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Rationale & Objective: Plasma proneurotensin/
neuromedin N (pro-NT/NMN) is a precursor of
neurotensin, a tridecapeptide linked with type 2
diabetes mellitus and other comorbid conditions
associated with kidney disease. Whether pro-NT/
NMN is directly associated with incident chronic
kidney disease (CKD), and whether that
association differs by race, is uncertain. We
evaluated whether pro-NT/NMN levels were
associated with increased risk of kidney outcomes.

Study Design: Prospective cohort.

Setting & Participants: Participants in Biomarker
Mediators of Racial Disparities in Risk Factors, a
nested cohort from the REasons for Geographic
And Racial Differences in Stroke study, with avail-
able stored serum and urine samples from baseline
and second visits for biomarker measurement.

Exposure: Baseline log-transformed pro-NT/NMN.

Outcomes: Incident CKD, progressive estimated
glomerular filtration rate (eGFR) decline, incident
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albuminuria, and incident kidney failure within me-
dian follow-up time of 9.4 years.

Analytical Approach: Logistic regression.

Results: Among 3,914 participants, the mean ± SD
age was 64 ± 8 (SD) years, 48% were women, and
51% were Black. Median baseline eGFR was 90
(IQR, 77-102) mL/min/1.73 m2. Each SD higher of
pro-NT/NMN was associated with 9% higher odds
of progressive eGFR decline (OR, 1.09; 95% CI,
1.00-1.20). There was no association observed
with incident CKD (OR, 1.10; 95% CI, 0.96-1.27),
incident albuminuria (OR, 1.08; 95% CI, 0.96-
1.22), or incident kidney failure (OR, 1.10; 95%
CI, 0.83-1.46). There were no differences in
results by race or sex.

Limitations: Single measurement of pro-NT/NMN
and limited generalizability.

Conclusions: Higher pro-NT/NMN was
associated with progressive eGFR decline but no
other manifestations of kidney disease incidence.
The burden of chronic kidney disease (CKD) is
increasing worldwide1 and may come to account for

more than 3.1 million annual deaths by 2040.2 Despite
this critical population health issue, risk-stratification par-
adigms for CKD are limited largely to proxies of glomer-
ular filtration that have limited predictive value.3

Furthermore, early-stage diagnosis of CKD is imperative
because progression to kidney failure may be halted or
slowed with guideline-directed therapies for its various
etiologies.4 Identification of novel biomarkers of
impending kidney dysfunction before loss of glomerular
filtration function is important.

Neurotensin (NT) is a tridecapeptide5 that appears to
exert a paracrine function in the brain and heart and
acts as a systemic hormone when released from the
gastrointestinal tract or adrenal glands. Through mea-
surement of its stable precursor proneurotensin/neuro-
medin N (pro-NT/NMN),6 NT and its related peptides
have been linked to risk of disease processes related to
kidney disease, including cardiovascular disease,7-10

obesity,11 and type 2 diabetes mellitus.8,9,12,13

Although NT could affect CKD through these other
disease processes, NT receptors are present in the kid-
ney,14 and alterations in kidney physiology in response
to NT infusion in humans has been reported,15 offering
the possibility that NT could directly affect kidney
function.

In this study, we evaluated the association of pro-NT/
NMN with incident CKD, estimated glomerular filtration
rate (eGFR) decline, incident albuminuria, and incident
kidney failure among participants in the REasons for
Geographic And Racial Differences in Stroke (REGARDS)
cohort. Because kidney diseases are more common in Black
Americans, we also evaluated the association between pro-
NT/NMN among White and Black participants.16
METHODS

Study Design and Participants

The REGARDS study is a population-based cohort of in-
dividuals aged 45 years and older, recruited to study the
reasons for the higher stroke mortality noted among Black
versusWhite adults and in the Southeast region of theUnited
States.17,18 Between January 2003 and June 2007, a total of
30,239 non-Hispanic Black and White American adults
were recruited. Among the exclusion criteriawere race other
than Black or White, active treatment of cancer, medical
conditions that would prevent long-term participation,
residence in or inclusion on a waiting list for a nursing
home, or inability to communicate in English. Potential
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Figure 1. Flowchart of REGARDS participants for analysis. Abbrev
diators of Racial Disparities in Risk Factors; CKD, chronic kidney d
proneurotensin/neuromedin N; REGARDS, REasons for Geograp

