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ductal metaplasia-related N7-
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carcinoma based on digital
spatial profiling
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Montreal, QC, Canada, 5McGill University Genome Centre, Montreal, QC, Canada, 6Department of
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Acinar-to-ductalmetaplasia (ADM) is a recently recognized, yet less well-studied,

precursor lesion of pancreatic ductal adenocarcinoma (PDAC) developed in the

setting of chronic pancreatitis. Through digital spatial mRNA profiling, we

compared ADM and adjacent PDAC tissues from patient samples to unveil the

bridging genes during the malignant transformation of pancreatitis. By

comparing the bridging genes with the 7-methylguanosine (m7G)-seq dataset,

we screened 19 m7G methylation genes for a subsequent large sample analysis.

We constructed the “m7G score” model based on the RNA-seq data for

pancreatic cancer in The Cancer Genome Atlas (TCGA) database and The

Gene Expression Omnibus (GEO) database. Tumors with a high m7G score

were characterized by increased immune cell infiltration, increased genomic

instability, higher response rate to combined immune checkpoint inhibitors

(ICIs), and overall poor survival. These findings indicate that the m7G score is

associated with tumor invasiveness, immune cell infiltration, ICI treatment

response, and overall patients’ survival. We also identified FN1 and ITGB1 as

core genes in the m7Gscore model, which affect immune cell infiltration and
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genomic instability not only in pancreatic cancer but also in pan-cancer. FN1 and

ITGB1 can inhibit immune T cell activition by upregulation of macrophages and

neutrophils, thereby leading to immune escape of pancreatic cancer cells and

reducing the response rate of ICI treatment.
KEYWORDS

acinar to ductal metaplasia, N7-methyladenosine, pancreatic carcinoma, prognosis,
immunotherapy, digital spatial profiling
Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most

important histological subtype of pancreatic cancer, accounting

for approximately 90% of all pancreatic cancers. The 5-year survival

rate of PDAC is less than 5%, and the median survival time after

diagnosis is less than 6 months (1). The poor prognosis of PDAC

has been attributed to multiple factors including late diagnosis, the

lack of sensitive and specific biomarkers to detect PDAC, and the

lack of effective measures to prevent its development and interrupt

its progression (2). Studies have shown that in pancreatitis,

pancreatic acinar cells lose their morphology and characteristics,

undergo cell transdifferentiation and acquire ductal morphology

and characteristics. This process is called acinar to ductal metaplasia

(ADM) (3). ADM developed in the setting of acute pancreatitis is

usually transient and reversible. However, persistent ADM in the

setting of chronic or recurrent pancreatitis may progress to

pancreatic intraepithelial neoplasias (PanIN) and eventually to

invasive tumor (4, 5) (6, 7). Studies have found that when ADM

occurs, a variety of signaling pathways in acinar cells are activated

(Notch, Wnt, PI3K/AKT, etc.), which inhibits the transcription of

specific genes in acinar cells (e.g. Mist1, Cpa1, Amy2a, etc), while

duct cell genes (e,g, Krt19, Sox9, etc.) are upregulated (8, 9).

Previous reports have demonstrated that suppression of

transdifferentiation signals in these cells blocks subsequent PanIN

and PDAC (10). Therefore, elucidating the key bridging molecules

in the malignant process of ADM-related PDAC can not only help

us find a novel mechanisms of PDAC pathogenesis, but also

provide us with new therapeutic and preventive strategies

against PDAC.

Epitranscriptomics provides insights into the biological and

pathological roles of different RNA modifications. An emerging

type of RNA methylation, 7-methylguanosine (m7G)

modification, has been a research hotspot over the past two

years. Studies have shown that m7G modification is one of the

most common forms of base modification in post-

transcriptional regulation (11), and is widely distributed in the

5’ cap region of tRNA, rRNA, and eukaryotic mRNA (12). m7G

methylation was found to play an important role in the
02
development of a variety of cancers, including colon and lung

cancer (13, 14). m7G-related epigenetic regulation can also affect

the tumor immune microenvironment and the efficacy of

immunotherapy (15). The m7g modification process is

regulated by a collection of key genes including mettl1, mettl3,

Cdk1, etc. (14, 16) However, the role of m7g modification and its

underlying regulatory genes in the malignant progression of

PDAC is still unclear.

