradicate the
tumor cells. This situation occurs when adenovirus LV
decays to zero and the MHC class I positive tumor cells
are all killed by tumor infiltrating lymphocytes, which
causes exhaustion of effector CD8+ T cells in three com-
partments and cytokines decay to zero. The rest of the
MHC class I negative tumor cells then approach the car-
rying capacity and the naïve T cells return to their original
constant level.
By simple calculation, we obtain the Jacobian matrix

J(−→X ) of the ODE system (1)- (9):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J11 0 − c2γTN
(LV+γ )2

0 0 0 0 0 0
J21 J22 J23 a21Volb

Volln 0 0 0 0 0
0 0 −kd2 0 0 0 0 0 0
0 a12Volln

Volb 0 J44 J45 J46 J47 0 0
0 0 0 0 J55 J56 J57

k1c3C−
MHCI

(k1+IFNγ )2
0

0 0 0 0 2kp2 J66 0 − k1c3C−
MHCI

(k1+IFNγ )2
0

0 0 0 J74 J75 J76 J77 0 0
0 0 0 0 0 0 kc1 −kd6 0
0 0 0 0 0 0 J97 0 J99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where
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−→X = (
TN , TE1, LV, TE2, C+

MHCI , C
−
MHCI , TE3, IFNγ , TNFα

)T ,

J11 = −kd1 − c2
LV

LV + γ
,

J21 = c2VolbLV
Volln(LV + γ )

,

J22 = kp1LV
LV + γ

(
α

α + T2
E1

)
+ kp1TE1

LV
LV + γ

(
−2αTE1(
α + T2

E1
)2

)
− a12,

J23 = c2TNγVolb
Volln (LV + γ )2

+ kp1γTE1

(LV + γ )2

(
α

α + T2
E1

)
,

J44 = −kd3 − a21 − a23,

J45 = a32C−
MHCITE3 (ε (st − 1) − ViTE3)

Volb
(
ε + C+

MHCI + C−
MHCI

)2 ,

J46 = a32TE3
[(

ε + C+
MHCI

)
(ε + stC+

MHCI + 2stC−
MHCI + ViTE3) + st(C−

MHCI)
2]

Volb
(
ε + C+

MHCI + C−
MHCI

)2 ,

J47 = a32C−
MHCI

(
ε + stC+

MHCI + stC−
MHCI + 2ViTE3

)
(
ε + C+

MHCI + C−
MHCI

)
Volb

,

J55 = −kp2 − kd4 − c4TE3
ε + C−

MHCI(
ε + C+

MHCI + C−
MHCI

)2 ,
J56 = c3IFNγ

k1 + INFγ

+ c4TE3C+
MHCI(

ε + C+
MHCI + C−

MHCI
)2 ,

J57 = − c4C+
MHCI

ε + C+
MHCI + C−

MHCI
,

J66 = −c3
IFNγ

IFNγ + k1
− kd4 − 2r2C−

MHCI + kp2,

J74 = a23Volb
ε + stC+

MHCI + stC−
MHCI + ViTE3

,

J75 = − a23stTE2Volb(
ε + stC+

MHCI + stC−
MHCI + ViTE3

)2 + a32TE3C−
MHCI(

ε + C+
MHCI + C−

MHCI
)2

+ kp3TE3
(
ε + C−

MHCI
)

(
ε + C+

MHCI + C−
MHCI

)2 ,
J76 = − a23stTE2Volb(

ε + stC+
MHCI + stC−

MHCI + ViTE3
)2 − a32TE3

(
ε + C+

MHCI
)

(
ε + C+

MHCI + C−
MHCI

)2
− kp3TE3C+

MHCI(
ε + C+

MHCI + C−
MHCI

)2 ,
J77 = − a23ViTE2Volb(

ε + stC+
MHCI + stC−

MHCI + ViTE3
)2 − kd5 − a32C−

MHCI
ε + C+

MHCI + C−
MHCI

+ kp3C+
MHCI

ε + C+
MHCI + C−

MHCI
,

J97 = kc2TNFα

k2 + TNFα

+ k3,

J99 = −kd7 + kc2k2TE3

(k2 + TNFα)2
.
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The Jacobian matrix evaluated at the tumor-free equi-
librium J(−→X 0) is given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−kd1 0 − c1c2
γ kd1 0 0 0 0 0 0

