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Abstract
At the initial stage of drug discovery, identifying novel targets with maximal efficacy and minimal side effects can improve 
the success rate and portfolio value of drug discovery projects while simultaneously reducing cycle time and cost. However, 
harnessing the full potential of big data to narrow the range of plausible targets through existing computational methods 
remains a key issue in this field. This paper reviews two categories of in silico methods—comparative genomics and network-
based methods—for finding potential therapeutic targets among cellular functions based on understanding their related 
biological processes. In addition to describing the principles, databases, software, and applications, we discuss some recent 
studies and prospects of the methods. While comparative genomics is mostly applied to infectious diseases, network-based 
methods can be applied to infectious and non-infectious diseases. Nonetheless, the methods often complement each other 
in their advantages and disadvantages. The information reported here guides toward improving the application of big data-
driven computational methods for therapeutic target discovery.

Graphical abstract

We provide a review on two categories of in silico methods for potential therapeutic target 
identification: comparative genomics and network-based methods; the contents include the 
basic principles, available services, tools and typical application examples.
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1 Introduction

Target identification and validation is the top priority in 
drug discovery [1]. Molecules or drugs that interact with 
a rational target or selected combinations of targets have 
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improved odds of therapeutic success. An analysis of Astra-
Zeneca’s drug research and development programs showed 
that 82% of program terminations in preclinical studies were 
due to safety issues, of which 25% were target-related [2]. 
Meanwhile, 48% of safety failures in clinical trials are target-
related. Therefore, guidance on the appropriate selection of 
candidate targets can help improve the success rate and port-
folio value of drug discovery projects while also reducing 
time and cost [3].

Traditionally, target discovery has relied on wet experi-
ments, a process that is time-consuming, expensive, and 
low in accuracy. With the development of bioinformatics, 
chemical informatics, and omics, computer-aided therapeu-
tic target discovery methods or in silico methods have come 
to the fore [4–6]. By integrating big data with computa-
tional methods, computer-aided therapeutic target discovery 
greatly reduces the scope of experimental targets, shortens 
the drug discovery and development cycle, and reduces the 
experimental cost. At present, the two main categories of in 
silico methods for potential therapeutic target identification 
are comparative genomics [7] and network-based methods 
[8]. One of many important characteristics differentiating 
these methods is that comparative genomics is mostly used 
in infectious diseases, whereas network-based methods can 
be used not only in infectious diseases, but also in non-
infectious diseases. Nonetheless, these categories of meth-
ods often complement each other in their advantages and 
disadvantages.

With the completely sequenced human genome, in addi-
tion to the completed genome sequences of many model 
organisms, there are increasing research-focused efforts to 
understand the function of a genome and molecular evolu-
tion. Finding potential therapeutic targets among cellular 
functions based on understanding their related biological 
processes in pathogens and their hosts has become impera-
tive as antimicrobial resistance continues to spread rap-
idly. To identify therapeutic targets, comparative genomics 
combines the information contained in genome database 
resources and software to reveal fatal weaknesses of patho-
gens that affect their growth and reproduction in the host, 
such as genes essential for the survival, growth, and impor-
tant functions of pathogens [9]. In addition, compara-
tive genomics can also filter out homologs by comparing 
genomes of pathogens and hosts, avoiding the toxic and 
side-effects of newly designed drugs on the host, in turn, 
increasing the success rate of drug design [9].

With many pathogenic variants associated with disease in 
non-coding regions or difficult to target genes, the number of 
associations that are candidates for development into drugs 
is limited. Approaches that combine data from pathway 
databases or biological networks can broaden the number 
of potential targets to increase the number of associations 
that lead to effective treatments. As such, network-based 

strategies are among the state-of-the-art computation mod-
els for target identification and are also an important bridge 
connecting network pharmacology [10], network medi-
cine [11], network biology [12], systems biology [13], and 
multi-omics data. By combining pathway analysis and the 
network graph theory concept, network-based strategies not 
only focus on the interactions (edges) between individual 
molecules (nodes) and coordinated pathways but also enable 
a systematic visual exploration of the biological (or bio-
medical) networks to identify the components of functional 
importance in the network. In this regard, network-based 
methods are invaluable in identifying biomarkers, discover-
ing disease diagnosis targets, and finding potential therapeu-
tic targets [14]. The main concept of network-based methods 
is to map all the relevant data to a visual network. Highly 
connected nodes (central nodes) that act as bridges between 
consecutive network components in a single network are 
predicted as essential proteins or genes of the pathogen (or 
biological process) and shown to be related to the modular 
structure of the physical and functional interaction network. 
Such nodes are hypothesized to be ideal therapeutic targets 
in the network because they maintain the network integrity 
[8]. Meanwhile, by searching for highly differential nodes 
in different networks, those nodes that specifically exist in 
disease cells can also be hypothesized as potential therapeu-
tic targets [15].

Here, we provide a detailed review of the rationales of 
comparative genomics and network-based methods for the in 
silico identification of potential therapeutic targets (Fig. 1). 
We describe the commonly used databases, software, and 
applications and discuss these methods in the context of 
their advantages and disadvantages, contrasts and similari-
ties, comparison with related target identification methods, 
and relevant published reviews and prospective studies. The 
information provided in this review will help readers and 
researchers quickly understand the rationales of in silico 

Fig. 1  Simplified workflow of in silico methods for identification of 
potential therapeutic targets
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therapeutic target identification methods that could further 
advance research in this area.

2  In silico Comparative Genomics 
and Network‑Based Methods

2.1  Comparative Genomics Methods

In the past two decades, whole-cell screening (including 
large numbers of genetic screening) and in vitro screen-
ing of synthetic libraries have been used to identify novel 
lead compounds with powerful antimicrobial properties 
[16]. With the completely sequenced human genome, in 
addition to the completed genome sequences of numerous 
bacteria and fungi, the number of genes has been rapidly 
growing. Probing and comparing sequence characteristics 
between and within species have become a part of most 
biological queries [17]. Comparative genomics [7] and the 
recently emerged subtractive genomics (described later in 
Sect. 6.5) [18] are useful tools for the identification of 
potential therapeutic targets, such as conserved genes [17] 
and putative essential genes [9] that affect cell viability in 
pathogens. Comparative genomics approaches are based 
on the hypothesis that potential targets are critical in the 
survival of pathogens and constitute a key component of 
their metabolic pathways [19]. Moreover, to eliminate 

deleterious host responses, the target should have no con-
served homolog in the human host [20]. Spaltmann et al. 
proposed two criteria for a gene to be considered a thera-
peutic target. First, the gene must be necessary for the sur-
vival and growth of the pathogen, thereby improving the 
therapeutic effect of the drug acting on the target. Second, 
the gene should exist in pathogens but not in mammals; 
in this way, the drug would have the potential to become 
a broad-spectrum antimicrobial agent [21]. A gene that 
meets these criteria can be found using a comparative 
genomics approach.

