
Journal of Genetic Engineering and Biotechnology (2016) 14, 19–30
HO ST E D  BY

Academy of Scientific Research & Technology and
National Research Center, Egypt

Journal of Genetic Engineering and Biotechnology

www.elsevier.com/locate/jgeb
ORIGINAL ARTICLE
Effects of altered expression of LEAFY
COTYLEDON1 and FUSCA3 on microspore-

derived embryogenesis of Brassica napus L.
* Corresponding author.

E-mail address: stasolla@ms.umanitoba.ca (C. Stasolla).

Peer review under responsibility of National Research Center, Egypt.

http://dx.doi.org/10.1016/j.jgeb.2016.05.002
1687-157X � 2016 Production and hosting by Elsevier B.V. on behalf of Academy of Scientific Research & Technology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Nosheen Elahi, Robert W. Duncan, Claudio Stasolla *
Dept. Plant Science, University of Manitoba, Winnipeg R3T 2N2, Canada
Received 11 January 2016; revised 18 March 2016; accepted 1 May 2016
Available online 21 May 2016
KEYWORDS

Brassica napus;

BnLEC1;

BnFUSCA3;

Embryo development;

Microspore-derived

embryogenesis;

Oil content
Abstract Brassica napus (Bn) microspore-derived embryogenesis has become a model system to

study basic aspects of plant development. Recognized transcription factors governing embryogen-

esis include: FUSCA3 (FUS3), a member of the plant-specific B3-domain family, and LEAFY

COTYLEDON1 (LEC1), a member of the HAP3 subunit of the CCAAT binding factor family.

The effects of altered expression of both genes were investigated during microspore-derived

embryogenesis in established B. napus lines over-expressing or down-regulating BnLEC1, as well

as in tilling lines where BnFUS3 was mutated. While over-expression of BnLEC1 decreases the yield

of microspore-derived embryos (MDEs) without affecting their ability to regenerate plants, sup-

pression of BnLEC1 or BnFUS3 reduced both embryo number and regeneration frequency.

Embryos produced by these lines showed structural abnormalities accompanied by alterations in

the expression of several embryogenesis-marker genes. Oil accumulation was also altered in the

transgenic MDEs. Total oil content was increased in MDEs over-expressing BnLEC1 and decreased

in those suppressing BnLEC1 or BnFUS3. Mutation of BnFUS3 also resulted in a small but signif-

icant increase in linoleic (C18:2) acid. Together this study demonstrates the crucial role of BnLEC1

and BnFUS3 during in vitro embryogenesis.
� 2016 Production and hosting by Elsevier B.V. on behalf of Academy of Scientific Research &

Technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Embryogenesis is one of the most important events in the life

cycle of plants. The process begins with the double fertilization
marking the formation of the zygote and the endosperm. Dur-
ing embryogenesis, the zygote divides producing characteristic
embryogenic stages (globular, heart-shaped, and torpedo-
shaped) that are accompanied by profound molecular, physio-

logical, and metabolic changes [55]. During the middle-late
stages of embryogenesis, the embryos accumulate storage
products and undergo desiccation prior to entering a dormant

period [20,3]. Most of these events are also observed during
in vitro embryogenesis, where embryos can be produced with-
out fertilization. In vitro produced embryos proceed through a
similar developmental pathway characteristic of seed embryos

and are therefore utilized as a model system [37]. Studies using
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in vitro embryos have some advantages: the embryos develop
in the absence of maternal tissue, can be produced in high
numbers and in a synchronous fashion, and can be easily har-

vested. Due to the development and optimization of propaga-
tion protocols [17,49], investigations on in vitro plant
embryogenesis have grown exponentially over the past few

years.
In vitro embryogenesis can be executed through different

methods, with gametophytic embryogenesis being routinely

used in many species. Gametophytic embryogenesis involves
the utilization of microspores (or immature pollen grains) and
precise culture treatments to induce embryo formation, i.e.
microspore-derived embryos (MDEs, Fig. 1). The process uses

several types of stress which repress the gametophytic pathway
in favor of the embryogenic pathway [9,26,36,41,48,54,57].

Microspore-derived embryogenesis is largely used to prop-

agate Brassica napus L. (canola), an economically important
species used for oil production. Oilseed rape (canola/rapeseed)
oil is the third most important vegetable oil in the world [52].