0 −a12 c1c2Volb
γ kd1Volln

a21Volb
Volln 0 0 0 0 0

0 0 −kd2 0 0 0 0 0 0
0 a12Volln

Volb 0 J44 0 0 0 0 0
0 0 0 0 J55 0 0 0 0
0 0 0 0 2kp2 kp2 − kd4 0 0 0
0 0 0 a23Volb

ε
0 0 −kd5 0 0

0 0 0 0 0 0 kc1 −kd6 0
0 0 0 0 0 0 k3 0 −kd7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where J44 = −kd3 − a21 − a23 and J55 = −kp2 − kd4.
It can be shown that J(−→X 0) has the following eigenval-

ues: λ1 = −kd1, λ2 = −kd2, λ3 = −kd5, λ4 = −kd6,
λ5 = −kd7, λ6 = −kp2 − kd4, λ7 = kp2 − kd4, while λ8 and
λ9 are determined by the quadratic equation

λ2 + (a12 + a21 + a23 + kd3)λ + a12(kd3 + a23) = 0.
(11)

Let � = (a12 + a21 + a23 + kd3)2 − 4a12(kd3 + a23). Then
if � ≥ 0, equation (11) has the real roots

λ8 = −(a12 + a21 + a23 + kd3) + √
�

2
, and

λ8 = −(a12 + a21 + a23 + kd3) − √
�

2
;

if � < 0, equation (11) has the complex conjugate roots

λ8 = −(a12 + a21 + a23 + kd3) + i
√−�

2
, and

λ8 = −(a12 + a21 + a23 + kd3) − i
√−�

2
.

In both cases, λ8 and λ9 have negative real parts.
Thus when kp2 > kd4, the tumor-free equilibrium −→X 0 is

unstable and when kp2 < kd4, the tumor-free equilibrium−→X 0 is stable since all eigenvalues of the Jacobian matrix
have negative real parts.
The Jacobian matrix evaluated at the high tumor equi-

librium J(−→X 1) is given by
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−kd1 0 − c1c2
γ kd1 0 0 0 0 0 0

0 −a12 c1c2Volb
γ kd1Volln

a21Volb
Volln 0 0 0 0 0

0 0 −kd2 0 0 0 0 0 0
0 a12Volln

Volb 0 J44 0 0 J47 0 0
0 0 0 0 J55 0 0 J58 0
0 0 0 0 2kp2 J66 0 J68 0
0 0 0 a23r2Volb

r2ε+st (kp2−kd4) 0 0 J77 0 0
0 0 0 0 0 0 kc1 −kd6 0
0 0 0 0 0 0 k3 0 −kd7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

J44 = −kd3 − a21 − a23,

J47 = a32(kp2 − kd4)(r2ε + st(kp2 − kd4))
(r2ε + st(kp2 − kd4))Volb

,

J55 = −kp2 − kd4,

J58 = c3(kp2 − kd4)
r2k1

,

J66 = −(kp2 − kd4),

J68 = − c3(kp2 − kd4)
r2k1

,

J77 = −kd5 − a32(kp2 − kd4)
r2ε + kp2 − kd4

.

It can be shown that J(−→X 1) has the following eigenval-
ues: λ1 = −kd1, λ2 = −kd2, λ3 = −kd6, λ4 = −kd7,
λ5 = −kp2 − kd4, λ6 = −(kp2 − kd4), and λ7, λ8 and λ9 are
determined by

(λ + a12){(λ + kd3 + a21 + a23)[ (λ + kd5)(r2ε + kp2
−kd4) + a32(kp2 − kd4)]
−a23a32(kp2 − kd4)} = a12a21[ (λ + kd5)(r2ε + kp2
−kd4) + a32(kp2 − kd4)] .