In Fig.  2, we have summarized the three main steps 
involved in comparative genomics-based identification of 
therapeutic targets [22]. The first step is the collection of 
metabolic pathway enzymes or essential genes of patho-
gens. It involves obtaining all the metabolic pathways that 
exist both in the host and pathogen from the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) Pathway Database 
[23]. Then, all pathogen pathways are compared with host 
pathways to determine any overlap [22]. Next, the meta-
bolic pathways are classified. Pathways existing in both the 
pathogen and the host are removed and named shared path-
ways, while those existing in the pathogen but not in the 
host are pooled and named unique pathways [19]. Finally, 
the gene names and identification of all involved enzymes in 
the shared and unique pathways are identified and collected 
from the KEGG Genes Database [22].

Fig. 2  The workflow of identifying potential therapeutic targets by comparative genomics
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Step two is the retrieval analysis of the protein sequences 
and the use of the basic local alignment search tool 
(BLAST). First, the protein sequences of all enzymes 
involved in unique pathways are retrieved from the Universal 
Protein Resource (UniProt) database [24] in FASTA format. 
Then, each protein sequence is submitted to a BLASTp anal-
ysis (a protein–protein analysis that compares an amino acid 
sequence against a protein sequence database; discussed in 
further detail in Sect. 4.1) against the sequences of enzymes 
in the host metabolic pathways at a set E-value cutoff, the 
threshold to define a BLAST “hit.” BLAST results with no 
hits with host enzymes are identified as non-homologous 
enzymes of the pathogen [9].

The third and final step in the comparative genomics-
based identification of therapeutic targets is the identification 
of essential non-homologous enzymes in the pathogen. To 
achieve this, the BLASTp analysis is carried out in the data-
base of essential genes (DEG). The protein sequences with 
significant homology in the DEG database are described as 
protein sequences vital to the pathogen's survival [18].

Therapeutic targets identified by comparative genomics 
methods have two essential characteristics. One, the selected 
targets have significant impacts on some important physi-
ological functions of the pathogen, ensuring the effective-
ness of the newly designed drug. Two, by comparing the 
protein sequences between potential therapeutic targets and 
the host to identify whether there is homology, any toxic side 
effects on the human body when the drug interacts with the 
target can be avoided, in turn, improving the safety of the 
pharmacological effects of new drugs [20].

2.2  Network‑Based Methods

The reason the network-based method can be used for 
therapeutic target identification is based on the assump-
tion that the influence of specific locations in a biological 
network can spread along the edges (interactions) of the 
network [11]. The rationales of network-based methods 
for predicting therapeutic targets are centrality and dif-
ferentia. Centrality refers to the analysis of network top-
ological parameters when building a single network. A 
node in a more central position indicates that it plays a 
more integral in the network. For example, it may be an 
essential protein for pathogen survival and thus identified 
as a potential therapeutic target [8]. However, centrality 
sometimes cannot be applied directly to normal human 
protein networks because of the toxicity of acting on 
such critical nodes [10, 25]. To solve this problem, the 
direct screening and elimination process of homologous 
proteins involved in metabolism can be complemented 
with differential network analysis in which two or more 
networks are compared, such as normal cell and disease 
(mostly cancer) cell networks, different subtype networks 

of cancer, and tissue-specific networks. In this way, the 
node sets specific to disease cells or highly differential 
between networks are obtained and identified as potential 
therapeutic targets [26]. Differential network analysis can 
also screen out targets that exist in disease cells but not in 
normal cells or targets connected differentially in differ-
ent networks to make the identified targets more selective, 
thereby improving therapeutic security. The highly differ-
ential nodes obtained in this way can be further analyzed 
using network topology to obtain highly centralized nodes 
that have been double-screened, increasing the reliability 
of the identified nodes [27].

According to the rationales of centrality and differentia, 
network-based methods can be divided into two approaches: 
the centrality-based approach and the differentia-based 
approach (Fig. 3). The first step in both approaches is net-
work construction. Network construction refers to obtaining 
a large number of relevant data sets through data mining [28] 
or from various databases, websites, and experimental data 
and carrying out attribute mapping through network visuali-
zation tools, namely comprehensive data visualization [29]. 
Some types of constructed networks are protein–protein 
interaction (PPI) networks [30], gene interaction networks 
[31], and miRNA–mRNA interaction networks [32]. After 
the network is built, the processes of the two approaches 
diverge.

The centrality-based approach uses some network analy-
sis tools to (i) analyze the topological parameters of nodes 
in networks and (ii) select nodes with high degree centrality 
(hub nodes) and high betweenness centrality (bottlenecks), 
which are often integral in networks and thus can be selected 
as potential therapeutic targets [33]. The degree centrality 
of a node refers to the number of direct connections the 
node has with other nodes in the network [11], while the 
betweenness centrality of a node refers to the number of 
shortest paths that pass through the node in the network [34]. 
The centrality-based approach is most suitable for rapidly 
growing cells, such as pathogens and cancer cells [8]. In 
addition to the widely-used degree centrality and between-
ness centrality, other parameters, such as closeness central-
ity, clustering coefficient, average shortest path, eigenvector 
centricity, and spectral gap centricity, can also be used as 
centrality indices to predict the importance of nodes, and 
thus to identify potential therapeutic targets [35, 36]. For 
further understanding of the definitions of the parameters 
mentioned above, two references are recommended [35, 36].

As mentioned above, differential network analysis 
requires the construction of two or more networks, includ-
ing normal and disease cell networks [30] or networks of 
different subtypes of cancer [37]. After the construction of 
networks is completed, some algorithms can be applied to 
identify differential components between networks, to select 
nodes that exist in disease cell networks but not in normal 
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cell networks, or to select nodes that are highly differentially 
connected between or among networks, as predicted poten-
tial therapeutic targets [26, 38].

Potential targets identified through centrality and differ-
entia can be further prioritized by observing the lethality 
of the network when those nodes are removed [39]. Gener-
ally, network lethality after removal of a node is positively 
correlated with the connectivity of the node. When nodes 
with high degree centrality are deleted, the network diameter 
will increase rapidly [40]. When nodes with high between-
ness centrality are deleted, (i) the average path length will 
decrease rapidly [41]; (ii) network topology, such as the 
characteristic path length, will change significantly; (iii) the 
ability of the remaining nodes to communicate with each 
other will be weakened, and (iv) the network will disinte-
grate [42]. Therefore, the more lethal the removal of a node 
to the network, the more important the node's role, and the 
greater its potential as a therapeutic target [39].

3  Databases

Data acquisition is indispensable to any research work. 
Therefore, we summarized the databases useful in compara-
tive genomics and network-based methods for identifying 
potential therapeutic targets. Although some databases can 
be used for both types of in silico methods, we placed them 
in separate tables because the most popular features of these 
databases differ between the two approaches.