The production of canola oil relies on the genetic potential of
canola cultivars to produce high seed yield and high seed oil
content. The quality of canola seed oil is determined by the

fatty acid (FA) composition. The process of FA biosynthesis
during seed maturation is genetically controlled, and requires
the synchronization of several biochemical pathways. Fatty
acids and triacylglycerols (TAGs) accumulate during embryo

and seed maturation [1,5], making this stage crucial when
attempting to increase seed oil content. Independent studies
have shown that FA biosynthesis is controlled by the expres-

sion of several transcription factors, including LEAFY COTY-
LEDON1 (LEC1), LEAFY COTYLEDON2 (LEC2), FUSCA3
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(FUS3), WRINKLED1 (WRI1), and ABSCISIC ACID
INSENSITIVE3 (ABI3), which interact to regulate different
phases of embryo development and seed maturation

[18,32,46]. Many of these genes have critical roles during
embryo development [29]. LEC1 is expressed throughout the
entire process of embryogenesis, from the initial to the late

developmental stages [56], while FUS3 is responsible for induc-
ing the maturation phase [8,39]. The LEC1 protein has the
HAP3 subunit of the CCAAT binding factor that allows

LEC1 to be a specific transcriptional regulator of downstream
genes containing the CCAAT recognition domain.

FUS3, encoding a B3 protein that accumulates mainly dur-
ing seed maturation, binds to the RY element CATGCA

found in the promoters of several genes [8,39]. Current litera-
ture indicates that ectopic expression of LEC1 is sufficient to
induce somatic embryogenesis from vegetative tissue; thus,

suggesting a role in regulation of embryogenic competence
[29,46,5]. Arabidopsis plants with a null lec1 allele produced
abnormal embryos characterized by small hypocotyls and

cotyledons [32]. Arabidopsis fus3 and lec1 mutant plants also
show a decrease in protein and lipid accumulation during seed
development [32,21]. As synthesis and storage of oil is linked

to several stages of embryo and seed development, it has been
suggested that the genetic regulation of embryo morphogenesis
and maturation influences oil production. In our previous
studies, we demonstrated that over-expression of BnLEC1

increases seed oil accumulation in B. napus, while suppression
of BnLEC1 or BnFUS3 decreases oil content [11,12]. While
these studies suggest a clear involvement of these genes during

in vivo embryogenesis, little information is available regarding
in vitro embryogenesis.
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Assessing whether oil production and fatty acid composi-
tion during in vitro embryogenesis are under the control of
similar genes and regulatory mechanisms operating during

in vivo embryogenesis could have significant applications. This
discovery would allow plant scientists to utilize the in vitro
embryogenesis system as a model to study oil biosynthesis,

as well as rapidly screen for desirable oil-related traits or
manipulate oil production in culture prior to plant regenera-
tion. This knowledge could save time and resources and has

the potential to make significant advances in plant-based oils
research. Another important factor to consider when exploit-
ing the advantages of in vitro embryogenic systems, is whether
the introduction of the desirable trait has pleiotropic effects

compromising the number of embryos produced and their
quality, i.e. their ability to regenerate viable plants, as both
are key parameters for propagation.

In line with these considerations, the purpose of the present
study is to determine how altered expression of BnLEC1 and
BnFUS3 influences B. napus microspore-derived embryogene-

sis, with emphasis on morphological characteristics determin-
ing embryo quantity and quality, as well as oil accumulation
and fatty acid profile. The results obtained will then be com-

pared to previous studies to assess similarities or differences
between in vivo and in vitro systems.

2. Materials and methods

2.1. Plant material

Transgenic canola plants over-expressing (B. napus var. Polo) or
down-regulating (B. napus var. Topas)BnLEC1, as well as tilling
mutant lines (B. napus var. DH12075) suppressingBnFUS3were

generated and characterized in previous studies [11,12]. Two ver-
sions of BnLEC1 were used in those studies: version A
(GU945399) and version B (GU945398), which differ by 13

nucleotides [Supplementary Fig. 1 in 12] and 4 amino acids
[Supplementary Fig. 2 in 12]. For the present work we used two
lines over-expressing version A of BnLEC1 (lines S1 and S2),

two lines over-expressing version B of BnLEC1 (lines S3 and
S4), and two linesdown-regulating versionB (A1, andA2).Given
the high similarity in nucleotide sequence of the two versions,
anti-sensing version A also suppressed version B [12].

Three B. napus BnFUSCA3 tilling mutant lines [M1-3] with
point mutations changing one amino acid downstream of the
B-3 DNA binding domain of FUS3 were generated and char-

acterized in previous work [11].

2.2. Generation of B. napus microspore-derived embryos
(MDEs)

BnLEC1 transgenic lines and BnFUS3 tilling mutant lines were
used as the source of microspores to generate microspore-

derived embryos (MDEs), following the procedure of Bel-
monte et al. [2]. Plants with young buds were grown in a cab-
inet set at 12 �C day/7 �C night with a 12 h photoperiod.
Flower buds (2–3 mm in length) were harvested, sterilized in

10% bleach and ground in a mortar in half strength B5-13
medium supplemented with 13% (w/v) sucrose. The homoge-
nate was centrifuged at 750 rpm (g) at 4 �C for 3 min. The

microspore-containing pellet was thereafter re-suspended in
NLN-13 medium with 13% sucrose (pH 5.8) and further
diluted in NLN-13 medium to a concentration of
10,000 microspores/ml. Embryo development was triggered
after an initial heat shock treatment at 32 �C for 72 h followed

by incubation at 22 �C on a shaker set at 80 rpm. The number
of microspore-derived embryos was counted after 21 d in cul-
ture [2].