(12)

Since ε
.= 0, equation (12) becomes the cubic equation

λ3 + a2λ2 + a1λ + a0 = 0, (13)

where a2 = a12+a21+a23+a32+kd3+kd5, a1 = a12(kd5+
a32+kd3+a23)+kd3(kd5+a32)+a21(kd5+a32)+kd5a23,
and a0 = a12(kd3kd5 + a32kd3 + a23kd5). It is easy to see
that ai > 0 for i = 0, 1, 2 since all parameters are posi-
tive. By simple calculation, we can obtain a2a1 − a0 > 0
which implies that roots of equation (13) (λ7, λ8, λ9) all
have negative real parts by the Routh-Hurwitz criterion.
Thus when the proliferation rate of tumor cells is greater
than the natural death rate of tumor cells (i.e., kp2 > kd4),
the high tumor equilibrium −→X 1 is stable and when the
proliferation rate of tumor cells is less than the natural
death rate of tumor cells (i.e., kp2 < kd4), the high-tumor
equilibrium −→X 1 is unstable.
Therefore, using the parameter values obtained from

model calibration (kp2 > kd4), the tumor-free equilib-
rium −→X 0 is unstable and the high tumor equilibrium−→X 1 is stable. This implies that under the current status
of the mouse immune system, a small tumor will keep
growing to its carrying capacity because of the fast pro-
liferation of tumor cells without adenovirus vaccination
treatment. On the other hand, the one-time adenovirus
immunization as applied in the experiment was not very
successful in completely eliminating tumor cells due to
limited effects on enhancing CTL immune response. It
seems that the CTL response falls to zero before all MHC
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negative tumor cells are converted toMHCpositive tumor
cells and killed by the cytotoxic CD8+ T cells. Then,MHC
positive tumor cells approach zero while MHC negative
tumor cells approach the carrying capacity and all T cell
effectors and cytokines drop back to zero soon after the
one time vaccination treatment (see Fig. 2).

Effect of multiple vaccinations
Next, we investigated in silico the impact of multiple ade-
novirus vaccinations on T cell proliferation and recruit-
ment, cytokine secretion, and tumor growth using the
calibrated model in conjunction with an impulsive con-
trol mechanism where control laws are discrete in time, as
represented by Eq. (10).
To explore the impact of dose-dependence, adenovirus

vaccinations were simulated with an increasing dosage
of 1 × 106 RLUpermm3, 1 × 108 RLUpermm3, and
1 × 1010 RLUpermm3 and delivered every 5 days for
a total of 10 times following the initial vaccination (see
Fig. 3). The simulation results indicate that with the same
frequency and number of times of immunizations, the
increase in immunization dose increases the length and
the maximum magnitude of the adenovirus vaccinations
and CTL response. As we can see in Fig. 3, a 100-fold
increase in immunization dose results in a 15-day (or
10%) increase in the length of the adenovirus vaccinations
as well as CTL response. However, the impact of increase
in vaccination dose on the strength of CTL response is
very limited: a 100-fold increase in immunization dose
generates less than a 1% increase in the collective mag-
nitude of T cell concentration in all three compartments.
The increased immunization dosage shows a significant
impact on the length but not the collective magnitude
of Interferon gamma (IFNG) and Tumor Necrosis Factor
alpha (TNFα) in the tumor microenvironment. Surpris-
ingly, the increase in dose with multiple immunizations
does not appear to affect the peak time and maximum
magnitude of tumor growth. In addition, the time period
of tumor staying at its carrying capacity barely changes
with increased dose of vaccinations.
Increasing the time period between successive vaccina-

tions was the next variable that we explored (see Fig. 4).
While the dose and number of immunization were kept
the same, the biological responses were simulated for
adenovirus vaccinations that were administered every 5
days, 10 days, 15 days, and 20 days with a dose of 1 ×
106 RLUpermm3 for 10 times in total. Simulation results
suggest that shorter time periods between successive
immunizations generate higher maximum immunizations
magnitudes. In addition, immunizations last longer with
longer time periods between successive immunizations.
Length of T cell responses in all compartments would
increase with the increase in time periods between suc-
cessive vaccinations and then drop to zero in about 60 to

