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Loss of function mutations in PARK6, the gene that encodes the protein PTEN-induced
kinase 1 (PINK1), cause autosomal recessive familial Parkinson’s disease (PD). While PD
is clinically diagnosed by its motor symptoms, recent studies point to the impact of non-
motor symptoms, including cognitive dysfunction in the early pre-motor stages of the
disease (Aarsland et al., 2004; Chaudhuri and Schapira, 2009). As the hippocampus is
a key structure for learning and memory, this study aimed to determine whether synaptic
transmission is affected at CA3-CA1 excitatory synapses in PINK1 knockout rats at an
age when we recently reported a gain of function at excitatory synapses onto spiny
projection neurons in the dorsal striatum (Creed et al., 2020) and when motor symptoms
are beginning to appear (Dave et al., 2014). Using extracellular dendritic field excitatory
postsynaptic potential recordings at CA3-CA1 synapses in dorsal hippocampus 4-to 5-
month old PINK1 KO rats and wild-type littermate controls, we observed no detectable
differences in the strength of basal synaptic transmission, paired-pulse facilitation, or
long-term potentiation. Our results suggest that loss of PINK1 protein does not cause a
general dysfunction of excitatory transmission throughout the brain at this young adult
age when excitatory transmission is abnormal in the striatum.

Keywords: Parkinson’s disease, PINK1, hippocampus, CA3-CA1 synapses, long term plasticity, basal synaptic
transmission

INTRODUCTION

Human Parkinson’s disease (PD) affects a variety of brain regions, leading to multiple motor
and non-motor symptoms. Cognitive impairment is a disabling non-motor symptom, and affects
approximately 25% of newly diagnosed PD patients (Ibarretxe-Bilbao et al., 2012). As the disease
advances, up to 80% of PD patients without prior cognitive dysfunction develop mild cognitive
impairment (PD-MCI) and dementia (Hely et al., 2008). Consequentially cognitive deficits
have important implications in the disease management. Unfortunately, there are no effective
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therapeutic options available due to the incomplete
understanding of underlying synaptic mechanisms leading
to cognitive dysfunction.

In recent years, the field of movement disorders has evolved
from the conventional idea that hippocampal dysfunction plays a
minor role in PD, to one that now regards deficits in hippocampal
synaptic plasticity to contribute significantly to memory loss in
PD. This concept is supported by studies showing hippocampal
atrophy in PD patients with impaired cognition (Camicioli
et al., 2003; Bruck et al., 2004; Calabresi et al., 2013; Kandiah
et al., 2014), and studies showing lower baseline volume in the
CA1 hippocampal region accompanied by deficits in baseline
attention in PD patients with MCI. Longitudinally, the decline
in episodic memory appears to be associated with increasing
atrophy of CA2-CA3 regions over 18 months (Foo et al., 2017).
Thickness of hippocampal CA1 stratum pyramidale is also
associated with episodic memory impairment in PD patients
(Boentert, 2019). Importantly, in neurodegenerative diseases
such as PD, synaptic transmission is negatively impacted prior
to overt structural and behavioral abnormalities (Wishart et al.,
2006; Raymond et al., 2011). Thus, exploration of changes
in synaptic networks using preclinical models with a well-
established timeline of motor deficits can provide insight into
how relevant synaptic circuits are altered prior to and after motor
symptoms appear.

In this study we leveraged the recently developed PD rat
model with loss of function mutation in PARK6, the gene that
encodes the protein PTEN-induced kinase 1 (PINK1) (Valente
et al., 2004), to study hippocampal excitatory transmission. In
humans, loss of function PINK1 mutations cause an autosomal
recessive early-onset form of PD with clinical symptoms similar
to idiopathic PD (Kasten et al., 2010). However, the mechanism
by which PINK1 deficiency causes PD is unknown. Under
physiological conditions, PINK1 is involved in many functions
such as mitochondrial autophagy (Kane et al., 2014; Lazarou
et al., 2015; Truban et al., 2017) and bioenergetics (Rango
et al., 2020), maintenance of mitochondrial calcium homeostasis
(Heeman et al., 2011), and misfolded protein clearance (Du
et al., 2017), plus neuronal branching (Dagda et al., 2014),
regulation of adaptive immunity (Matheoud et al., 2019) and
neuroinflammation (Sliter et al., 2018). In a mouse model of
Alzheimer’s disease, PINK1 overexpression rescued impairments
in hippocampal LTP (Du et al., 2017). However, in PINK1
KO mice, no changes were detected in hippocampal LTP
(Feligioni et al., 2016). The occurrence of both motor and
non-motor phenotypes in PINK1 KO rats, specifically at ages
prior to reported nigral cell loss, prompted our investigation
of possible impairments in hippocampal synaptic transmission.
Using PINK1 KO rats, we explored how loss of PINK1 impacts
synaptic function at hippocampal CA3-CA1 synapses as this
region represents the primary experimental model for the
synaptic changes underlying learning and memory. We chose to
perform these experiments in rats at 4 to 5 months of age because
our laboratory previously found striatal circuit dysfunction at
this age when motor symptoms begin to appear but prior to
the age when dopaminergic neuronal loss becomes apparent
(Creed et al., 2020).