PLAIN-LANGUAGE SUMMARY
Neurotensin is a peptide secreted by the small intestine
in response to a meal. Higher levels of neurotensin and
its stable precursor, proneurotensin/neuromedin N
(pro-NT/NMN), have been associated with cardiovas-
cular disease and type 2 diabetes mellitus, important
risk factors for the development of kidney disease.
Whether pro-NT/NMN is directly associated with kid-
ney outcomes has been less studied and has been done
so in largely homogenous cohorts of White participants.
Using the REasons for Geographic And Racial Differ-
ences in Stroke study, we followed Black and White
participants and evaluated the risk of developing kidney
outcomes. We found that elevated levels of pro-NT/
NMN were associated with kidney function decline.
Pro-NT/NMN may help individuals who may benefit
from closer monitoring of kidney function.
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participants were contacted by mail with a subsequent
computer-assisted telephone interview; an in-home visit for
a physical examination and blood and urine collection fol-
lowed. Blood samples were drawn and sent overnight to the
central laboratory at the University of Vermont, where they
were centrifuged, aliquoted, and stored at −80�C until
biomarker measurement without prior thaw.19 The
REGARDS study was approved by the institutional review
boards of the participating institutions (IRB number:
201856), and all participants provided verbal consent
before the telephone interview was conducted and written
informed consent before completion of the in-home study
visit. A single follow-up visit with the same procedures as
described above for the baseline visit was conducted
approximately 10 years after the baseline visit. Details of the
study design have been previously described.20

The analytic cohort included participants selected to a
nested cohort study within REGARDS, the Biomarker Me-
diators of Racial Disparities in Risk Factors (BioMedioR).21
edioR 
ants 
00

 

Excluded: 
-Missing ACR: 333

-Baseline albuminuria n=375

At risk for incident 
albuminuria 

n=3206
(Weighted n = 6412)

At risk for Incident 
kidney failure 

n = 3914
(Weighted n = 7828)

iations: ACR, albumin-creatinine ratio; BioMedioR, Biomarker Me-
isease; eGFR, estimated glomerular filtration rate; pro-NT/NMN,
hic And Racial Differences in Stroke.
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Table 1. Baseline Characteristics of BioMedioR Participants by Pro-NT/NMN Quartile, Weighted

Pro-NT/NMN Quartiles Q1 Q2 Q3 Q4
Range (pmol/L) <127 127-182 183-249 250a

Weighted N 1,958 1,957 1,957 1,956
Age, y, mean (SD) 65 (9) 65 (8) 64 (8) 64 (8)
Women, n (%) 904 (46.1) 951 (48.6) 954 (48.9) 1010 (51.6)
Black, n (%) 702 (35.8) 872 (44.6) 1138 (58.3) 1344 (68.7)
Income, n (%)
<$20,000 253 (12.9) 272 (13.9) 318 (16.3) 484 (24.7)
$20,000-$34,000 419 (21.4) 509 (26.0) 494 (25.2) 479 (24.5)
$35,000-$74,000 649 (33.1) 604 (30.9) 591 (30.2) 589 (30.1)
≥$75,000 390 (19.9) 348 (17.8) 334 (17.1) 264 (13.5)
Refused 249 (12.7) 224 (11.4) 220 (11.2) 140 (7.2)