2.3. Determination of microspore-derived embryo quality

Embryo quality was assessed by the ability of the MDEs to

regenerate viable root and shoot systems at germination. Fully
mature (21 d) embryos were germinated on half concentration
Murashige and Skoog (MS) medium [35] and the number of

seedlings with fully developed shoots and roots were scored,
as reported [2].

2.4. Microscopy

For histological examinations, fully mature embryos were
fixed in 2.5% glutaraldehyde and 1.6% paraformaldehyde in
0.05 M phosphate buffer (pH 6.9), dehydrated with methyl cel-

losolve followed by three washings with absolute ethanol, and
then infiltrated and embedded in Historesin (Leica, Concord,
Ontario, Canada). Sections (3 lm) were stained with periodic

acid-Schiff (PAS) reagent and then counterstained with tolu-
idine blue (TBO) according to the methods of Yeung [59].

2.5. Determination of lipid profile and fatty acid (FA)
composition

All analyses were conducted in the University ofManitoba seed
quality lab, which is certified annually by the Canadian Grain

Commission. Total lipid contents were quantified using the
modified Swedish method as described by Troëng, [50]. Fatty
acid (FA) composition analyses were conducted using gas chro-

matography (Varian, Walnut Creek, USA) as documented by
Hougen and Bodo [23]. In short, approximately 5 g of mature
B. napusMDEswere dried overnight at 40 �C. Then, 1 g of dried

MDEs was crushed and homogenized in 5 ml of heptane and
incubated at room temperature for 24 h. The supernatants were
then poured into clean 13 � 100 test tubes and after addition of
500 ll of 0.5 N sodium methoxide, the samples were shaken for

30 min. 100 ll of acidified water (0.3% acetic acid) was added to
the samples which were then incubated at 4 �C for 2 h. Lastly,
500 ll of reaction mixture was poured into a 2 ml auto sampler

(Fisher brand vial CAT# 03-391-16) [7,27]. Gas chromatogra-
phy was performed using a Varian model 3900 fitted with a
CP-Wax 52 CB capillary column and a flame ionization detec-

tor. Peak areas were measured by the Varian Star Workstation
software system.A reference standard,GLC#421, bought from
Nu-Check Prep (Elysian, Minnesota) was used to confirm the

appropriate GC process.
2.6. Gene expression analysis by quantitative qRT-PCR

Analysis of gene expression in developing [7,14, and 21 day] B.

napus MDEs was determined by quantitative qRT-PCR [13].
Expression studies were conducted for molecular marker genes
identified in previous studies [14,31] and required for proper

embryo formation.
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These genes are classified as embryo specific; LEAFY
COTYLEDON2 (LEC2), UKNOWN PROTEIN1 (UPI1);
embryo expressed BABYBOOM1 (BBM1), WUSCHEL-

related HOMEOBOX9 (BnWOX9), ABSCISIC ACID3
(ABI3) and sporophyte expressed CYTOCHROME P78A
(CYP78A), and WUSCHEL-related HOMEOBOX2

(BnWOX2).
These analyses also included genes involved in glycolysis:

FRUCTOSE BISPHOSPHATE ALDOLASE (BnFPA),

PHOSPHOGLYCERATE KINASE (BnPGK), GLYCERAL-
DEHYDE 3-PHOSPHATE DEHYDROGENASE
(BnGDPH), HEXOSE KINASE (BnHXK) and PYRO-
PHOSPHATE-DEPENDENT PHOSPHOFRUCTOKINASE

(BnPPK); sucrose transport and metabolism: SUCROSE
TRANSPORTER 1 and 4 (BnSUC 1 and 4), SUCROSE
SYNTHASE 1 and 3, (BnSUS1 and 3), ADP-GLUCOSE

PHOSPHORYLASE (BnAGP); and FA biosynthesis: SUBU-
NIT A of ACETYL-CoA CARBOXYLASE (BnACCA2), x-3
FA DESATURASE (BnFAD3), FA ELONGATION1

(BnFAE1), and MALONYL-CoA:ACP TRANSACYLASE
(BnMCAT). The relative level of gene expression was deter-
mined with the 2–DDCT method [28] using UBC21

(EV086936, ubiquitin-conjugating enzyme 21) as a reference.
All PCR reactions were performed using the CFX96TM Optics
Real- Time System (Bio-Rad, Hercules, CA) with an initial
denaturation step at 95 �C for 3 min, followed by 40 cycles

of 95 �C for 5 s (denaturation), and 59 �C for 10 s (anneal-
ing/extension). The melting curve rose from 65 �C to 95 �C
by increments of 0.5 �C every 5 s.