3.1  Comparative Genomics

The relevant databases for comparative genomics can be 
roughly divided into two categories: (i) general databases; 
those usually used in comparative genomics, such as DEG, 
KEGG [23], and UniProt; and (ii) specific databases, which 
mainly provide pathogenic gene sequences of bacteria and 
fungi, such as the Tuberculosis Database (TBDB), Worm-
Base, and the Virulence Factors of Pathogenic Bacteria 
Database (VFDB). Table 1 lists the general and specific 
databases with brief descriptions, including the coverage, 
availability, latest update, and URL.

DEG is a commonly used database in comparative 
genomics that contains 53,885 essential genes and 786 
non-coding essential sequences critical to the survival and 
growth of bacteria, archaea, and eukaryotes for homology 
analyses [44]. DEG 15 is the most recent version of this 
database. It is worth noting that DEG has multiple built-in 
tools for data analysis and display, such as a subcellular loca-
tion and distribution analysis tool, a pathway and genomics 
enrichment analysis tool, and a Venn maps generation tool 
for comparing genomes between experiments [54].

TBDB is an online platform for basic scientific research on 
tuberculosis and drug and vaccine discovery and development 
research. It contains genome sequence data and microarray and 
RT-PCR expression data, including over 3,000 Mycobacte-
rium tuberculosis (Mtb) microarrays (2,700 from humans and 
mice and 260 for Streptomyces coelicolor) and 95 RT-PCR 
datasets, for numerous strains of Mtb, as well as data for more 

Fig. 3  Simplified rationale and 
approaches of network-based 
methods for potential therapeu-
tic target identification
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than 20 Mtb-related strains from in vitro tuberculosis-related 
experiments and tuberculosis-infected tissues. A wide range of 
tools is incorporated in the database for browsing, analyzing, 
searching, and downloading the data [51].

3.2  Network‑Based Methods

There are many databases used in network-based methods. 
We roughly divided the databases into two categories: direct 
databases and indirect databases. Direct databases cover the 
interaction data and can be directly imported into network 
visualization software for network construction. Examples are 
the Search Tool for Retrieval of Interacting Genes/Proteins 
(STRING) [55] and the Molecular INTeraction (MINT) data-
base [56]. Indirect databases do not directly cover interaction 
data but provide detailed annotation of network nodes allow-
ing an in-depth exploration of the network. Some examples 
include the gene expression omnibus (GEO) [57] and Drug-
Bank [58]. Table 2 (direct databases) and Table 3 (indirect 
databases) list the databases commonly used in network-based 
methods, with brief descriptions, including the coverage, avail-
ability, latest update, and URL.

STRING [55] is the most commonly used direct database 
in network-based methods. It houses a large number of known 
and predicted PPIs, including both physical and functional 
interactions. The data come from the following five main 
sources: genomic context analysis, high-throughput experi-
mental data, conserved co-expression, artificial text mining, 
and known information in databases [55]. At the time of writ-
ing, STRING covers 24,584,628 proteins from 5090 organisms 
[55]. This database provides an intuitive and fast viewer for 
online use, supports online network visualization, and provides 
a user-friendly platform for data integration with knowledge 
from other public resources [55].

The GEO database [57] is the most commonly used indirect 
database in network-based methods. It is a universal public 
repository for archiving and freely distributing high-through-
put microarray, next-generation sequencing, and other forms 
of high-throughput functional genomic data, with complete 
and clear annotations from the research community [57]. To 
date, the GEO database covers 162,671 series comprising 
4,777,869 samples. It provides a powerful search engine for 
users to identify, analyze, and visualize related data of interest. 
It also supports sophisticated field queries, sample comparison 
applications, and gene expression profiles [57].

4  Software and Tools

4.1  Comparative Genomics

Table 4 lists the software and tools used in comparative 
genomics to identify targets. Brief descriptions, availability, 

the latest update, and the URL are also provided. In com-
parative genomics, the BLAST suite (BLASTn, BLASTp, 
BLASTx, tBLASTn, and tBLASTx) is widely used to ana-
lyze the functional and evolutionary relationship between 
nucleic acid and protein sequences [73]. BLAST is a free 
online tool that can also be downloaded offline from the 
National Center for Biotechnology Information (NCBI) 
website. BLASTn is for nucleic acid sequence alignment; 
BLASTp is for protein sequence alignment; BLASTx 
compares the six-frame conceptual translation products 
of a nucleotide query against a protein sequence database; 
tBLASTn compares a protein query sequence against a 
sequence database dynamically translated in all six read-
ing frames, and tBLASTx compares the six-frame transla-
tion of a nucleotide query sequence against the six-frame 
translations of a nucleotide sequence database [73, 74]. 
There are many specific search modules in NCBI besides 
those regular modules. For example, smartBLAST [75] 
can be used to query highly similar proteins, GlobalAlign 
module to compare two sequences in the entire sequence, 
CD-search [76] to find conservative domains in a sequence, 
and CDART to query sequences with similar conservative 
domain architecture [77]. Moreover, NCBI provides an 
independent program BLAST + for users that dramatically 
accelerates the speed of long sequences query and chro-
mosome length databases query to address the problem of 
slow-speed BLAST online comparison [78]. Recently, Du 
et al. designed a cross-platform local BLAST visualization 
software developed in Python using the in-built graphical 
user interface (GUI) module TKinter [79]. BlastGUI, as it 
is known, utilizes BLAST + as a comparison tool to perform 
the local operation and sequence comparison visualization. 
This user-friendly tool allows users without familiarity in 
computational coding and basic computer skills to compare 
a sequence directly without additional formatting efforts 
[79]. BlastGUI preprocesses the input sequence, so the com-
putational complexity of sequence comparison is low. To 
carry out the comparison, the user enters the file in FASTA 
format into the search box of BLAST. The maximum accept-
able length of nucleotide and protein sequences is gener-
ally 1000–2000, and the maximum molecular weight of the 
protein is 10 to 100 kD. The sequence information can be 
obtained from NCBI free of charge. Alternatively, the NCBI 
BLAST uses the indirect BLAST algorithm to run a large 
number of BLAST searches without using a browser, and the 
comparison results are returned by e-mail [73].