Body mass index, mean (SD) 29 (6) 29 (6) 31 (6) 31 (6)
Tobacco use, n (%) 231 (11.8) 205 (10.5) 224 (11.5) 196 (10)
Cardiovascular disease, n (%) 269 (13.7) 233 (11.9) 344 (17.6) 460 (23.5)
Diabetes mellitus, n (%) 325 (16.6) 450 (23) 550 (28.2) 953 (48.7)
Metabolic syndrome, n (%) 791 (40.4) 724 (37.0) 824 (42.1) 960 (49.1)
Baseline mean systolic blood pressure, mm Hg (SD) 128 (17) 128 (16) 130 (17) 132 (17)
Baseline mean diastolic blood pressure, mm Hg (SD) 77 (8) 77 (9) 77 (10) 77 (10)
Baseline median serum creatinine, mg/dL (IQR) 0.8 (0.7, 1.0) 0.8 (0.7, 1.0) 0.9 (0.8, 1.1) 0.9 (0.8, 1.1)
Baseline median serum cystatin C, mg/dL (IQR) 0.9 (0.8, 1.0) 0.9 (0.8, 1.1) 1.0 (0.8, 1.1) 1 (0.9, 1.2)
Baseline median eGFR, (IQR) 92 (80, 101) 89 (78, 100) 86 (69, 99) 82 (64, 95)
Baseline median UACR, mg/g (IQR) 7 (4, 14) 8 (5, 17) 10 (4, 23) 10 (5, 33)
Abbreviations: BioMedioR, Biomarker Mediators of Racial Disparities in Risk Factors; eGFR, estimated glomerular filtration rate; IQR, interquartile range; pro-NT/NMN,
proneurotensin/neuromedin N; SD, standard deviation; UACR, urinary albumin-creatinine ratio.
aWeighted to parent cohort and excluding participants missing pro-NT/NMN.
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BioMedioR was designed to study the role of biomarkers as
mediators of racial differences in incident stroke risk fac-
tors including hypertension and diabetes. This nested
cohort included 4,400 individuals who completed the
second visit and was deliberately sampled to obtain equal
groups based on race and sex. For this study, 143 partic-
ipants were excluded because they did not have pro-NT/
NMN measures at baseline, 255 participants because they
did not have eGFR at both the baseline and second visit,
and 88 participants due to missing covariates. The final
analysis included 3,914 participants (Fig 1).

According to REGARDS policy, the aims and analysis
plan for this manuscript were prespecified and reviewed
and approved by the REGARDS publications committee,
which also reviewed the final manuscript and assured that
the a priori plans were followed.

Exposure Variable

Pro-NT/NMN was measured in ethylenediaminetetraacetic
acid plasma samples at an independent facility (ASKA
Biotech GmbH) using a 1-step sandwich immunolumi-
nometric sphingotest assay (SphingoTec GmbH), as pre-
viously described.6 Laboratory personnel were blinded to
clinical and demographic information. The mean coeffi-
cient of variation was 3.7%.

Covariates

Data on covariates of interest were collected at baseline.
Information on age, race, sex, smoking status, lipid-
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lowering medication use, antihypertensive medication
use, and history of coronary disease was collected by self-
report. Height and weight were measured by study
personnel at the in-home visit, and body mass index was
calculated as weight (kg)/height squared (m2).

Hypertension was defined as either self-reported use of
antihypertensive medications, a systolic blood pressur-
e ≥140 mm Hg, or a diastolic blood pressure of ≥90 mm
Hg measured during the home examination, in which
systolic blood pressure and diastolic blood pressure were
the average of 2 measures taken in the seated position.
Diabetes was defined as a fasting glucose ≥126 mg/dL, a
nonfasting glucose ≥200 mg/dL, or current use of either
oral hypoglycemic pills or insulin. Serum creatinine level
was calibrated to an international isotope dilution mass
spectroscopic-traceable standard, measured by colori-
metric reflectance spectrophotometry (Ortho Vitros Clin-
ical Chemistry System 950IRC, Johnson & Johnson Clinical
Diagnostics, www.orthochemical.com). Serum cystatin C
level was measured by particle-enhanced immunonephel-
ometry (N Latex Cystatin C Assay, Siemens AG).22 eGFR
was calculated using the 2021 CKD-EPI (Chronic Kidney
Disease Epidemiology Collaboration) creatinine- and
cystatin-based equation without race coefficient.23 Albu-
min and creatinine levels were measured using a random
spot urine specimen by nephelometry (BN ProSpec
Nephelometer, Dade Behring) and Modular-P chemistry
analyzer (Roche/Hitachi), respectively. Spot urinary
albumin-creatinine ratio (ACR) was calculated in mg/g.
3
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Table 2. Association of Pro-NT/NMN Quartile With Incident CKD (Defined As eGFR <60 mL/min/1.73 m2 and ≥40% eGFR
Decline)