Analyses were performed on three biological replicates. All
primers used are listed in Supplementary Tables 1 and 2.

2.7. Statistical analysis

The statistical analyses were performed using the SAS� 9.3
program (SAS Institute Inc., Cary, NC, USA.). Unless speci-

fied, all experiments were performed using at least three bio-
logical replicates and the Fisher’s Least Significant
Difference (LSD) test was applied to compare samples.

3. Results

Plants from the lines utilized have been fully characterized in
previous studies [11,12]. Of the four BnLEC1 over-expressing

lines utilized, two (S1 and S2) over-expressed version A of
BnLEC1, and two (S3 and S4) over-expressed version B.
Expression of BnLEC1 was induced in both vegetative and

reproductive tissue of the four lines [Supplemental Fig. 3 in
12], as well as during the different phases (7, 14, and 21 day)
of microspore-derived embryogenesis (Fig. 2). Lines with

anti-sense BnLEC1 (A1 and A2) had reduced expression of
BnLEC1 in the same tissues [Supplemental Fig. 3 in 12] and
during microspore-derived embryogenesis (Fig. 2). The

BnFUS3 lines (M1-3) had point mutations resulting in a
non-functional BnFUS3 protein [11].

3.1. Effects of altered expression of BnLEC1 and BnFUS3 on
microspore-derived embryo quantity and quality

The BnLEC1 transgenic lines and BnFUS3 mutant lines were
utilized as the source of microspores to produce embryos in
culture. Compared to the WT, the number of fully developed
(day 21) MDEs produced by lines over-expressing version A
(S1, S2) or version B (S3, S4) BnLEC1, as well as by lines

down-regulating BnLEC1 (A1, A2) were significantly repressed
(Fig. 3A and B). With the exception of line S1, embryo forma-
tion was less than half in all BnLEC1 transgenic lines. A sim-

ilar and consistent repression in embryo number was also
observed in the three lines (M1-3) where BnFUS3 was mutated
(Fig. 3C).

The quality of MDEs, i.e. their ability to regenerate viable
plants at germination, was not affected by the over-expression
of BnLEC1 (S1-4), while it decreased in those where the
expression of BnLEC1 was suppressed (A1, A2), and in the

BnFUS3 mutant lines (M1-3) (Fig. 4).

3.2. Effects of altered expression of BnLEC1 and BnFUS3 on
embryo morphology

Microspore-derived embryo morphology was assessed at day
14, corresponding to the cotyledonary stage of development

and in fully developed embryos (day 21). At both days identi-
cal phenotypes were observed within lines characterized by
similar expression of the transgene.

After 14 d in culture, MDEs over-expressing BnLEC1 (S1-
4) had a similar morphology to their WT embryos and con-
sisted of an elongated embryonic axis and fully expanded
cotyledons (Fig. 5A(a–b)). This was in contrast to MDEs sup-

pressing BnLEC1 (A1-2) where the elongation of the embry-
onic axis was inhibited and the proper formation of
cotyledons was compromised (Fig. 5A(c)). Embryos generated

from the BnFUS3 mutant lines (M1-3) shared similar abnor-
malities including embryonic axes characterized by unorga-
nized cell proliferation (Fig. 5A(d)). The cotyledons of these

embryos were also generally larger and partially fused
(Fig. 5A(d)).

The phenotypic abnormalities observed at 14 d were

retained by fully developed (21 d) MDEs (Fig. 5A(e–h)). The
only exception was observed in embryos produced by the
BnLEC1 down-regulating lines (A1-2) which showed partially
fused embryonic axes and abnormal cotyledons (Fig. 5A(g)).

The most obvious morphological abnormalities were also
analyzed at a structural level in relation to lack of a shoot api-
cal meristem observed in the BnLEC1 down-regulating

embryos relative to WT embryos (Fig. 5B(a,b)), and the pres-
ence of irregular outgrowth along the hypocotyl of BnFUS3
tilling mutant embryos (Fig. 5B(c)).