In this study, we compared ADM and adjacent PDAC tissues

from pancreatic cancer patients and identified high and low-

expressed bridging genes during the malignant transformation

of pancreatitis through digital spatial mRNA profiling (DSP)

(17). There was a high degree of overlap between these bridging

genes and the m7G methylation genes. After comparing the

bridging genes with the m7G-seq dataset, we selected 21 m7G

methylation genes for subsequent bioinformatics analysis. Based

on these 21 m7G methylated genes, we constructed a model, the

m7Gscore, and used it to classify potential molecules that are

associated with different patterns of immune infiltration and

genomic instability in PDAC. We also evaluated whether m7G

score and m7G target genes could be used to predict patients’

response to immune checkpoint inhibitors (ICIs). As the core

genes of m7G score model, FN1 and ITGB1 are highly expressed

not only in the stroma and epithelial cells of ADM and PDAC,

but also in pan-cancer. FN1 and ITGB1 also affect Overall

survival rate, immune cell infiltration, tumor mutation burden

and microsatellite instability in pan-cancer. Finally, we

concluded that FN1 and ITGB1 can also up-regulate

macrophages and neutrophils and inhibit immune T cell

activition in pancreatic cancer, leading to immune escape and

reducing the response rate of ICIs treatment.

Materials and methods

Sample collection

The experimental design and analysis are shown in the flow

chart (Figure 1A). With the approval of the institutional ethics

review board of the McGill University Health Center, a total of 8
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sets of PDAC tissue samples were obtained from 8 patients with a

history of chronic pancreatitis who underwent surgical resection

in McGill University Health Centre. In each case, formalin fixed

paraffin embedded (FFPE) tissue blocks that contain normal acini,

ADM tissue and PDAC on the same tissue section were selected.

The clinical features of the eight patients are shown in Table 1.

None of the patients with pancreatic cancer received any pre-

operative treatments, including radiotherapy, chemotherapy, or

biological treatments. All specimens were histopathologically

diagnosed by two pathologists according to the WHO

diagnostic criteria for PDAC (18).
NanoString Technologies’ digital spatial
mRNA profiling

We selected several regions of interest (ROIs) from each PDAC

sample, including normal, ADM and PDAC ROIs. NanoString

Technologies’ newly developed GeoMx™ digital spatial profiling

(DSP) technology allows for morphology-driven, high-plex spatial

analysis of FFPE samples (17). Using the GeoMx Cancer

Transcriptome Atlas, a panel of RNA probes designed for

comprehensive profiling of the tumor, tumor microenvironment,

and tumor immune status with 1833 RNA targets, we directly

analyzed the in situ RNA expression of a total of 48 ROIs from 8

PDAC samples. Briefly, RNA probes coupled to unique

photocleavable oligonucleotide tags are hybridized to slide-

mounted FFPE tissue sections. Slides are then stained and

visualized, and the oligonucleotides are then released from ROIs

via UV exposure. The oligonucleotides are collected separately and

quantified. Counts are then mapped back to each tissue location,

yielding high quality, spatially resolved differential gene expression

profiles. The flowchart of DSP technology was shown in Figure 1B.
Histology, immunohistochemistry and
immunofluorescence

Formalin fixed tissue was processed, embedded in paraffin, and

cut into 5 µm sections. Hematoxylin and Eosin (H&E) (Thermo

Fisher Scientific, 7221, 7111) staining was performed according to

the clinical laboratory standard. Two areas of normal acini, ADM

and PDAC from each case were selected for the construction of a

tissue microarray. Immunohistochemical (IHC) staining was

performed using antibodies against Fibronectin 1 (FN1, 1:1000,

Cell Signaling Technologies 26836) and integrin b 1(ITGB1, 1:1000,
Cell Signaling Technologies 34971). Tissue sections were

deparaffinized in xylene and rehydrated in graded ethanol.