100 days after the last vaccination for all four cases with
a smaller duration of response for longer time between
successive immunizations. In general, the increased time
periods between successive immunizations result in a 4%
to 18% decrease in the maximum magnitude for T cell
concentration in blood and almost no impact on the max-
imum magnitudes of T cell concentrations in lymph node
and tumor microenvironment. The expression of IFNG
and TNFα do not seem to be affected although shorter
time periods between successive immunizations corre-
spond to shorter durations of both cytokine responses.
In summary, simulation results suggest that with the
same dosage and number of times of vaccinations, the
shorter the time between successive vaccinations, the
higher T cell concentration in blood and the shorter the
T cell responses in all three compartments. However, the
increase of time periods between successive vaccinations
does not seem to affect tumor growth.
We also explored the impact of increasing the num-

ber of times of immunizations with the same dosage and
time period between successive vaccinations (see Fig. 5).
Model predictions were obtained with adenovirus vacci-
nations with dose of 1 × 1010 RLUpermm3 every 30 days
administered once, 5 times, and 10 times following the
initial immunization. We found that, when dosage and
time period between successive vaccinations were kept
the same, increasing the number of times of immuniza-
tions increased the duration of the T cell. In addition, the
increase in number of times of vaccinations only increased
the maximum T cell concentration in blood by 8% to 34%
but did not impact the maximum T cell concentrations in
lymph node and tumor microenvironment. Figure 5 also
shows an interesting result that the time period of the
tumor staying in its maximum value and then drop to its
carrying capacity is increased with the increase of number
of times of multiple immunizations while increasing the
length of the T cell immune response (i.e., C+

MHCI
.= 0 and

C−
MHCI = kp2−kd4

r2
.= 1.497 × 109 in number of tumor cells

or equivalently, st ∗ C−
MHCI

.= 898.2mm3 in tumor size).

Impact of the single adenovirus vaccination with enhanced
T cell cytotoxicity or proliferation
Finally, we explored the impact of a single adenovirus
vaccination with enhanced T cell cytolytic ability or T
cell proliferation on tumor growth by changing the corre-
sponding parameters. Model predictions with enhanced T
cell cytolytic ability (i.e., c4 = 2.49 × 105) and improved
T cell proliferation rate in the tumor compartment (i.e.,
kp3 = 5.73) were obtained and compared to the predic-
tion using calibrated parameters reported in Table 1 (see
Fig. 6). The cell concentrations of naïve CD8+ T cells and
adenovirus are not included in the figure as themodel pre-
dictions were exactly the same for all three cases. With
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Fig. 5 Prediction of effect of multiple vaccinations with enhanced T cell cytotoxic ability and saturation constant. The simulation results were
obtained with enhanced T cell saturation constant α = 7.82349 × 1011 and T cell cytotoxic ability c4 = 37350 and the rest of parameters as listed in
Table 1. To examine the impact of the frequency of vaccination with enhanced T cell cytotoxic ability and saturation constant, model predictions
were obtained with adenovirus vaccination with dose of 1 × 106 RLU permm3 every 5 days for 1 time (purple lines), 5 times (green lines), 10 times
(red lines) post the one time vaccination on day 5 after tumor implantation with dosage 1× 106 RLU permm3 in the experiment. a TE1, b TE2, c TE3,
d LV, e Total tumor cells (CMHCI+ + CMHCI-), f IFNG, g TNFA, and h TN
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Fig. 6 Improved one time vaccination effects with enhanced T cell cytotoxic ability or proliferation. Model predictions were obtained with
enhanced T cell cytotoxic ability c4 = 2.49 × 105 (blue lines) and increased T cell proliferation rate kp3 = 5.73 (red lines). Results were compared to
the model prediction obtained using calibrated parameter values as listed in Table 1 (green lines) to explore the impact of a single vaccination on
day 5 after tumor implantation with dose 1.100481 × 106 RLU permm3 with enhanced T cell cytotoxic ability or local T cell proliferation. a TE1,
b TE2, c TE3 expressed as cells per mg tumor, d TE3 expressed as total cells, e Total tumor cells (CMHCI+ + CMHCI-), f IFNG, and g TNFA
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an enhanced T cell cytolytic ability, the concentrations of
effector CD8+ T cells in the lymph node and blood as well
as the total number of T cells in the tumor were almost the
same relative to simulations using the calibrated parame-
ter values. In contrast, the concentration of effector CD8+
T cells in the tumor, IFNG and TNFα were increased by
100 to 1000 times compared to the prediction obtained
using the c4 frommodel calibration. The increase in CD8+
T cell response within the tumor decreased the tumor
size to effectively zero (i.e., less than the size of a sin-
gle tumor cell) within 100 days. To check whether tumor
would relapse during the average life span (1 to 2 years)
of a mouse, we have run the simulation for more than
800 days and found that tumor cells continued to decrease
to near zero after 100 days as shown in Fig. 6. Collec-
tively, the simulation results suggest that tumor cells can
be completely eliminated by a single adenovirus vaccina-
tion with greatly strengthened T cell cytolytic ability (c4).
In the model prediction with enhanced T cell proliferation
rate kp3, we see that T cell concentrations in all three com-
partments were greatly enhanced and tumor cells were
reduced to near zero within 100 days. To summarize, the
simulation results suggest that the tumor may be com-
pletely eradicated by a single adenovirus vaccination by
enhancing either the CD8+ T cell cytolytic ability or the
CD8+ T cell proliferation rate.