3.3. Expression profiles of selected molecular markers of

microspore-derived embryogenesis

To better understand the role of altered BnLEC1 and BnFUS3
expression during embryogenesis and the morphological
abnormalities resulting from their miss-expression, we also
measured the transcript abundance of 8 molecular marker

genes at different stages of MDE development (late-globular,
7 day; cotyledonary, 14 day; and fully developed, 21 day).
Expression of these genes was linked to proper embryonic

development [14,31].
An overall increase in transcript levels of BnLEC2 and

BnAB13 was observed in late-globular (7 day) MDEs of the

BnLEC1 over-expressing lines (S1–4) (Fig. 6). The expression
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of the other genes at the same stage of development did not
follow any consistent profile. At 21 d, over-expression of

BnLEC1 resulted in a significant induction of BnLEC2 and
BnCYP78A5 in all lines (S1–S4), as well as BnUPI1, BnWOX2,
and BnWOX9 in lines S1–S3 and BnSERK1 in lines S2–S4. A

reduction in the transcript levels of BnAB13 was observed in
fully developed embryos of lines S1-S3.
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Figure 6 Expression analysis by quantitative (q)RT-PCR of embryo

BnFUS3. Analyses were conducted at day 7, 14, and 21. Genes ana

(UPI1), BABYBOOM1 (BBM1), WUSCHEL-related HOMEOBOX9

(CYP78A5), WUSCHEL-related HOMEOBOX2 (BnWOX2), and SO

Data presented are mean value ± SE of three biological replicates. As

from the respective wild type (control) value (set at 1) at the respective

regulators (A1–A2), BnFUS3 tilling mutants (M1–M3).
In 7 day MDEs suppressing BnLEC1 (A1, A2) an overall
repression in transcript levels was measured for many of the
genes analyzed including BnCYP78A5, BnWOX2, BnLEC2,

BnUPI1, BnBBM1, and BnABI3 (Fig. 6). This was in contrast
to the expression of BnWOX9, which was highly induced in
both BnLEC1 antisense embryos. Upon further development

(day 14), the transcript levels of BnWOX2, BnUPI1 and
BnCYP78A5 increased in both lines. The expression of
BnSERK1 was repressed in fully developed (day 21)

BnLEC1-suppressing MDEs and this was in contrast to
BnWOX2, which was induced in both A1 and A2 lines.

In immature (day 7) embryos produced by the BnFUS3
mutant lines, the only gene showing a consistent expression

pattern was BnWOX9, which was repressed in all three (M1–
3) lines. At day 14, the expression of BnWOX2 and BnBBM1
was significantly induced, while that of BnSERK1 was

repressed. Fully developed (day 21) BnFUS3 mutant MDEs
were characterized by increased transcript levels of BnABI3
and BnWOX2 and suppression of BnUPI1 (Fig. 6).

3.4. Effects of altered expression of BnLEC1 and BnFUSCA3

on total lipid and fatty acid accumulation in microspore-derived
embryos

The late phases of embryo development are characterized by
the accumulation of storage products, which in B. napus con-
sist mainly of oil. Previous studies have shown that altered

expression of both BnLEC1 and BnFUS3 influences oil level
and FA composition in seeds [11,12]. To assess if similar
changes also occur during in vitro embryogenesis, lipid content

and FA composition were analyzed in the MDE lines.
Relative to the WT, the lipid content increased in embryos

over-expressing BnLEC1 (S1–S3), while it was reduced in those

suppressing BnLEC1 (A1) and in those where BnFUS3 was
mutated (M1, M2) (Fig. 7).

Analysis of FA composition revealed small alterations in

the levels of stearic acid (18:0), and oleic acid (C18:1) in the
M2 embryos, as well as an increase in linolenic acid (C18:3)
content in S3 embryos and linoleic acid (C18:2) in M1and
M2 embryos (Table 1).
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Figure 7 Total lipid content in 21 day-old MDEs with altered

expression of BnLEC1 or BnFUS3. Value ± SE (n= 6) is

expressed as a percentage of the WT. Asterisks indicate values

that are statistically different (LSD: P < 0.05) from the WT value.

BnLEC1 over-expressors (S1–S3), BnLEC1 down-regulator (A1),

BnFUS3 tilling mutants (M1–M3).
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3.5. Transcriptional regulation of sucrose and fatty acid
metabolism genes

The main carbon source for oil biosynthesis in developing
seeds is sucrose produced from photosynthesis. Sucrose is
readily hydrolyzed into UDP-glucose and fructose, which are

oxidized in the glycolytic pathway to Acetyl-CoA, the precur-
sor of FA biosynthesis. The changes in oil levels observed in
the transformed MDEs prompted us to measure the transcript

levels of genes contributing to sucrose metabolism and glycol-
ysis. At both day 14 and 21 in culture, BnLEC1 over-
expressing MDEs had increased expression levels of several

sucrose metabolic genes. These included SUCROSE
SYNTHASE1 and 3 (BnSUS1 and 3) at day 14 (Fig. 8) and
SUCROSE TRANSPORTER 4 (BnSUC4) and BnSUS3 at
day 21 (Fig. 9). Over-expression of BnLEC1 also resulted in

an increased expression of the glycolytic enzyme GLYCERAL-
DEHYDE 3-PHOSPHATE DEHYDROGENASE
(BnGDPH), as well as a decreased expression of the FA meta-

bolic genes SUBUNIT A of ACETYL-CoA CARBOXYLASE
(BnACCA2) at 14 d. And increased the expression of
MALONYL-CoA:ACP TRANSACYLASE (BnMCAT) at

day 21 (Figs. 8 and 9).
An overall suppression of several sucrose and glycolytic

enzymes, including FRUCTOSE BISPHOSPHATE ALDO-
LASE (BnFPA), PHOSPHOGLYCERATE KINASE