MATERIALS AND METHODS

Animals
PINK1 KO rats on a Long-Evans background were obtained from
Horizon Discovery with a breeding license and bred in-house
at the University of Alabama at Birmingham (UAB) to obtain
homozygous PINK1 KO and wild-type (WT) littermate controls
(Dave et al., 2014). All breeding and experimental procedures
were performed per the National Institutes of Health Guide
for the Care and Use of Laboratory Animals with prior review
and approval by the UAB Institutional Animal Care and Use
Committee. Rats were provided food and water ad libitum,
maintained on a 12-h light/dark cycle with lights on at 6 AM,
22◦C, 50% humidity, and all standard laboratory conditions. Male
rats were housed in same-sex groups and aged to 4 to 5 months
for all experiments.

Slice Preparation
Between 7 and 9 am, rats were anesthetized using isoflurane,
rapidly decapitated and brains removed. 400 µm thick coronal
slices encompassing the dorsal hippocampus were prepared using
a vibratome (Leica VT 1000P). For input-output (I/O) curves
and paired-pulse ratio (PPR) experiments, slices were sectioned
in ice-cold, high sucrose, artificial cerebrospinal fluid (aCSF)
containing (in mM: 85.0 NaCl, 2.5 KCl, 4.0 MgSO4 × 7 H20,
0.5 CaCl2 × 2 H20, 1.25 NaH2PO4, 25.0 NaHCO3, 25.0 glucose,
75.0 sucrose) to preserve neuronal health and limit excitotoxicity.
For long-term potentiation experiments, slices were prepared in
aCSF containing, in mM: [119.0 NaCl, 2.5 KCl, 1.3 MgSO4, 2.5
CaCl2, 1.0 NaH2PO4, 26.0 NaHCO3, 11.0 Glucose (saturated with
95% O2, 5% CO2, pH 7.4)]. Before transferring to the recording
chamber for electrophysiology experiments, slices were recovered
in a submersion chamber for at least 60 min in regular aCSF.

Electrophysiology
Extracellular field excitatory postsynaptic potentials (fEPSPs)
were measured from the dendritic region of CA1 pyramidal
cells following stimulation of CA3 Schaffer collateral axons in
dorsal hippocampus. All data were acquired with an Axopatch
200B amplifier, Digidata 1440A, and data acquisition software
pClamp 10 (Molecular Devices, San Jose, CA, United States).
Correct electrode placement for baseline fEPSPs was confirmed
by the generation of paired-pulse facilitation (PPF) characteristic
of CA3-CA1 synapses (Wu and Saggau, 1994). Schaffer collaterals
were stimulated using insulated twisted nichrome wire (A-M
Systems, Inc., Seqium, WA, United States) or tungsten electrodes
(FHC, Frederick Haer and Co, ME, United States) placed in
CA1 stratum radiatum within 200–300 µm of an aCSF filled
glass recording electrode. Baseline fEPSPs (∼50% of maximal
response) were recorded by delivering 0.1 Hz stimulation for
100 µs to generate fEPSPs of∼0.5 mV in amplitude.

Input/Output Curves (I/O) were obtained after a stable
10-min baseline recording. The curves were produced by
gradually increasing the stimulus intensity in 10 µA increments
until it reached 200 µA intensity, which generated the maximal
fEPSP slope. Ten fEPSP events collected at a single stimulus
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strength were averaged and plotted as a single fEPSP slope for
each stimulus intensity. Data collected from multiple slices from
an individual animal were averaged together to generate I/O
curves representing the data from that single animal.