4.2  Network‑Based Methods

Table  5 provides brief descriptions, availability, latest 
update, and URL of software and tools for network-based 
methods used in previous target identification studies over 
the past 5 years. Among them, Cytoscape is the most widely 
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Table 4  Software and tools of comparative genomics in the identification of potential therapeutic targets

Software and tools Description Availability Latest update URL References

ClustalW/ ClustalX Multiple alignment of nucleic acid and pro-
tein sequences

Free 2010 http:// www. clust al. org/ clust al2/ [80]

Clustal Omega Fast, scalable generation of high-quality 
protein multiple sequence alignments using 
Clustal Omega

Free 2016 http:// www. clust al. org/ omega/ [81]

MUSCLE One of the best-performing multiple align-
ment programs according to published 
benchmark tests, with accuracy and speed 
that are consistently better than ClustalW

Free 2020 http:// www. drive5. com/ muscle/ [82]

Jalview A program for multiple sequence alignment 
editing, visualization, and analysis

Free 2020 http:// www. jalvi ew. org/ [83]

KAAS A web-based server automatically assigns 
K-numbers to genes in the genome, ena-
bling reconstruction of KEGG pathways 
and BRITE hierarchies

Free 2015 http:// www. genome. jp/ kegg/ kaas/ [84]

CD-HIT A program for clustering and comparing 
protein or nucleotide sequences

Free 2015 http:// weizh ongli- lab. org/ cd- hit/ [85]

PGAT A prokaryotic-genome analysis tool focused 
particularly on comparing different strains 
of the same species

Free 2011 http:// nwrce. org/ pgat [86]

ESSENTIALS Software for predicting essential genes by 
utilizing transposon insertion sequencing 
analysis

Free 2012 https:// trac. nbic. nl/ essen tials/ [87]

Table 5  Software and tools of network-based methods for identification of potential therapeutic targets

Software and tools Description Availability Latest update URL References

Cytoscape An open-source platform for complex net-
work visualization and analysis

Free 2020 https:// cytos cape. org/ [88]

Gephi Open-source software for network visualiza-
tion and analysis

Free 2017 https:// gephi. org/ [94]

NetworkAnalyst A comprehensive network visual analytics 
platform for gene expression analysis

Free 2021 https:// www. netwo rkana lyst. ca/ [95]

HIPPIE A web tool to generate reliable and mean-
ingful human protein–protein interaction 
networks

Free 2019 http:// cbdm- 01. zdv. uni- mainz. de/ 
~mscha efer/ hippie/

[96]

PathwayLinker Assembles validated physical and genetic 
interaction data with pathway information

Free / http:// Pathw ayLin ker. org [97]

KOBAS A webserver for gene/protein functional 
annotation and gene set enrichment

Free 2020 http:// kobas. cbi. pku. edu. cn/ kobas3 [98]

BioCyc A webserver containing a collection of 
18,030 Pathway/Genome Databases 
(PGDBs), plus software tools for exploring 
them

Free 2021 https:// biocyc. org/ [99]

Cfinder Software for finding and visualizing overlap-
ping dense groups of nodes in networks

Free 2014 http:// cfind er. org/ [100]

Pajek A program package for the analysis and visu-
alization of large networks

Free 2021 http:// mrvar. fdv. uni- lj. si/ pajek/ [101]

NetworkX A Python package for the creation, manipula-
tion, and study of the structure, dynamics, 
and functions of complex networks

Free 2021 https:// netwo rkx. org/ \

http://www.clustal.org/clustal2/
http://www.clustal.org/omega/
http://www.drive5.com/muscle/
http://www.jalview.org/
http://www.genome.jp/kegg/kaas/
http://weizhongli-lab.org/cd-hit/
http://nwrce.org/pgat
https://trac.nbic.nl/essentials/
https://cytoscape.org/
https://gephi.org/
https://www.networkanalyst.ca/
http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/
http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/
http://PathwayLinker.org
http://kobas.cbi.pku.edu.cn/kobas3
https://biocyc.org/
http://cfinder.org/
http://mrvar.fdv.uni-lj.si/pajek/
https://networkx.org/
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used and representative software. Therefore, we chose it as 
an example for further description of the network-based 
methods. Cytoscape is a general-purpose platform to analyze 
and visualize complicated molecular interaction networks. 
It can be used for integrating massive molecular interaction 
data. Dynamic states and molecular interactions are mapped 
as attributes on nodes and edges, and static hierarchical data 
(such as protein function ontology) are supported by annota-
tions [88]. The Cytoscape Core is the code that organizes, 
displays, reads, and writes networks but contains no biology-
related functionality. It is equipped with basic functionality 
to lay out and query the network, visually integrate the net-
work with expression profiles, phenotypes, and other molec-
ular states, and link the network to databases of functional 
annotations [88]. This core functionality is extended by 
Cytoscape apps. Cytoscape allows users to import attributes 
from tables whose simplest format are tab-delimited text 
files containing one column of primary identifiers of net-
work nodes and auxiliary columns of attributes needed map-
ping to the nodes [89]. To reduce the complexity of a large 
interaction network, users can create filters based on the 
attributes as needed and use the Cytoscape built-in function 
to search [89]. In addition to directly filtering nodes using 
the built-in topological parameters in Cytoscape, users can 
also use apps (formerly called plugins), such as stringApp 
[90], the Biological Networks Gene Oncology (BiNGO) tool 
[91], Molecular Complex Detection (MCODE) [92], and 
cytoHubba, a user-friendly interface to explore key nodes 
and subnetworks [93]. StringApp combines the resources of 
the STRING database and Cytoscape in the same workflow 
and facilitates the import of STRING molecular networks 
into Cytoscape for executing STRING analysis in the script 
file [90]. BiNGO provides a comprehensive set of annotation 
tools for Gene Ontology (GO)-level annotations of a variety 

of organisms. It enables the extraction of information about 
overexpression of a gene in biological networks and supports 
user-defined annotations and ontologies [91]. MCODE ena-
bles searches for densely connected regions within large PPI 
networks that may reflect molecular complexes. The method 
is based on connectivity data [92]. CytoHubba provides a 
one-stop calculation of 11 topological analysis methods to 
help users explore hub objects from complex biological net-
works [93]. These useful apps are freely available from the 
Cytoscape App Store (http:// apps. cytos cape. org/).

5  Applications

5.1  Comparative Genomics

With the arrival of the post-genome era, target-based drug 
design strategy has gradually become the focus [102]. Both 
the improvement of the sequencing technology and the expo-
nential explosion of the number of fully sequenced genomes 
has made it possible to select reasonable new therapeutic 
targets and vaccine candidates throughout the genome. Drug 
resistance is becoming increasingly widespread due to the 
continuous evolution of bacterial strains, such as Streptococ-
cus pneumoniae and Mtb. Knowledge of therapeutic targets 
and drug candidates is useful for enhanced drug discovery 
and is becoming increasingly reliant on comparative genom-
ics technology [103]. Table 6 lists recent applications of 
comparative genomics in finding therapeutic targets. We 
selected some specific examples to describe in this section.