Quartiles of Pro-NT/NMN

P

Q1 Q2 Q3 Q4 Per SD Higher

(OR, 95% CI) (OR, 95% CI) (OR, 95% CI) (OR, 95% CI) (OR, 95% CI)
Range of pro-NT/NMN <120 120-167 168-231 >232
Number of events/Number
at risk (%)
Weighted N 107/1,752 (6.1) 117/1,742 (6.7) 162/1,746 (9.3) 210/1,746 (12) 596/6,986 (8.5)
Model 1a Reference 1.11 (0.76-1.61) 1.67 (1.17-2.35) 1.90 (1.33-2.71) 1.30 (1.14-1.47) <0.001
Model 2b Reference 1.05 (0.72-1.54) 1.44 (1.00-2.07) 1.36 (0.93-1.97) 1.14 (1.00-1.30) 0.05
Model 3c Reference 1.03 (0.69-1.53) 1.46 (1.00-2.11) 1.29 (0.86-1.92) 1.11 (0.96-1.28) 0.1
Note: Weighted to parent cohort and excluding participants missing pro-NT/NMN and baseline CKD.
Abbreviations: CI, confidence interval; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; OR, odds ratio; pro-NT/NMN, proneurotensin/neu-
romedin N; SD, standard deviation; UACR, urinary albumin-creatinine ratio.
aAdjusted for age, sex, race.
bAdjusted for Model 1 plus body mass index, current smoking, coronary artery disease, stroke, systolic blood pressure, diastolic blood pressure, diabetes mellitus, and
metabolic syndrome.
cAdjusted for Model 2 plus baseline eGFR and UACR.
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Outcomes

The outcomes were as follows: (1) incident CKD at the
second visit, defined as both eGFR of <60 mL/min/
1.73 m2 and at least 40% decline in individuals with
baseline eGFR of ≥60 mL/min/1.73 m2; (2) progressive
eGFR decline, defined as ≥30% decrease in eGFR between
the baseline and second in-home visit; (3) incident albu-
minuria, defined as a new urinary ACR ≥30 mg/g between
baseline and the second in-home visit among those
without baseline albuminuria; and (4) incident kidney
failure ascertained by United States Renal Data System
linkage up to June 2018. We also performed sensitivity
analyses looking at the association between pro-NT/NMN
with incident CKD defined as eGFR <60 mL/min/1.73 m2

and at least 25% decline in individuals with baseline
eGFR >60 mL/min/1.73 m2 between baseline and the
second in-home visit.24

Statistical Analyses

Due to the sampling design of BioMedioR, we used inverse
probability sampling weights to recreate the weighted
distribution of the parent REGARDS cohort and account for
the sampling design. Because there are only 2 discrete
visits 10 years apart, we used logistic regression with
sampling weights for analysis instead of time-to-event
models. Given skewed distributions, we log-transformed
standardized continuous concentrations of pro-NT/NMN
as the exposure of interest so that the interpretation
would be per standard deviation (SD) higher level of log
pro-NT/NMN. We examined the distribution of de-
mographics and risk factors for incident CKD among pro-
NT/NMN quartiles. We used sequential nested models to
evaluate the association between the pro-NT/NMN and the
outcomes. Covariates for multivariable models were
selected a priori based on biological plausibility and were
obtained at baseline. Model 1 adjusted for age, sex, and
race. Model 2 additionally adjusted for body mass index,
systolic blood pressure, diastolic blood pressure, diabetes
4

mellitus, smoking, and cardiovascular disease. Model 3
additionally adjusted for baseline eGFR and urinary ACR.
We tested for interactions of pro-NT/NMN with race
(White vs Black) and sex (men vs women) by adding
multiplicative interaction terms to model 3.