(BnPGK), and PYROPHOSPHATE-DEPENDENT PHOS-
Table 1 Fatty acid profile (% composition) in transgenic BnLEC1

biological replicates ±SE. Asterisks indicate statistically significant d

S3, BnLEC1 over-expressors; A1, BnLEC1 down-regulators; M1–M

C16:0 C18:0 C18:1

WT 5.15 ± 0.25 4.03 ± 0.41 68.44 ± 1.99

S1 5.67 ± 0.37 3.74 ± 0.48 69.48 ± 1.35

S2 5.35 ± 0.25 2.91 ± 0.68 67.08 ± 0.95

S3 5.05 ± 0.25 2.82 ± 0.65 65.88 ± 1.10

WT 5.86 ± 0.11 2.55 ± 0.19 65.76 ± 0.43

A1 5.78 ± 0.16 2.44 ± 0.24 65.38 ± 0.57

WT 5.57 ± 0.06 2.35 ± 0.19 63.54 ± 1.94

M1 6.01 ± 0.27 3.21 ± 0.49 61.16 ± 2.62

M2 6.61 ± 0.49 4.09 ± 0.53* 54.88 ± 1.81*
PHOFRUCTOKINASE (BnPPK), as well as several fatty acid
metabolic enzymes such as BnACC2, x-3 FA DESATURASE
(BnFAD3), and FA ELONGATION1 (BnFAE1),were

observed in MDEs with suppressed level of BnLEC1
(Figs. 8 and 9).

A similar overall repression in gene expression was also

measured in the two BnFUS3 TILLING mutant MDEs, espe-
cially at day 14 (Fig. 8) where the majority of genes encoding
enzymes of sucrose and fatty acid metabolism were transcrip-

tionally down-regulated.
4. Discussion

In vitro embryogenesis is an attractive system for studying the
molecular and physiological events associated with embryo
development [33,38]. Besides producing embryos with similar

morphology and developmental stages to their in vivo counter-
parts, in vitro embryogenic systems can generate large numbers
of synchronized embryos in a short period of time [45]. This is
also true for microspore-derived embryogenesis, where the

gametophytic fate of the microspores can be redirected toward
an embryogenic fate through applications of stress conditions
and culture treatments (Fig. 1).

To maximize the use of Brassica in vitro embryogenic sys-
tems in breeding programs, thus accelerating the selection of
desirable traits such as elevated seed oil levels, it is paramount

to assess if in vitro embryos behave in a similar fashion to their
zygotic counterparts in response to gene manipulations. This is
especially relevant when examining storage product deposi-
tion, a trait controlled by a complicated and partially

unknown genetic network [10].
In Brassica seeds LEC1 and FUS3 have been identified as

key regulators of oil synthesis [11,12]. Oil content is enhanced

in seeds over-expressing BnLEC1, while repressed in those
where the expression of either BnLEC1 or BnFUS3 was sup-
pressed [11,12]. To verify if similar alterations occur in vitro,

we measured total lipid content and FA composition during
microspore-derived embryogenesis. Relative to the WT, over-
expression of BnLEC1 increased lipid content in MDEs by

about 10–15%, while its down-regulation decreased oil content
by 5% (Fig. 7). These values are comparable to those observed
in vivo (7–16% increase in BnLEC1 over-expressing seeds and
a 9–12% decrease in BnLEC1 down-regulating seeds) [12]. For

both in vivo and in vitro, these changes were not accompanied
and BnFUS3 tilling mutant MDEs. Values are means of three

ifferences (LSD: P < 0.05) from their respective WT value. S1–

2, BnFUS3 tilling mutants.

C18:2 C18:3 C20:0

13.00 ± 1.59 5.44 ± 0.81 1.15 ± 0.02

12.91 ± 1.41 4.29 ± 0.21 1.09 ± 0.06

14.59 ± 0.23 6.95 ± 0.06 0.94 ± 0.12

15.78 ± 0.97 7.14 ± 0.43* 0.93 ± 0.11

16.86 ± 0.22 6.39 ± 0.82 0.93 ± 0.02

16.85 ± 0.20 6.39 ± 0.77 0.87 ± 0.06

16.33 ± 1.20 7.71 ± 0.18 0.86 ± 0.07

20.10 ± 1.05* 7.12 ± 0.71 1.09 ± 0.15

22.51 ± 0.89* 8.58 ± 0.36 1.40 ± 0.23
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by any major alterations in FA composition (Table 2 and Sup-
plementary Table 4 in 12, and Table 1 in this paper), but did
show major changes in the expression of genes encoding