Determining essential genes of pathogens is a common 
method to identify potential therapeutic targets. For exam-
ple, Tilahun et al. [104] retrieved the protein-coding genes of 
Mtb from the Mtb database and identified the essential genes 

Table 6  Examples of prediction of potential therapeutic targets by comparative genomics in recent years

Databases Software and tools Comparative types Related pathogens/dis-
eases

Predicted targets References

UniProt, DEG, Swiss-Prot, 
TIGR

BLASTx Genes Helicobacter pylori H. pylori essential genes [20]

PDTD, DSSP ClustalW, DOCK4.0, 
TarFisDock

Proteins H. pylori PDF [109]

WormBase BLASTp Genes Human fungal 589 essential genes [110]
NCBI Proteins ConSurf server, MUS-

CLE, Jalview
Proteins Influenza A virus NS1 protein, NS2 protein [111]

Pseudomonas, PDB BLAST, ExPASy server, 
ClustalW, ESPript

Genes Pseudomonas DAHPS sequence [48]

COGS, DEG, Pathema-
JCVI, STRING

BLASTx, BLASTp Proteins Clostridium botulinum 39% essential proteins [112]

KEGG, DEG, Swiss-Prot BLASTp Proteins Actinobacillus pleuro-
pneumoniae

rpoA, metG, gltX [113]

NCBI Genome, Drug-
Bank, DEG

BLAST Proteins Nontuberculous myco-
bacteria

15 candidate proteins [114]

http://apps.cytoscape.org/
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by a BLAST search of the retrieved protein-coding genes 
against DEG. Then, the corresponding protein sequences, 
obtained by searching in DEG, were used to perform a 
BLASTp search of human protein sequences to avoid host 
toxicity in the subsequent drug development. Finally, 572 
essential genes with no homology to human genes were 
selected from 3958 genes of Mtb. Discovering potential 
therapeutic targets from the proteins encoded by essential 
genes can refine the search scope of therapeutic targets. The 
existence of homologous genes is a powerful predictor of 
biological importance [105] and a breakthrough in thera-
peutic target identification. For example, Satya et al. [48] 
sequenced the gene encoding 3-deoxy-D-arabinoheptulo-
sonate-7-phosphate synthase (DAHPS) in Pseudomonas fra-
gilis (Pf). Sequence analysis showed high homology (84%) 
of Pf-DAHPS with other Pseudomonas DAHPS, indicating 
that it was possible to design a broad-spectrum drug for the 
genus by targeting the DAHPS sequence. By analyzing the 
homology between the protein sequence encoded by DAHPS 
and human protein sequences, DAHPS, which does not exist 
in humans, was proposed to be an important potential anti-
bacterial target. The predicted three-dimensional structure of 
Pseudomonas DAHPS may provide an option for reasonable 
drug design [48].

Comparative genomics can be used to understand the 
molecular mechanism of disease and predict targets for new 
drug design. For example, Zumla et al. [106] discovered that 
the sequence homology of the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) genome with SARS-
CoV and Middle East respiratory syndrome coronavirus 
(MERS-CoV) was about 82%, and the homology of struc-
tural proteins was over 90%. The high sequence homology 
revealed their common pathogenic mechanism. Therefore, 
the authors of the study designed and developed direct-act-
ing antiviral drugs that target highly conserved enzymes in 
SARS-CoV-2, such as the main protease (MPRO) or 3C-like 
protease (3CLpro), the papain-like protease (PLpro), non-
structural protein 12 (Nsp12), and RNA-dependent RNA 
polymerase (RdRP). Among them, ganciclovir and mara-
viroc, the drugs against MPRO, were considered effective 
for the treatment of coronavirus disease 2019 (COVID-19) 
[107].

Comparative genomics is used to find potential therapeu-
tic targets for the development of human drugs and animal 
drugs. Damte et al. [108] selected five unique pathways of 
Mycoplasma hyopneumoniae strains in KEGG. They then 
used BLASTp in NCBI to compare the only two protein 
sequences in the unique pathways with the porcine protein 
sequences. It was found that the two protein sequences in 
the unique pathways were not homologous to the porcine 
protein sequences. Therefore, those essential proteins, which 
exist in M. hyopneumoniae but not in the host (pig), may 
be useful in drug design and vaccine production against M. 

hyopneumoniae. For more examples of comparative genom-
ics used to identify potential targets, readers can refer to the 
list of references provided in Table 6.

5.2  Network‑Based Methods

Different types of biological networks can be used to pre-
dict potential therapeutic targets by network-based meth-
ods, such as PPI networks, gene interaction networks and 
miRNA–mRNA interaction networks. Table 7 lists almost all 
applications since 2015 of network-based methods to predict 
potential therapeutic targets, including the databases, soft-
ware and tools, network types, related pathogens/diseases/
processes, and the identified targets. Some of the targets in 
Table 7 have been verified or used for drug design. Here, we 
select several examples of previous studies that have used 
different network types for further description.

PPI networks are the most widely used molecular net-
works in target discovery. For example, Huo et al. predicted 
proteins FGG, SLC9A3, MAPK14, FGF1, FGB, F13A1, and 
CASR as potential therapeutic targets for the treatment of 
coronary heart disease (CHD) by combining the centrality-
based and differentia-based approaches [30]. They extracted 
PPIs related to Danshensu (one of the main active ingredi-
ents of Salvia miltiorrhiza, known as Danshen) from the 
STRING database, then integrated the data with the CHD 
gene expression profile and microarray data obtained from 
the GEO database to construct a non-CHD state co-expres-
sion protein interaction network (CePIN) and a CHD state 
CePIN on Cytoscape [30]. The non-CHD network con-
tained 91 nodes and 98 edges, and the CHD state CePIN 
contained 99 nodes and 110 edges [30]. Then, topological 
analysis and network comparison were performed along with 
the calculation of network connectivity after the removal 
of candidate nodes. Finally, two bottleneck proteins, FGG 
and SLC9A3, existing only in the CHD state CePIN, were 
selected as the targets of Danshensu in the treatment of CHD 
and as the potential targets for new drug design [30]. In addi-
tion, MAPK14, FGF1, FGB, F13A1, and CASR, obtained 
through the differentia-based approach, also represented 
potential therapeutic targets for the treatment of CHD and 
had been confirmed to be related to CHD to some extent 
[30].

There are also examples of the use of the centrality 
based approach alone to identify potential therapeutic tar-
gets. For example, Moon et al. generated a list of 1089 
differentially expressed genes from patients with diffuse 
systemic sclerosis by a literature search in Google Scholar 
and PubMed using specific keywords [125]. Then, using 
the centrality-based approach to build a PPI network, they 
identified 1068 interactions of those 1089 genes. Finally, 
a network centrality analysis identified four hub genes 
(CTGF, HCK, LYN, PDGFRB) as potential therapeutic 
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targets [125]. In another example, Fathima et  al. used 
non-apoptotic cell death genes of colon adenocarcinoma 
(COAD), glioblastoma multiforme (GBM), and small 
cell lung cancer (SCLC) screened from their transcrip-
tome profiles to build three PPI networks [133]. Through 
centrality analysis, 4 of the top 10 hub proteins, which 
were not found or only found in one target database, were 
considered as novel valid therapeutic targets (FANCD2 
and NCOA4 for COAD, IKBKB for GBM, and RHOA for 
GBM and SCLC) [133].