For incident kidney failure, because of the low-event
rate, we only additionally adjusted for body mass index
and diabetes mellitus in model 2. In the final model, we
added baseline eGFR and ACR.

To assess the functional form of associations for each
outcome, we also evaluated pro-NT/NMN by quartiles,
setting the lowest as the reference category. When asso-
ciations were observed to change monotonically across
quartiles, we focused our interpretation on the results of
the continuous models to maximize precision.

All analyses were conducted using STATA/PC version
16.1 (StataCorp LLC) and R version 4.1.1 (https://www.
R-project.org/). P values of <0.05 were considered statis-
tically significant for all analyses excluding interaction
terms in which a P value of <0.1 was considered
significant.
RESULTS

Baseline characteristics

Characteristics of study participants by quartile of pro-NT/
NMN are shown in Table 1. Of the 3,914 participants, the
mean ± SD age was 63 ± 8 (SD) years, 51% were women,
and 48% were Black. Median baseline eGFR was 90 mL/
min/1.73 m2, and median ACR was 6 mg/g. Median pro-
NT/NMN concentration was slightly higher among
women and Black participants. Those with higher levels
were more likely to have diabetes and higher albuminuria
and lower eGFR levels.

Relationship of Pro-NT/NMN With Incident CKD

For the incident CKD analyses, we excluded 10.8% par-
ticipants who had CKD at baseline. During mean follow-up
Kidney Med Vol 6 | Iss 6 | June 2024 | 100831
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Table 3. Association of Pro-NT/NMN With Incident CKD (Defined as eGFR <60 mL/min/1.73 m2 and ≥25% eGFR Decline)

Quartiles of Pro-NT/NMN

P

Q1 Q2 Q3 Q4 Per SD Higher

(OR, 95% CI) (OR, 95% CI) (OR, 95% CI) (OR, 95% CI) (OR, 95% CI)
Range of pro-NT/NMN <120 120-167 168-231 >232
Number of events/Number
at risk (%)
Weighted N 200/1,752 (11.4) 286/1,742 (16.4) 302/1,746 (17.3) 412/1,746 (23.6) 1,200/6,986 (17.2)
Model 1a Reference 1.50 (1.14-1.98) 1.76 (1.34-2.31) 2.38 (1.81-3.13) 1.40 (1.27-1.53) <0.001
Model 2b Reference 1.48 (1.23-2.15) 1.62 (1.23-2.15) 1.94 (1.46-2.57) 1.28 (1.16-1.42) <0.001
Model 3c Reference 1.37 (1.02-1.83) 1.48 (1.11-1.99) 1.55 (1.14-2.10) 1.16 (1.04-1.30) 0.01
Note: Weighted to parent cohort and excluding participants missing pro-NT/NMN and baseline CKD.
Abbreviations: CI, confidence interval; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; OR, odds ratio; pro-NT/NMN, proneurotensin/neu-
romedin N; SD, standard deviation; UACR, urinary albumin-creatinine ratio.
aAdjusted for age, sex, and race.
bAdjusted for Model 1 plus body mass index, current smoking, coronary artery disease, stroke, systolic blood pressure, diastolic blood pressure, diabetes mellitus, and
metabolic syndrome.
cAdjusted for Model 2 plus baseline eGFR and UACR.

Bullen et al
of 9.4 years, 8.5% participants developed incident CKD
(Table 2). When pro-NT/NMN was modeled continu-
ously, there was no significant association between pro-
NT/NMN and incident CKD in the final model (odds ra-
tio [OR], 1.10; 95% confidence interval [CI], 0.96-1.27).

In sensitivity analyses, when evaluating a less restrictive
eGFR decline threshold ≥25% instead of ≥40% in addition
to an eGFR of <60 mL/min/1.73 m2, baseline pro-NT/
NMN was modestly associated with incident CKD (OR,
1.16; 95% CI, 1.04-1.30), as shown in Table 3.