Discussion
Mathematical modeling and simulation are increasingly
being used in the pharmaceutical industry to better
understand the underlying biology targeted by a drug
and to explore therapeutic scenarios that may be diffi-
cult to test experimentally [45]. Here, we developed a
three-compartment mechanistic mathematical model to
describe the clonal expansion of CD8+ T cells in a mouse
model of metastatic melanoma in response to adenovirus
vaccination against a defined tumor antigen. Based on
the collective knowledge of this pre-clinical mouse model,
the model represents the primary CD8+ T cell response
to adenovirus immunization and the subsequent impact
on the growth of a tumor derived from the B16F10 cell
line. Using the mechanistic model as a framework to inte-
grate different experimental studies, model parameters
were calibrated against published experimental data that
describes the primary response. As shown in Fig. 2, our
model predictions of adenovirus concentration, tumor
size, concentrations of CD8+ T effectors in blood and
tumor, gene expression of IFNG and TNFα matched the
experimental data. The proposed model structure reflects
a trade-off between biological realism, parameter identifi-
ability, and a fitness-for-purpose. As mentioned above, an
excess of data points (93) relative to the number of param-
eters (27) suggests that the model is identifiable in theory.

Efforts are underway to identify the appropriate topology
of the network, given the available data [46].
In terms of the trade-off between biological realism and

fitness-for-purpose, we settled on the proposed model
structure to facilitate stability analysis. Stability analy-
sis of tumor-free and high tumor equilibria was con-
ducted based on the linearized system. Impulsive stabi-
lization using the Lyapunov method will be considered
in the future to provide conditions on parameters such
that the high-tumor equilibrium may be stabilized using
impulsive control through manipulation of strength and
frequency of the multiple vaccinations. However, the pro-
posed model structure imposes some limitations in how
the model represents the system and interpreting the
model predictions. In particular, we note that the model
predicted an earlier peak time for the concentration of
effector CD8+ T cells in the lymph node compared to
experimental data, which may suggest a more compli-
cated model structure for the lymph node compartment
than proposed here. While additional model structure
may help in capturing the dynamics of T cells within the
lymph node, the current structure is sufficient to capture
the dynamics of CD8+ T cells within the blood, which is
the pool that gets recruited to the tumor compartment.
Additional lymph node structure would then have limited
impact on our conclusions. We also note that the effective
concentration of effector CD8+ T cells within the tumor
compartment (e.g., number of effector CD8+ T cells per
weight of tumor) peaked at 10 days despite the blood pop-
ulation of CD8+ T cells peaking at day 20. As CD8+ T
cell recruitment from the blood into the tumor compart-
ment was assumed to be independent of tumor size and
the parameter values suggest that proliferation of CD8+ T
cells within the tumor was negligible, this decline in CD8+
T cell concentration was due to dilution of recruited effec-
tor CD8+ T cells into an exponentially growing tumor
mass. While a direct measure of tumor infiltrating CD8+
lymphocytes was reported at a single time point, expres-
sion of IFNG and TNFα are implicit surrogate markers for
CD8+ T cell infiltration as these two cytokines are directly
proportional to the concentration of CD8+ T cells within
the tumor compartment. Measuring the number of tumor
infiltrating lymphocytes in this mouse model at addi-
tional time points would help confirm these assumptions.
This would be interesting, as tumors, like the B16 model,
are known to develop immunosuppressive mechanisms
that are proportional to tumor size that could alter the
relationship between the presence of tumor infiltrating
lymphocytes and cytokine production [47].
Given the rapid growth of the B16F10 model and