Antigen retrieval was performed by heating sections in boiling

sodium citrate buffer (Sigma-Aldrich, C-9999) for 20 minutes. After

blocking with 3% hydrogen peroxide and bovine serum albumin

(BSA), the tissues were incubated with the primary antibody at 4°C

overnight. After washing, the tissues were incubated with
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corresponding horseradish peroxidase (HRP)-conjugated

secondary antibodies. The color was developed using

diaminobenzidine (DAB) substrate (Sigma-Aldrich, D-7304) and

slides were counterstained with hematoxylin. Images of three

random areas from each section were captured at 400x, 500x, and

600x magnification for evaluation. Immunofluorescence staining

was performed using primary antibodies against cytokeratin-19

(CK19; 1:500, DSHB, TROMAII), alpha-smooth muscle actin

(SMA, 1:2000, Sigma-Aldrich A2547), FN1 (1:200), and ITGB1

(1:200). Corresponding Alexa Fluor dyes were used for fluorescent

detection. DAPI was used for nuclear counter staining. Images were

captured on the Zeiss LSM780 laser scanning confocal microscope.
Data retrieval and processing

We obtained the m1A dataset (1655 regulator genes) and m5C

dataset (34 regulator genes) through the RMBase database (https://

rna.sysu.edu.cn/rmbase June 2021) (19, 20). We acquired the m6A

dataset (417 regulator genes) through the M6A2Target database

(https://m6a2target.canceromics.org June 2021) (21). We obtained

the m7G-seq dataset (2795 regulator genes) through the m7GHub

database (https://www.xjtlu.edu.cn/biologicalsciences/m7ghub June

2021) (22). We intersected each group of methylated genes with the

bridging genes to identify the proportion of each methylated gene in

the bridging gene set. The bridging genes and the m7G-seq dataset

were intersected to obtain 54 m7G methylation genes. Through the

Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.

gov/: accessed June 2021), we obtained the raw mRNA matrix data

of PDAC in fragments per kilobase million (FPKM) format and the

copy number data for pancreatic cancer. The raw data of the mRNA

matrix were processed to remove duplicate samples. We also

obtained the clinical data of pancreatic cancer patients through the

TCGA database. To reduce statistical error, patients with survival

times less than or equal to 90 days were excluded from the data. We

downloaded the GSE21501 dataset from the Gene Expression

Omnibus (GEO) database to obtain the mRNA matrix and

clinical data of pancreatic cancer. The FPKM matrix of pancreatic

cancer was converted to the TPM format and then merged with the

GEO matrix, and some missing genes were removed through batch

correction to expand the sample size for subsequent analysis.

Similarly, patients with survival times less than or equal to 90 days

were excluded from the GEO database. We download pan-cancer

rawmRNAmatrix data, clinical data and copy number data through

UCSC database (Xena.ucsc.edu/December 2021). The

clinicopathological characteristics of the pancreatic cancer patients

in the TCGA database and the GEO database are shown in Table 2.
Cluster analysis

To investigate whether m7G methylation gene expression is

associated with pancreatic cancer, we used the “Consensus
frontiersin.org
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FIGURE 1

Digital spatial profiling of pancreatic cancer FFPE samples from patients with a history of chronic pancreatitis and ADM. (A) Flowchart of the
study. (B) Schematic overview of the DSP workflow. (C) Representative HE staining and IHC images from each group. (D) Heatmap of the 1826
detected genes. Cluster analysis indicated the clusters marked in different colors. (E) PCA analysis of tissues, slides and patients.
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ClusterPlus”package inRtoclassifypancreaticcancerdata.Whenthe

clustering indexkisbetween2and9,k=3 isdeterminedas theoptimal

number of subtypes. When k=3, the intergroup correlation is weak,

while the intragroup correlation is strong.We calculated the survival

curves of different clusters of pancreatic cancer using the Kaplan–

Meiermethod and plotted themusing the “survminer” package. The

relationshipbetween theexpressionof them7Ggeneaccording to the

pancreatic cancer classification and the clinical data of patients was

shownwithaheatmap.TheDEGs in the threeclustersofPDACwere

identified by using the VennDiagram package R language. Then

intersected the DEGs, we obtained 907 intergenes. Using the single-

sample gene set enrichment analysis (ssGSEA) algorithm, we

obtained the scores of immune cells in different clusters of

pancreatic cancers, and the scores were plotted as box plots using

the “GSEABase” and “GSVA” packages in R. The Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathwayfilesweredownloadedfromtheGSEAwebsite(https://www.