Relationship of Pro-NT/NMN With Progressive

eGFR Decline

Among all participants, eGFR decline ≥30% was seen in
21.3% of participants. Higher pro-NT/NMN was signifi-
cantly associated with progressive eGFR decline across the
sequence of adjusted models (OR for fully adjusted model,
1.09; 95% CI, 1.00-1.20). Similarly, in quartile analyses,
the risk of decline generally increased monotonically with
higher pro-NT/NMN (Table 4).
Table 4. Association of Pro-NT/NMN Quartile With Progressive e

Quartiles of Pro-NT/NMN

Q1 Q2 Q

(OR, 95% CI) (OR, 95% CI) (O
Range of pro-NT/NMN <120 120-167 1
Number of events/Number
at risk (%)
Weighted N 333/1,958 (17) 386/1,957 (19.7) 4
Model 1a Reference 1.17 (0.92-1.47) 1
Model 2b Reference 1.13 (0.89-1.44) 1
Model 3c Reference 1.12 (0.88-1.43) 1
Note: Weighted to parent cohort and excluding participants missing pro-NT/NMN.
Abbreviations: CI, confidence interval; eGFR, estimated glomerular filtration rate; OR
UACR, urinary albumin-creatinine ratio.
aAdjusted for age, sex, and race.
bAdjusted for Model 1 plus body mass index, current smoking, coronary artery diseas
metabolic syndrome.
cAdjusted for Model 2 plus baseline eGFR and UACR.
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Relationship of Pro-NT/NMN With Incident

Albuminuria

After excluding participants who had prevalent albumin-
uria, 12.5% developed incident albuminuria. Table 5
shows the association between pro-NT/NMN and inci-
dent albuminuria. In the final model, after adjusting for
baseline eGFR and ACR, there was no significant associa-
tion between pro-NT/NMN and incident albuminuria
(OR, 1.08; 95% CI, 0.96-1.22).

Relationship of Pro-NT/NMN With Incident Kidney

Failure

Table 6 shows the relationship between pro-NT/NMN and
incident kidney failure. Among 3,914 participants, inci-
dent kidney failure developed in 1.3% of participants. Each
SD higher pro-NT/NMN was associated with an OR of
2.15 (95% CI, 1.67-2.78) in the model adjusted for age,
race, and sex (model 1). However, in the final model
including baseline eGFR, this association was attenuated
and no longer significant (OR, 1.10; 95% CI, 0.83-1.46).
GFR Decline (≥30% eGFR Decline from Baseline)

Per SD Higher P

3 Q4

R, 95% CI) (OR, 95% CI)
68-231 >232

36/1,957 (22.3) 509/1,956 (26) 1,664/7,828 (21.3)
.37 (1.09-1.73) 1.58 (1.26-1.99) 1.22 (1.12-1.32) <0.001
.26 (1.00-1.60) 1.27 (1.00-1.61) 1.11 (1.02-1.20) <0.02
.27 (1.00-1.61) 1.23 (0.96-1.57) 1.09 (1.00-1.20) 0.04
P for interaction for sex: 0.70. P for interaction for race: 0.12.
, odds ratio; pro-NT/NMN, proneurotensin/neuromedin N; SD, standard deviation;

e, stroke, systolic blood pressure, diastolic blood pressure, diabetes mellitus, and
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Table 5. Association of Pro-NT/NMN With Incident Albuminuria