As mentioned above, PPI networks, gene interaction 
networks, and miRNA–mRNA interaction networks) 
have applications in predicting potential therapeutic tar-
gets. For example, Miryala et al. [31] identified 337 func-
tional interactions of 60 antimicrobial resistance genes of 
Pseudomonas aeruginosa PA01 from the PathoSystems 
Resource Integration Center (PATRIC) tool, The Anti-
biotic Resistance Genes Database (ARDB) [142], the 
comprehensive antibiotic resistance database (CARD), 
the National database of antibiotic-resistant organisms 
(NDARO), and the STRING database. By constructing 
and analyzing the gene interaction network in Cytoscape, 
nine hub genes were obtained as potential therapeutic 
targets for new drug development [31]. Xue et al. [32] 
constructed a miRNA–mRNA interaction network using 
miRNA and mRNA expression data, and the clinical data 
of three cancer types downloaded from The cancer genome 
atlas (TCGA) database [143]. The top 20 miRNAs with the 
highest degree in each data set were annotated via miR-
Cancer (a microRNA–cancer association database) [144], 
miR2Disease (a microRNA–disease database) [145], and 
the Human microRNA Disease Database (HMDD) [146]. 
After mapping the genes predicted as the targets of more 
than three miRNAs in the subnetworks to the human pro-
tein atlas database (HPAD) [147], eight genes (ASPG, 
AQP2, CNOT8, CTPS1, IFNAR2, MOCS2, PRSS37, and 

VCP) were finally identified as potential therapeutic tar-
gets [32].

5.3  Comprehensive Applications

In addition to using comparative genomics and network-
based methods independently, they can also be combined for 
target identification. Table 8 lists recent applications of the 
combined methods for potential therapeutic target identifica-
tion. We chose three of them as representatives for further 
description. Nayak et al. screened putative targets for path-
ogens causing bacterial pneumonia. By bit score, E-value 
threshold, and sequence length screening of the complete 
proteome of 13 pathogenic bacterial strains using compara-
tive genomics, 74 proteins non-homologous to human and 
intestinal flora were identified [103]. An interaction network 
for the 74 proteins was constructed in Cytoscape, and 12 
built-in central parameters of cytoHubba were used to prior-
itize the nodes, culminating in the identification of 20 genes 
as hub nodes. Among the 20 genes, 10 have been reported 
or confirmed as drug targets, and the remaining 10 were 
considered new potential therapeutic targets for the treat-
ment of bacterial pneumonia [103]. Melak and Gakkhar used 
BLAST to perform comparative analysis for the H37RV pro-
tein-coding genes obtained from the TBDB against DEG 
and identified 572 essential genes non-homologous with 
humans [104]. Then, they prioritized the resulting proteins 
based on centrality measurement in the PPI network, result-
ing in the identification of 137 central proteins. Combining 
flux balance analysis of the reactome and structural assess-
ment of targetability, secY (Rv0732), katG (Rv1908c), gltB 
(Rv3859c), and sirA (Rv2391) were identified as potential 
therapeutic targets against Mtb H37RV [104]. Gupta et al. 
[148] performed subtractive genomic and comparative 
genomics of 16 pathogenic Leptospira strains retrieved 
from NCBI against DEG and the Cluster of Essential Genes 
(CEG) [149] using the Cluster Database at High Identity 

Table 8  Applications of comprehensive methods for potential therapeutic target identification

Databases Software and tools Related pathogens/diseases Predicted targets Ref

DEG, STRING BLASTp, Cytoscape Listeria monocytogenes strain 
EGD-e

dnaN, lmo0162, polC [150]

TBDB, DEG, STRING BLASTp Mycobacterium tuberculosis H37Rv Rv1908c, Rv3795, Rv3793, Rv3794 [104]
TBDB, DEG, STRING BLAST, Cytoscape M. tuberculosis H37Rv secY, katG, gltB, sirA [151]
STRING Cytoscape Multi-drug resistant Clostridium 

difficile strain 630
hom, asd, dapG [152]

DEG, CEG, VFDB, Drug-
Bank, UniProt, DAVID, 
HPIDB

BLASTp, CD-Hit, BioCyc 
webserver, Cytoscape

Bacterial pneumonia manL, cps4L, recU, SP_0645, ezrA, 
prsA, tarJ, SP_1280, SP_1617, 
ptsG, dltD, hprK, pepF, coiA, fibB, 
acpS, manA, mvaK2, mtlD, mtlF

[103]

NCBI, DEG, CEG, UniProt KAAS, BLASTp, Cytoscape Leptospira lpxB, lpxK, kdtA, fliN, cobA, metX, 
thiL, ubiA

[148]
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with Tolerance (CD-Hit) and BLASTp to identify 34 com-
mon genes. After analyzing and comparing two extended 
PPI networks of two strains and multiple sequence align-
ment, eight proteins (lpxB, lpxK, kdtA, fliN, cobA, metX, 
thiL, and ubiA) were identified as putative therapeutic tar-
gets for drug design or vaccine development [148].

6  Discussion

6.1  Advantages and Prospects of the Two 
Categories of In silico Methods for Target 
Identification

Current trends in drug discovery focus on understanding 
disease mechanisms, followed by target identification and 
lead compound discovery [5]. Compared with wet experi-
mental methods, in silico methods provide the technology 
to systematically explore all possible interactions and illu-
minate the pharmacological patterns [153]. Reliable target 
identification methods used in conjunction with drug dis-
covery approaches will improve the efficiency of computer-
aided drug discovery [5]. Here, we discuss the advantages 
and prospects of comparative genomics and network-based 
methods for identifying potential therapeutic targets.

One advantage of comparative genomics is that the defini-
tion of essential genes and unique metabolic pathways not 
only represents the essential issues of biology but is also of 
great significance in practical applications [111]. Further-
more, with the establishment of Clustered Regularly Inter-
spaced Short Palindromic Repeats (CRISPR) and exome 
sequencing technology, the number of sequenced human 
essential genes has increased remarkably [54]. In addition, 
with the development of bioinformatics and computer sci-
ence, algorithms have been continuously optimized, gen-
erating convenient analysis tools for scientific researchers, 
and enhancing the potential for comparative genomics in 
potential therapeutic target identification.