Paired-Pulse Ratio (PPR) was generated using pairs of stimuli
delivered at inter-stimulus interval (ISIs) of 10, 20, 50, 150, 200,
and 400 milliseconds (ms). The ratio was calculated by dividing
the slope of the second event by the slope of the first event. Like
I/O, data collected from multiple slices from an individual animal
were averaged to represent data from that animal.

Long-term potentiation was induced following a 20-min stable
baseline, using either eight bouts of theta-burst stimulation
(strong TBS) or four bouts of theta-burst stimulation (weak TBS)
with each round consisting of 5 pulses at 100 Hz repeated 10× at
200 ms intervals, and each bout separated by 20 ms (Barnes et al.,
1996; Watabe and O’Dell, 2003; Kumar et al., 2007).

Statistical Analysis
GraphPad Prism 8 software was used for all statistical
analyses and graphing. The researcher performing the slice
electrophysiology experiments was blind to genotype, which
was disclosed only at the final analysis. All data were analyzed
using Repeated measures two-way ANOVA or paired t-test as
appropriate. All results are reported as mean + SEM with
significance set at a p-value of less than 0.05 (∗).

RESULTS

Basal Synaptic Transmission Is Not
Altered at CA3-CA1 Synapses in PINK1
KO Rats
We generated fEPSP I/O curves at CA3-CA1 synapses to
determine whether maximal synaptic strength is decreased in
PINK1 KO rats compared to WT littermate controls at 4 to
5 months of age. I/O curves were obtained by incrementally
increasing stimulus intensity from 0 to 200 µA in 10 µA intervals
(Figure 1A). We found no significant difference in basal synaptic
transmission between the two genotypes (p > 0.05; Repeated
measures two- way ANOVA, Figure 1B). This finding shows that
synaptic connectivity in area CA1 is not altered by loss of PINK1
protein at 4 to 5 months of age, the same age at which we have
reported heightened excitatory transmission in dorsal striatum
(Creed et al., 2020).

Paired-Pulse Ratio Is Normal in PINK1
KO Rats
Next, we measured the PPR, which is an indirect measure
of presynaptic neurotransmitter release probability (Dobrunz
and Stevens, 1997). Paired-pulse stimulation generates PPF at
CA3-CA1 synapses, as these synapses have low initial release
probability (Dobrunz and Stevens, 1997). We analyzed PPR
at 10, 20, 50, 100, 150, 200, and 400 ms inter-stimulus
interval (Figure 2A) and found no significant difference between
genotypes at any inter-stimulus interval (p > 0.05, Repeated
measures two- way ANOVA, Figure 2B).

FIGURE 1 | Input/output curves showed no difference in basal synaptic
strength at CA3-CA1 in PINK1 KO rats compared to WT littermate controls.
(A) Representative fEPSP traces from 4 months WT (black) and PINK1 KO
(Pink) rats. (B) After a stable 10 min baseline, input-output (I/O) curves were
obtained by increasing the stimulus intensity (10 µA increments) until a
maximal fEPSP slope was obtained, usually at 200 µA stimulus intensity. Initial
slope of the ten fEPSPs generated at each stimulus intensity were averaged
and plotted as a single value. No statistical difference (p > 0.05) was found
after using repeated measures two-way ANOVA [F(1,50) = 0.01699] at the
maximal stimulus intensity between WT (n = 26 slices/11 animals) and PINK1
KO rats (n = 26 slices/11 animals).