Quartiles of Pro-NT/NMN

P

Q1 Q2 Q3 Q4 Per SD Higher

(OR, 95% CI) (OR, 95% CI) (OR, 95% CI) (OR, 95% CI) (OR, 95% CI)
Range of pro-NT/NMN <120 120-167 168-231 >232
Number of events/Number
at risk (%)
Weighted N 169/1,606 (10.5) 146/1,602 (9.1) 218/1,601 (13.6) 268/1,603 (16.7) 801/6,412 (12.5)
Model 1a Reference 0.83 (0.60-1.16) 1.35 (0.99-1.83) 1.67 (1.24-2.25) 1.33 (1.19-1.48) <0.001
Model 2b Reference 0.88 (0.64-1.22) 1.23 (0.90-1.67) 1.28 (0.94-1.75) 1.20 (1.07-1.34) 0.001
Model 3c Reference 0.79 (0.56-1.11) 1.07 (0.78-1.48) 1.03 (0.75-1.43) 1.08 (0.96-1.23) 0.2
Note: Weighted to parent cohort and excluding participants missing pro-NT/NMN and baseline albuminuria.
Abbreviations: CI, confidence interval; eGFR, estimated glomerular filtration rate; OR, odds ratio; pro-NT/NMN, proneurotensin/neuromedin N; SD, standard deviation;
UACR, urinary albumin-creatinine ratio.
aAdjusted for age, sex, and race.
bAdjusted for Model 1 plus body mass index, current smoking, coronary artery disease, systolic blood pressure, diastolic blood pressure, diabetes mellitus, and
metabolic syndrome.
cAdjusted for Model 2 plus baseline eGFR and UACR.
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The interactions by sex and race were not significant
across the different endpoints (all P-interaction ≥ 0.1).
DISCUSSION

To our knowledge, this is the first study of community-
living individuals to evaluate an association between
plasma pro-NT/NMN and kidney function decline, albu-
minuria, and kidney failure. We showed that higher
concentrations of pro-NT/NMN were associated with 9%
greater odds of progressive eGFR decline, independent of
other risk factors. However, using a strict definition of
incident CKD, we did not find a significant association
between pro-NT/NMN and new CKD.

It has long been recognized that diabetes mellitus, car-
diovascular disease, and obesity are key risk factors in the
development of CKD.25-27 All 3 are associated with higher
levels of pro-NT/NMN.8-11,28 The precise role of pro-NT/
NMN in the kidney is not yet completely understood. In
murine models of CKD, an increase in circulating levels of
pro-NT/NMN has been noted with very low urinary pro-
Table 6. Association of Pro-NT/NMN With Incident Kidney Failure

Quartiles of Pro-NT/NMN

Q1 Q2 Q

(OR, 95% CI) (OR, 95% CI) (
Range of pro-NT/NMN <121 121-168 1
Number of events/Number
at risk (%)
Weighted N 8/1,957 (0.4) 6/2,022 (0.3) 3
Model 1a Reference 0.68 (0.15-3.10) 3
Model 2b Reference 0.62 (0.14-2.80) 2
Model 3c Reference 0.40 (0.08-2.03) 1
Note: Weighted to parent cohort and excluding participants missing pro-NT/NMN.
Abbreviations: CI, confidence interval; eGFR, estimated glomerular filtration rate; OR
UACR, urinary albumin-creatinine ratio.
aAdjusted for age, sex, and race.
bAdjusted for Model 1 plus body mass index, diabetes mellitus, and metabolic synd
cAdjusted for Model 2 plus baseline eGFR and UACR.

6

NT levels, which clearly point to reduced kidney excre-
tion.29 However, our hypothesis is that the association be-
tween pro-NT/NMN and incident CKD goes above and
beyond decreased excretion. Studies have shown the influ-
ence of neurotensinergic peptides and their receptors on
inflammation and metabolism. Pro-NT reflects visceral ad-
ipose tissue inflammation, which, in turn, leads to oxidative
stress and activation of the renin-angiotensin-aldosterone
system.13,30,31 Additionally, NT controls the pathways of
leptin, a peptide that plays a key role in the development of
hypertension and cardiovascular disease.32 Higher levels of
NT lead to higher levels of leptin. Leptin upregulates
transforming growth factor β1 levels, promoting endothe-
lial cell proliferations and fibrosis. Leptin also has proin-
flammatory effects leading to increased levels of tumor
necrosis factor α, interleukin 1, interleukin 2, and monocyte
chemoattractant protein 1, leading to accelerated athero-
sclerosis, insulin resistance, and endothelial dysfunction,
thus promoting the development of CKD.33

Our study demonstrated that pro-NT/NMN relates to
greater odds of eGFR decline. Associations were in similar
P