Network-based methods have the advantage of generating 
visual interactive networks through given databases and are 
not limited by the lack of quantitative mechanical data [154]. 
Furthermore, network-based methods do not depend on neg-
ative samples and the three-dimensional structure of targets 
[155], which is time-efficient in the early work of target 
research. There is also promise that network-based methods 
will predict more than one target with simultaneous actions, 
such as a pair of essential proteins [154]. Moreover, network-
based methods may be beneficial in identifying candidate 
multi-target sets in the development of multi-target drugs 
[156]. Compared with traditional wet experimental methods, 
which always limit cellular processes to a single component 
or signaling pathway, network-based methods can be used 
to identify potential therapeutic targets systematically [15].

6.2  Disadvantages/Limitations of the Two 
Categories of In silico Methods for Target 
Identification and Potential Solutions

Although comparative genomics and network-based methods 
have unique advantages and promising prospects to identify 
potential therapeutic targets, there are still some drawbacks. 
For comparative genomics, although this approach is com-
monly used in the development of drugs against drug-resist-
ant bacteria, the failure rate of old antibiotics is much faster 
than the development of new antibiotics. Moreover, antibiot-
ics are short-term therapies for the treatment of infections. 
Additionally, their value is considerably less than the drugs 
for chronic diseases, so the use of comparative genomics in 
the development of antibiotics is a long-debated topic [157]. 
Another issue is that although comparative genomics can 
reduce the number of experimental targets, making some 
attractive proteins become potential therapeutic targets, the 
range of potential targets screened by this method is still 
very wide and is limited by time and cost. It seems that most 
of these potential targets screened by comparative genomics 
will not be used for experimental validation. Therefore, it 
may be profitable to combine comparative genomics with 
network-based methods to narrow the scope of experimental 
targets further and reduce the time and material resources, 
thereby saving costs in the early stage of drug research and 
development.

Network-based methods are highly dependent on the 
accuracy of the source data, potentially requiring a great deal 
of labor to ensure its accuracy [158]. A promising direction 
to resolve this problem will be integrating different types 
and complementary data in the future [6]. Other drawbacks 
of network-based methods are that they cannot predict pro-
teins or genes without interaction data, and the interactions 
cannot be quantified [155]. Improved network construction 
and analysis algorithms or mathematical modeling methods 
[159] may be required to overcome these issues.

6.3  Comparison and Contrast of the Two Categories 
of In silico Methods for Target identification

Comparative genomics and network-based methods have 
unique advantages and disadvantages in predicting targets. 
Comparative genomics almost exclusively searches within 
the range of pathogen-associated sequences, limiting the 
scope to the proteomes closely related to the pathogen. Con-
versely, network-based methods can be used in pathogens 
and construct a network for human disease-related proteins 
or genes. In contrast to comparative genomics, network-
based methods can connect long-distance relationships 
through interactions [160], permitting research into the inter-
play of evolutionary drivers on a larger scale. Conversely, 
comparative genomics is usually superior to network-based 
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methods in accuracy because comparative genomics directly 
compares sequences, which are always constant and almost 
have no deviation. However, there may be false positives and 
false negatives in the interaction data used in network-based 
methods [161], and the interactions are only qualitative 
[160], which may lead to bias. In summary, the combined 
use of comparative genomics and network-based methods 
may be more beneficial than either method alone to improve 
the accuracy and efficiency in target identification.

6.4  Previous Reviews and Prospective Studies on In 
silico Methods for Target Identification

We have collected five reviews on in silico methods for 
identifying potential therapeutic targets during 2016–2020, 
which will be briefly discussed in this section. Sekyere 
and Asante [7] reviewed comparative genomic analysis 
trans-complementation assays in the context of antibiotic 
resistance research and new drug discovery by describ-
ing the emergence of several new drug resistance genes, 
such as lsa(C), erm(44), VCC-1, mcr-1, mcr-2, mcr-3, 
mcr-4, blaKLUC-3, and blaKLUC-4. For readers interested in 
further understanding pathogen protein targets, Saha et al. 
reviewed the computational work and functional prediction 
from PPI networks applied to different infectious diseases 
with Plasmodium falciparum used as an example to ana-
lyze the process of protein target identification through the 
host–pathogen protein interactions [162]. Katsila et al. [5] 
surveyed chemical informatics and network-based meth-
ods for identifying therapeutic targets and introduced some 
databases and network computing tools for target identifi-
cation. They also appraised the process of computer-aided 
drug design (CADD), including ligand-based drug design 
and structure-based drug design [5]. Readers interested in 
CADD can peruse their article for further understanding. 
Reisdorf et al. introduced database resources for identifica-
tion, prioritization, and validation of disease targets, includ-
ing emerging integrated bioinformatics platforms, such as 
Open Targets, and public resources, such as DrugBank and 
ChEMBL [163]. In comparison, the database resources we 
described focus more on classic or commonly used databases 
for applications. We also recommend the review by Agamah 
et al. [153], which examined current in silico methods for 
the identification of therapeutic targets and candidate drugs, 

including network-based analysis approaches, data mining, 
reverse docking, biospectra analysis, and ligand-based in sil-
ico target prediction and compared the different approaches 
and propounded the benefits of hybrid approaches.

6.5  Related Methods for Target Identification

In silico subtractive genomics (first mentioned in Sect. 2.1), 
also known as differential proteome mining, is a compara-
tive genomics-based method [164]. Subtractive genomics 
gradually subtracts proteins from the complete proteome 
of pathogens to find rational targets [18]. The difference 
between subtractive genomics and comparative genomics 
is in the range of application of the two methods. Subtrac-
tive genomics has been widely used for developing poten-
tial anti-pathogen infection drugs [18], whereas comparative 
genomics can be used not only to identify potential targets 
of pathogens but also to understand the molecular basis of 
disease [106].

For network-based methods, in addition to the centrality-
based and differentia-based approaches we reviewed above, 
there are also studies showing the use of network influence 
[165], controllability [166], and topological similarity strat-
egy [167] in target identification, but the relevant applica-
tions are much fewer. Compared with network centrality, the 
network influence strategy focuses on the vulnerable nodes 
close to the central nodes in networks. Acting on these nodes 
may not be fatal but can have a major impact on the central 
nodes, so these nodes have the potential to be therapeutic 
targets [165]. The controllability strategy applies structural 
controllability theory to determine the minimum set of 
driver nodes in control of the entire network and identify 
indispensable nodes as prime targets for disease-causing 
mutations, viruses, and drugs [166]. The topological similar-
ity strategy focuses on the nodes in the network with similar 
topological properties to the existing drug targets, which can 
be potentially developed as therapeutic targets [167].

Commonly used experimental methods for potential ther-
apeutic target identification, especially for essential genes, 
include single-gene knockout, antisense RNA inhibition of 
gene expression, large-scale transposon mutagenesis, and 
CRISPR/Cas9 nuclease system knockout screening.The 
limitations of experimental methods in identifying essential 
genes are listed in Table 9 [168].