Long-Term Potentiation Is Not Different
Between WT and PINK1 KO Rats
To determine the ability of CA3-CA1 synapses to undergo long-
term plasticity at 4 to 5 months of age in PINK1 KO rats,
we investigated LTP at CA3-CA1 synapses. Initially, we used a
strong TBS stimulation to induce LTP. Comparison of averaged
baseline fEPSP slope measured from last 6 sweeps of a stable
20 min recording to the averaged fEPSP slope from the last 6
sweeps at 60 min post-tetanus showed significant LTP in WT
(p = 0.0007, paired t-test, t = 5.301, df = 8) and PINK1 KO
(p ≤ 0.0001, paired t-test, t = 6.542, df = 12) (Figure 3 panel
B3), with no significant differences in LTP magnitude between
groups [p > 0.05, Repeated measures two-way ANOVA, F
(1,18) = 0.7216, Figure 3 panel B2]. To rule out the possibility that
strong TBS might have masked a difference in LTP magnitude
between the two groups, we next asked whether a difference
could be observed using a weaker TBS stimulation. Comparison
of baseline fEPSP slope measured at 20 min to the averaged fEPSP
slope measured at 60 min post-weak TBS showed significant
LTP in WT (p ≤ 0.0001, paired t-test, t = 6.366, df = 12)
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FIGURE 2 | Paired-pulse ratio (PPR) was unaltered at CA3-CA1 synapses in
PINK1 KO rats compared to WT littermate controls. (A) Representative fEPSP
traces from 4 months WT (black) and PINK1 KO (Pink) rats. (B) After a 10 min
stable baseline, pairs of stimulation were delivered at 10, 20, 50, 150, 200,
and 400 milliseconds (ms) inter-stimulus intervals (ISIs). PPR was calculated
by dividing the initial slope of the first event. Repeated measures two-way
ANOVA showed no statistical differences [p > 0.05, F(1,54) = 2.418] between
WT (n = 26 slices/11 animals) and PINK1 KO rats (n = 26 slices/11 animals).

and PINK1 KO (p = 0.0002, paired t-test, t = 5.549, df = 10)
(Figure 3 panel C3), with no significant differences in LTP
magnitude between groups (p > 0.05; Repeated measures two-
way ANOVA, F (1,22) = 1.301, Figure 3 panel C2). This suggests
that there was no ceiling effect from strong TBS, confirming that
long-term plasticity is not altered in PINK1 KO rats compared
to WT littermates.

DISCUSSION

The goal of this study was to determine whether hippocampal
excitatory transmission in PINK1 KO rats is altered compared
to WT rats at an age when motor and non-motor phenotypes
are just appearing prior to reported nigral cell loss and when
we have observed an increase in excitatory transmission in the
dorsal striatum (Creed et al., 2020). We found no detectable
changes in the strength of basal synaptic transmission, short-term
presynaptic plasticity or LTP at CA3-CA1 synapses in PINK1
rats compared to WT rats. These results indicate that synaptic
function is not significantly impacted by loss of PINK1 protein at
this young adult age.

First, we investigated the strength of synaptic transmission
at CA3-CA1 synapses by measuring maximum transmission
using I/O curves and found no genotype differences. Similar
results were observed in PINK1 KO mice where no change
was observed in I/O curves at CA3-CA1 synapses in two
and six-month-old animals. However, the frequency, but not
amplitude, of spontaneous excitatory postsynaptic currents

(sEPSCs) was increased at CA3-CA1 synapses at 6 months
of age in PINK1 KO mice (Feligioni et al., 2016). This
finding is similar to our finding of increased frequency and
amplitude of spontaneous EPSCs recorded from striatal spiny
projection neurons in PINK1 KO rats at 4 months of age,
in the absence of a change in the corticostriatal I/O curve
(Creed et al., 2020). In contrast to PINK1 KO rats, no
difference was observed in PINK1 KO mice in the frequency
or amplitude of spontaneous EPSCs or miniature EPSCs
recorded from spiny projection neurons in dorsal striatum
(Madeo et al., 2014). Further investigations of CA1 pyramidal
neurons in PINK1 KO rats using whole-cell patch clamp is
needed in future experiments to investigate whether there is
a similar increase in frequency of spontaneous EPSCs, or
other alterations in synaptic transmission not observed in
the current study.

To determine if there was an alteration in presynaptic release
probability, we measured the PPR and did not find any statistical
difference between genotypes at any inter-stimulus interval.
A similar result was reported in an analysis of PINK1 KO mice
(Feligioni et al., 2016). Specifically, no changes in PPR between
PINK1 KO and WT mice at 2 and 6 months of age was observed,
although an increase in the frequency of the spontaneous EPSCs
was found. The authors speculated that this effect on spontaneous
EPSCs might be linked to increased presynaptic accumulation
of alpha-synuclein. Previous studies from our lab and others
reported the spontaneous appearance of proteinase K-resistant
α-synuclein-immunoreactive aggregates in various brain regions
of PINK1 KO rats, including cortex, thalamus, striatum, and
ventral midbrain (Grant et al., 2015; Creed and Goldberg,
2018). Recently, using slice electrophysiology, we reported
increased glutamate transmission onto dorsal striatum spiny
projection neurons in PINK1 KO rats at 4 months of age (Creed
et al., 2020). α-synuclein plays a vital role in the presynaptic
mobilization of the reserve pool of neurotransmitter vesicles, not
only for dopamine but also for glutamate (Gureviciene et al.,
2007). Our inability to detect changes in short-term synaptic
plasticity in acute hippocampal slices of PINK1 KO rats may
be related to the apparent lack of α-synuclein pathology in this
area at this age.