enzymes of sucrose and FA metabolism (Figs. 3 and 4 in 12,
and Figs. 8 and 9 in this paper). It is worth noting that both
in vivo and in vitro over-expression of BnLEC1 induces expres-

sion of sucrose metabolic genes as well as genes participating in
the glycolytic pathway. This induction denotes an active uti-
lization and oxidation of sucrose which is possibly required

for enlarging the pool of FA biosynthetic precursors, leading
to the observed increase in seed oil content. This process would
be compromised in MDEs down-regulating BnLEC1, which
like seeds down-regulating BnLEC1 show a reduction in the

expression of several glycolytic enzymes (Figs. 8 and 9). The
requirement of BnLEC1 for oil accumulation, documented in
several systems [29,34,42], is associated with an enhancement

of carbon flux toward the FA biosynthetic pathway [12,15,34].
Mutation of BnFUS3 in B. napusMDEs reduces oil content

and increases the relative level of linoleic (C18:2) acid. A com-

parable decrease in oil, associated with altered sucrose metabo-
lism and decreased glycolytic activity was also observed in
BnFUS3 mutant seeds [11]. A similar repression of the gly-

colytic pathway might also occur in vitro, as the expression
of several glycolytic enzymes is repressed in BnFUS3 TIL-
LING mutant MDEs (Figs. 8 and 9). Collectively these results
show that the effects of BnLEC1 and BnFUS3 on oil quantity

and composition, as well as on the transcription of sucrose and
FA metabolic enzymes, observed in Brassica MDEs mimic clo-
sely those reported in vivo.

Embryonic yield and quality, i.e. frequency of successful
regeneration, are crucial parameters of any propagation sys-
tem integrated in breeding programs. It was therefore one of

the objectives of this study to evaluate if the BnLEC1 and
BnFUS3 modulation of oil level was accompanied by changes
in embryonic response in culture.

LEAFY COTYLEDON1 encodes a HAP3 subunit of the
CCAAT-binding transcription factor [29] expressed in imma-
ture Arabidopsis siliques, zygotic embryo and embryogenic tis-
sue, but not in vegetative tissue [24]. Elevated expression of

this gene has also been measured in embryogenic carrot cells
and somatic embryos [58], as well as immature maize somatic
embryos [60], thus suggesting its participation in

embryogenesis-related pathways. During in vitro embryogene-
sis in B. napus, BnLEC1 is required both for the formation of
MDEs (Fig. 3B), as well as the ability to regenerate viable

plants (Fig. 4B). The poor embryogenic competence observed
in microspores suppressing BnLEC1 (lines A1 and A2) sug-
gests that the proper function of this gene is needed for the g
ametophytic–embryogenic transition initiating the process.

This observation, supporting previous studies on the ability
of LEC1 to induce embryogenesis in vegetative tissue upon
ectopic expression [29], is also confirmed by the miss-

expression of several embryogenesis marker genes in the
BnLEC1 down-regulating embryos after 7 days in culture.
These include BnABI3 which is a gene originally identified in

ABA signaling [25] and implicated in early embryogeny
[16,31], and BnBBM1, which when expressed ectopically is suf-
ficient to spontaneously form somatic embryos in Arabidopsis,

tobacco, and B. napus seedlings [4,44].
The requirement of BnLEC1 for MDE quality (Fig. 4B) is a

novel concept suggesting a potential function of this gene in
the establishment of the embryo body, specifically the proper
development of cotyledons and the elongation of the embry-
onic axis in immature embryos (Fig. 5). These phenotypic
abnormalities can be partially explained by the likely function

of LEC1 downstream of auxin responses [16]. The role of
auxin in the establishment of the bilateral symmetry during
embryogenesis is well established and interference with the

auxin flow results in malformed and partially fused cotyledons
and stunted elongation of the embryonic axis [6,51]. These
structural abnormalities, apparent in MDEs down-regulating

BnLEC1 (Fig. 5), compromise their regeneration and correlate
to the miss-expression of several embryogenesis genes, includ-
ing the auxin-regulated gene BnWOX2. This gene modulates
the auxin effects on embryonic tissue patterning and its altered

expression compromises the normal progression of embryoge-
nesis [19]. Deviations from the normal embryogenic pathway
caused by the suppression of BnLEC1 might also be caused

by the altered expression of other embryo marker genes such
as BnLEC2, necessary for maintenance of the suspensor and
specification of cotyledons [46], as well as BnCYP78A, and

BnUPI1, which have been associated to the normal develop-
ment of MDEs [31].