Table 9  Limitations of 
experimental methods in 
identifying essential genes

Experimental methods Limitations

Single-gene knockout strategy Requires detailed genome annotation
Antisense RNA inhibition method Requires detailed genome annotation
Transposon mutagenesis Missing low-abundance transcripts, low resolution in locat-

ing insertion sites, and narrow ranges in counting probe 
density
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Current computational studies are based on the integra-
tion of prior knowledge, the sparseness of which is still 
limiting the integrality and accuracy of computational pre-
diction [169]. Data reproducibility of in silico methods is 
also an essential issue but might be improved by external 
validation and detailed reports of experimental datasets 
[153]. It should be emphasized that computational methods 
complement laboratory-based methods and that the targets 
identified by in silico methods need to be experimentally 
validated.

6.6  Review and Prospection of Deep Learning 
Architecture in Target Identification

Deep learning (DL), a relatively new computational tech-
nique that has become a hot research topic, has been rapidly 
developed and widely used to predict potential therapeutic 
targets. DL is a subclass of machine learning (ML) algo-
rithms. It uses artificial neural networks with many layers of 
nonlinear processing units for learning data representations 
[170]. Therapeutic target identification based on ML or DL 
is usually used to predict targets of drug repositioning, which 
means to predict new targets for existing drugs. There are 
two steps in the ML method to predict therapeutic targets. 
First, the compounds are transformed into an effective rep-
resentation, a process called input features, followed by the 
construction of the feature vectors as input for the ML algo-
rithm to learn the functional relationship between the input 
feature and the target property [171]. Compared with ML 
methods, DL reconstructs the original input information into 
a distributed representation through neurons in the hidden 
layer. Another characteristic of DL models is that they can 
automatically learn features upon completing classification 
and other tasks and learn more complex features when the 
number of layers increases. DL architectures are well-suited 
for target prediction because they allow for multitask learn-
ing and automatically construct complex features, which, for 
target prediction, are assumed to be pharmacophore descrip-
tors. Multitask learning has the advantage of allowing for 
multi-label information and can, therefore, utilize relations 
between targets. It also permits hidden unit representations 
to be shared among prediction tasks, which is particularly 
valuable because some targets have very few measurements 
available, making single-target prediction ineffective. In 
addition, DL can boost the performance of tasks with a few 
training examples. The other advantage of deep networks 
is that they provide hierarchical representations of a com-
pound, where higher levels represent more complex proper-
ties [172].

Convolutional neural networks (CNNs) are a representa-
tive DL architecture in potential target prediction. CNNs 
contain convolutional layers, pooling layers, and fully con-
nected layers. Convolutional layers and pooling layers are 

responsible for the feature extraction, and fully connected 
layers are used to construct the nonlinear relationship of the 
extracted features for obtaining the output [171]. Another 
DL architecture is deep neural networks (DNNs), which 
contain multiple hidden layers, with each layer comprising 
hundreds of nonlinear process units. DNNs can deal with 
many input features, and the neurons in different layers of a 
DNN can automatically extract features at different hierar-
chical levels [173]. The third main DL architecture is auto-
encoders, which is a neural network used for unsupervised 
learning. Auto-encoders contain an encoder part that trans-
forms the input information into a limited number of hidden 
units and then couples a decoder neural network with the 
output layer having the same number of nodes as the input 
layer [174].

Several studies have reported DL for therapeutic target 
prediction in recent years [175–177]. For example, Wang 
et al. [178] constructed a framework that combines a biased 
support vector machine and a stacked auto-encoder DL 
model to identify drug target proteins. The stacked auto-
encoders were trained to extract properties from the origi-
nal protein representations, and the biased support vector 
machine was used to perform the potential target identifica-
tion task. The framework identified 23% of the original non-
drug target proteins as possible therapeutic target proteins. 
Zeng et al. [179] developed a DL method, named deepDTnet, 
for novel target identification. A DNN algorithm was used 
to learn the relationships between drugs and targets. The 
model was used to predict the new target for topotecan (an 
approved topoisomerase inhibitor of human retinoic-acid-
receptor-related orphan receptor-gamma t, ROR-γt). Human 
ROR-γt was predicted as the target, and bioassay experi-
ments showed high inhibitory activity  (IC50 = 0.43 μM) 
on ROR-γt. Lee et al. [180] proposed a DL model named 
DeepConv-DTI (deep learning with convolution on protein 
sequences for prediction of drug–target interaction) based on 
CNN for drug–target interactions prediction, which can be 
used for target identification. The training dataset contained 
11,950 compounds, 3,675 proteins, and 32,568 drug–target 
interactions. The CNN model is constructed to capture local 
residue patterns and concatenate protein features with drug 
features through the fully connected layers. The hyperpa-
rameters with an external validation dataset were then opti-
mized. The possible drug–protein interactions are output.

Although DL has advantages in recognition, classifica-
tion, and feature extraction from complex and noisy data, it 
still has limitations. First of all, DL is a “black box,” which 
makes it hard to explain the prediction result and inherent 
principles of why the compound is effectively targeted to 
the predicted target. Second, it needs a large number of 
experimental datasets of drug–target relationships for its 
training. However, there is currently a lack of experimen-
tal data of drug–target relationships [181]. Consequently, 
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there is a risk of overfitting when training the model, leading 
to low accuracy of the prediction result. Third, DL is usu-
ally computationally intensive, time-consuming, and often 
requires access to and programming knowledge for graphics 
processing units. DL has recently been applied successfully 
in therapeutic target identification. However, due to the lack 
of large-scale studies or experimental data and the hyperpa-
rameter selection bias that comes with the high number of 
potential DL architectures, DL still has scope for improve-
ment and development in research to predict potential thera-
peutic targets [172, 182].

7  Conclusion

In this review, we introduced, in detail, the two categories 
of in silico methods for potential therapeutic target identi-
fication—comparative genomics and network-based meth-
ods—and summarized the databases and software com-
monly used for these approaches. We also collected and 
highlighted some previous applications of these methods for 
therapeutic target identification. Additionally, we analyzed 
the advantages and disadvantages of the methods and their 
application prospects. Finally, we accentuated the character-
istics of our review in the context of previously published 
relevant reviews and methods. The purpose of this review 
was to help readers quickly understand the rationales of in 
silico methods for potential therapeutic target identification, 
and become familiar with the available tool resources and 
the applications of these methods, to harness the full use of 
the existing tools for target prediction. We strongly believe 
that more accurate predictions due to users’ familiarity with 
existing resources will increase the importance of computa-
tional methods in the identification of potential therapeutic 
targets for future research. In turn, the failure rate due to 
target problems in drug development, the input–output ratio 
of drug discovery, and the cost of subsequent experiments 
can be expected to reduce and the drug development cycle 
time to shorten.
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