ethical limitations of animal studies, studies using this
pre-clinical mouse model is limited typically to a single
round of therapy. Yet, the treatment of human cancers
typically involves multiple rounds of therapy to control
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tumor growth. Here we used a calibrated mechanistic
model coupled with computer simulation to explore clin-
ically relevant treatment options in silico. In exploring the
impact of multiple vaccinations, our model indicates that
increasing the dose of adenovirus vaccination, the time
period between successive adenovirus vaccinations, or the
number of adenovirus vaccinations results in a prolonged
lifespan of effector CD8+ T cells in all three compart-
ments and extended length of secretion of the cytokines
IFNG and TNFα within the tumor microenvironment.
However these changes in multiple vaccinations have lit-
tle impact on the magnitude of the clonal CD8+ T cell
immune response and therefore have very little impact
on reducing tumor growth. If technically and ethically
feasible, additional animal experiments using multiple
vaccinations may be helpful to confirm these predictions.
As the adenovirus vector promotes clonal expansion of
CD8+ T cells that recognize a small number of epitopes
derived from tumor antigens, the number and diversity
of effector CD8+ T cells might not be sufficient to elim-
inate tumor cells completely. The results are consistent
with recent findings in literature, where Budhu et al.
reported that CD8+ T cell concentration determines their
efficiency in killing melanoma cells [48]. As reported in
[49, 50], immunotherapy of patients with cancer requires
the in vivo generation of large numbers of highly reac-
tive anti-tumor lymphocytes that are not restrained by
normal tolerance mechanisms and are capable of sus-
taining immunity against solid tumors. Immunization of
melanoma patients with a broader array of cancer antigens
can increase the number of circulating effector CD8+ T
cells (eCTLs), but to date this has not correlated with clini-
cal tumor regression, suggesting a defect in function of the
eCTLs. In contrast, a clinical benefit has been observed
in patients with metastatic melanoma using antibodies
against CTLA4, which globally increase the number of cir-
culating CD8+ T cells irrespective of antigen specificity
[4]. The one-time adenovirus immunization experimental
data [15, 16] and the computational simulations exploring
the efficacy of multiple adenovirus vaccinations using our
calibrated model all indicate the limited impact of a single
antigen-specific therapy to eliminate tumors. Our simu-
lation results also suggest that increasing the cytotoxic
activity of effector CD8+ T cell or the local proliferation
of CD8+ T cells within the tumor microenvironment, as
observed following anti-PD1 therapy [51], may completely
eliminate tumor cells.

Conclusions
In summary, we present a multi-scale mechanistic model
of CD8+-mediated control of tumor growth in response to
adenovirus-vaccination mediated T cell stimulation using
a system of impulsive ordinary differential equations. The
model parameters were calibrated against experimental

data employing a genetic algorithm whose fitness func-
tion is given by a linear combination of sum of normalized
error squared and sum of normalized difference of slopes
squared. With the calibrated parameter values, our model
predictions match experimental data very well. Stabil-
ity analysis via linearization implies that, in the case of
no vaccination treatment, a small tumor will grow to its
carrying capacity as a result of a stable tumor-free equi-
librium and a unstable high tumor equilibrium. Using the
calibrated model, numerical simulation of multiple ade-
novirus vaccinations suggest that this treatment strategy
will significantly prolong T cell immune response but not
necessarily enhance a cytotoxic CD8+ T cell response to
a tumor antigen that noticeably reduces tumor size. A
reduction in tumor size can be obtained if the cytotoxic
activity or proliferation of effector CD8+ T cells present
within the tumor microenvironment are enhanced. Along
those lines, simulation results also show that a tumor
may be completely eliminated by a single adenovirus vac-
cination that creates a highly enhanced cytotoxic T cell
efficacy or with enhanced local proliferation of cytotoxic
T cells within the tumor. Overall, the results illustrate how
mechanistic models can be used to predict tumor growth
response to antigen-specific immunotherapies and screen
in silico for optimal therapeutic dosage and timing in
treating patients with cancer.
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