We found no impact of the loss of PINK1 on LTP induced
either by strong or weak TBS at CA3-CA1 synapses. This
suggests that these synapses do not differ in their ability
to undergo long-term plasticity between the two genotypes,
and there was no saturation effect from strong TBS. In
transgenic mice expressing a 120 amino acid truncated form
of α-synuclein, there is a reduction in striatal dopamine
levels and impaired ability to generate hippocampal CA1 LTP
(Tofaris et al., 2006; Costa et al., 2012). In both homozygous
and heterozygous PINK1 KO mice, evoked dopamine release
was decreased, leading to impaired corticostriatal LTP (Kitada
et al., 2007; Madeo et al., 2014). Consistent with this, we
have previously reported decreased dopamine tone in PINK1
KO rats at corticostriatal synapses at 4 months of age and
decreased striatal dopamine levels at age 12 months compared
to 4 months, measured using in vivo microdialysis (Creed
et al., 2019; Creed et al., 2020). Because bidirectional plasticity
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FIGURE 3 | Theta burst stimulation (TBS) induced long-term potentiation (LTP) was not different at CA3-CA1 synapses in PINK1 KO compared with WT littermate
controls. (A) Schematic of stimulating and recording electrode in area CA1 of the hippocampus and the TBS pattern used to produce LTP (5 pulses of 100 Hz, each
bout separated by 20 ms, repeated 10 times with 200 ms interstimulus interval). Initially, we performed LTP induction using a strong (8 bouts) TBS. To evaluate
whether a strong TBS produced a ceiling effect at these synapses, we then induced LTP using a weak (4 bouts) TBS. Panels (B1,C1) show representative fEPSP
traces from baseline and LTP induced by both strong and weak TBS from 4 months WT (black) and PINK1 KO (Pink) rats. Panels (B2,C2) show NMDA receptor
(NMDAR) dependent LTP induction at CA3-CA1 synapses, following a 20 min stable baseline, using a strong TBS or a weak TBS. No statistical difference (p > 0.05)
was found after using Repeated measures two-way ANOVA [strong TBS: F (1,18) = 0.7216; weak TBS: F (1,22) = 1.301] between WT littermate controls (strong TBS:
n = 9 slices/6 animals; weak TBS: n = 13 slice/4 animals) and PINK1 KO rats (strong TBS: n = 11 slices/7 animals; weak TBS: n = 11 slices/3 animals). Panels
(B3,C3) show comparison of fEPSP slope at 20 min baseline and 60 min post TBS successfully induced LTP in both WT (strong TBS: p = 0.0007, paired t-test,
t = 5.301, df=8; weak TBS: p = <0.0001, paired t-test, t = 6.366, df = 12) and PINK1 KO (strong TBS: p = <0.0001, paired t-test, t = 6.542, df = 12; weak TBS:
p = 0.0002 paired t-test, t = 5.549, df = 10) rats. However, no change was detected between WT and PINK1 KO rats when compared at 60 min post LTP induction
(strong TBS: p = 0.4299; Unpaired Student’s t-test, t = 0.8056, df = 20; weak TBS: p = 0.3980; unpaired Student’s t-test, t = 0.8619, df = 22).

is critical for normal hippocampus dependent learning and
memory (Wang et al., 2003), it will be important to determine in
future studies whether LTD is intact at hippocampal excitatory
synapses in PINK1 KO rats, and how loss of PINK1 during
the aging process alters long-term plasticity that contributes to
learning and memory.

In conclusion, this short report is the first hippocampal
synaptic physiology study to investigate the impact of
PINK1 deficiency in acute brain slices from PINK1 KO
rats. By recording extracellular dendritic fEPSPs, we showed
no early functional changes in mechanisms of short- and
long-term plasticity as well as the strength of basal synaptic
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transmission at CA3-CA1 hippocampal synapses. These
results demonstrate that loss of PINK1 does not alter
hippocampal synaptic plasticity at onset of both motor and
non-motor phenotypes.
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