Unlike its suppression, over-expression of BnLEC1 only

affects the number of embryos produced (Fig. 3A), but not
their morphology and quality (Fig. 4A). Among possible rea-
sons for the interference with the initiation of the embryogenic
pathway is the miss-expression of BnSERK1 at day 7. This

gene encodes one of the several kinase regulators of the repro-
gramming of embryogenesis [22]. Originally characterized in
carrot, SERK1 has been reported in many other plant species,

including Arabidopsis and wheat where it enhances embryo-
genic competence in vitro [22,40,43].

Embryo quantity and quality were greatly impaired in

mutants of BnFUS3, a gene encoding a B3 domain-
containing protein present in developing embryos from a very
early stage to immediately before germination [30]. Together

with LEC1, FUS3 is a key regulator of in vivo embryogenesis
[53]; however, the different morphological defects caused by
the suppression of the two genes suggest separate roles. Besides
the repressive effect on microspore-derived embryogenesis doc-

umented in our study (Fig. 3C), mutations of FUS3 also
impair Arabidopsis somatic embryogenesis [16], observations
denoting the function of this gene are retained across different

species and embryogenic systems. The abnormal behavior
observed in the BnFUS3 mutant lines is associated with pro-
found alterations in the expression of many embryo marker

genes. Of interest, are the consistent repression of BnWOX9
at day 7 and the induction of BnWOX2 at day 14 and 21 that
are required for the establishment of polarity domains within
the embryo [19]. Furthermore, the increased expression at

day 21 of BnABI3, suggests possible alterations in ABA signal-
ing. Abscisic acid accumulates during the middle-late stages of
embryogenesis and is required for the correct completion of

the embryogenic program [47].
Collectively these studies demonstrate that altered expres-

sion of BnLEC1 and BnFUS3 affects oil accumulation and

composition in cultured embryos. While over-expression of
BnLEC1 favors oil accumulation, suppression of either
BnLEC1 or BnFUS3 reduces oil level. These changes were

comparable to those observed in transgenic seeds. Both
embryo yield and quality were also affected by the transgenes
with over-expression of BnLEC1 reducing the number of
MDEs produced, while suppression of BnLEC1 or BnFUS3



Figure 8 Expression analysis by quantitative (q)RT-PCR of genes involved in the regulatory pathways leading to FA synthesis in

BnLEC1 transgenic and BnFUS3 tilling mutants MDEs at 14 days. SUC1 (Sucrose Transporter1), SUC4 (Sucrose Transporter4), SUS1

(Sucrose Synthase1), SUS3 (Sucrose Synthase3), AGP (ADP-Glucose Phosphorylase). FPA (Fructose Bisphosphate Aldolase), PGK

(Phosphoglycerate Kinase), GPDH (Glyceraldehyde-3- Phosphate Dehydrogenase), HXK (Hexose Kinase), PPK (Pyrophosphatase-

Dependent Phosphofructokinase). ACCA2 (Subunit A of Acetyl-CoA Carboxylase), FAD3 (x-3 FA Desaturase), FAE1 (FA Elongation1),

MCAT (Malonyl-CoA:ACP Transacylase). Data presented are mean value ± SE of three biological replicates. Asterisks indicate

statistically significant differences (LSD: P < 0.05) from the respective wild type value (set at 1) at the respective day in culture. BnLEC1

over-expressors (S1, S3), BnLEC1 down-regulator (A1), BnFUS3 tilling mutants (M1, M2).
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Figure 9 Expression analysis by quantitative (q)RT-PCR of genes involved in the regulatory pathways leading to FA synthesis in

BnLEC1 transgenic and BnFUS3 tilling mutants MDEs at 21 days. SUC1 (Sucrose Transporter1), SUC4 (Sucrose Transporter4), SUS1

(Sucrose Synthase1), SUS3 (Sucrose Synthase3), AGP (ADP-Glucose Phosphorylase). FPA (Fructose Bisphosphate Aldolase), PGK

(Phosphoglycerate Kinase), GPDH (Glyceraldehyde-3- Phosphate Dehydrogenase), HXK (Hexose Kinase), PPK (Pyrophosphatase-

Dependent Phosphofructokinase). ACCA2 (Subunit A of Acetyl-CoA Carboxylase), FAD3 (x-3 FA Desaturase), FAE1 (FA Elongation1),

MCAT (Malonyl-CoA:ACP Transacylase). Data presented are mean value ± SE of three biological replicates. Asterisks indicate

statistically significant differences (LSD: P< 0.05) from the respective wild type value (set at 1) at the respective day in culture. BnLEC1

over-expressors (S1, S3), BnLEC1 down-regulator (A1), BnFUS3 tilling mutants (M1, M2).
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reducing embryo yield and regeneration frequency. Based on
these results it is suggested that Brassica microspore-derived
embryogenesis is a suitable in vitro model for oil research, in

particular to further examine the role of BnLEC1 and
BnFUS3, although the reduction in embryo number and qual-
ity can pose limitations to its use as a propagation tool to

regenerate the transformed embryos.
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