3 Q4 Per SD Higher

OR, 95% CI) (OR, 95% CI) (OR, 95% CI)
69-232 >232

0/1,906 (1.6) 54/1,943 (2.8) 98/7,828 (1.3)
.17 (1.07-9.39) 4.64 (1.66-13.0) 2.15 (1.67-2.78) <0.001
.72 (0.90-8.24) 3.22 (1.14-9.08) 1.86 (1.44-2.41) <0.001
.76 (0.50-6.20) 0.93 (0.28-3.12) 1.10 (0.83-1.46) 0.5

, odds ratio; pro-NT/NMN, proneurotensin/neuromedin N; SD, standard deviation;

rome.
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directions for the other outcomes but were attenuated and
not statistically significant in the final models. For kidney
failure, we were limited because of the small number of
events. In the incident CKD analysis, our sensitivity analysis
suggested an association with a less restrictive definition of
the outcome than used in our primary analyses.

In a recently published study that evaluated multiple
European cohorts, the authors concluded that pro-NT/
NMN was associated with impaired kidney function.29

However, this finding was derived from a cross-sectional
study in relatively homogenous cohorts. The existing data
describing an association of pro-NT and impaired kidney
function are limited to cross-sectional analysis of European
cohorts with primarily White participants. Our study adds
to this literature by providing consistent findings among a
biracial of cohort of Black and White individuals in the
United States. In contrast, our study sought to not only
evaluate the association between pro-NT/NMN and key
kidney outcomes longitudinally but also to evaluate this
biomarker among Black individuals because of the unique
risk factors for CKD progression relative to White per-
sons.34,35 There are many unanswered questions about why
Black patients have a 2- to 4-fold greater risk of developing
end-stage kidney disease, which is more common in Black
individuals.36,37 Part of the excess risk of CKD among Blacks
can be explained by sociodemographic, lifestyle, and clin-
ical factors such as higher rates of diabetes, hypertension,
and albuminuria, yet much of the risk remains unexplained,
even after accounting for genetic factors, such as apolipo-
protein L-1–mediated kidney disease.38,39 Furthermore,
classic “risk factors” such as hypertension do not behave
similarly in Black versus White populations with regard to
CKD progression. The REGARDS study population is
uniquely positioned to investigate not only whether a novel
marker is a risk factor for CKD but also whether that risk
differs by racial identity.

Strengths of our study include the evaluation of a cohort
of White and Black men and women from regions with a
high prevalence of diabetes mellitus and hypertension. This
contrasts to prior studies withmore homogenous cohorts.29

We used the new creatinine–cystatin C eGFR equation
without a race coefficient and a strict definition of incident
CKD. A wide array of traditional CKD risk factors was
robustly measured at baseline to allow evaluation of
confounding.

This study has several limitations. Although REGARDS
improves on the racial homogeneity of previous cohorts,
results from this study are not necessarily generalizable to
race groups other than non-Hispanic Whites or Blacks. We
only measured pro-NT/NMN at baseline, so we were not
able to evaluate longitudinal changes. eGFR and albuminuria
values were only collected at 2 timepoints,w9 years apart,
so we are unable to assess shorter-term changes, and unable
to address questions of informative dropout from the study
because of death or illness. However, BioMedioR design
assured nearly complete data on kidney disease at the 2
timepoints, allowing us to evaluate the outcomes of interest.
Kidney Med Vol 6 | Iss 6 | June 2024 | 100831
Additionally, prior studies have not shown an impact of
informativemissingness in other studies in REGARDS.40,41 It
is possible that the association between pro-NT/NMN with
eGFR decline could be the result of residual confounding.
Also, the definition of diabetes mellitus was based on self-
reported use of hypoglycemic drugs or insulin, fasting
glucose or elevated random glucose, and not on A1c, which
may not be sensitive enough. However, this is the diabetes
definition used in REGARDS. Lastly, we had a relatively small
number of kidney failure events, so confirmation of our
findings is needed.

In conclusion, our data from a large, prospectively
followed biracial cohort demonstrate an association be-
tween higher fasting pro-NT/NMN and progressive eGFR
decline. Future studies are needed to confirm these results
in other cohorts and evaluate if pro-NT/NMN may assist in
the comprehensive assessment of the development of
kidney disease.
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