gsea-msigdb.org June 2021). Then, the enriched functional pathways

in the pancreatic cancer classifications were plotted into a heat map

using the “GSEABase” and “GSVA” packages in R.
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Principal component analysis

We obtained the principal component analysis (PCA) scores

for intergenes in the three m7G clusters of PDAC. PCA maps of

different clusters of pancreatic cancer were then plotted using the

“limma” and “ggplot2” packages in R. The m7G score of each

sample was obtained via a PCA analysis of DEGs in the three

m7G clusters (23). Based on the m7G score, we divided all the

pancreatic cancer samples into high and low m7G score groups.

A Sankey diagram was used to show the relationship among the

three clusters of pancreatic cancer, the two m7G score types of

pancreatic cancer and the overall survival rate. We analyzed the

correlation between m7G scores and immune cells by using the

ssGSEA algorithm. We analyzed the relationship between m7G

clusters, m7G score, and tumor mutation load using the

“ggpubr” and “reshape2” packages in R. Using the “limma”

package, the expression levels of UBQLN4 in the high and low

m7G score groups were displayed using box plots. We also used

the “survival” and “survminer” packages to analyze the

combined survival rate of the high tumor mutation burden
TABLE 1 Patient characteristics.

CASE No. Age Sex Grade Stage

CASE 1 67 M G2 pT3N1

CASE 2 80 M G2 pT3N1

CASE 3 86 M G2 pT2N0

CASE 4 66 F G2 pT2N0

CASE 5 83 M G2 pT2N1

CASE 6 67 F G1 pT1cN0

CASE 7 83 F G1-G3 pT3N1

CASE 8 66 M G3 pT2N
frontie
TABLE 2 Baseline characteristics of patients from TCGA and GEO database.

Clinical features Total patients (317) TCGA (185) GSE21501 (132)

Number Percentage (%) Number Percentage (%) Number Percentage (%)

Fustat

Alive 121 38.2 85 45.9 36 27.3

Dead 166 52.3 100 54.1 66 50.0

Unknown 30 9.5 0 0 30 22.7

Stage T

1-2 49 15.5 31 16.7 18 13.6

3-4 232 73.2 152 82.2 80 60.6

Unknown 36 11.3 2 1.1 34 25.8

Stage N

N0 78 24.6 50 27.0 28 21.2

N1 203 64.1 130 70.3 73 55.3

Unknown 36 11.3 5 2.7 31 23.5
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group, the low tumor mutation burden group, the high m7G

score group, and the low m7G score group. Through the

“maftools” package, we calculated the gene frequencies of the

high and low m7G score groups, and selected the top 20 genes

with the highest mutation frequency to draw a waterfall chart.

The “plyr” and “ggpubr” packages were used to plot different

clinical traits in the high and low m7G score groups as

histograms and box plots. TCGA database data is used to

draw NOMO diagram and ROC curve by using “rms”

package, “regplot” package and “timeROC” R packages. The

time gradient of ROC was 1,2 and 3 year. TIDE signature was an

algorithm for calculating T cell dysfunction and rejection in

various tumors. TIDE score was not only consistent with

immune escape characteristics, but also can predict the effect

of immune checkpoint treatment in patients with tumor (24).

We downloaded pancreatic cancer-related TIDE score,

Exclusion score and Dysfunction score data from TIDE

database (http://tide.dfci.arvard.edu/ June 2021). We then

analyzed the difference of the scores between the high- and

low- m7G score groups.

The immune checkpoint treatment scoring data for pancreatic

cancer were downloaded from The Cancer Immunome Database

(TCIA) (https://tcia.at/ June 2021). We then analyzed the treatment

of ctla4 and pd1 immune checkpoints in pancreatic cancer

according to m7G scores.
Protein-protein interaction (PPI)
networks and transcription factor
regulatory networks

Through the STRING website (https://string-db.org/cgi/

input.pl June 2021), the protein-protein interaction networks

of the m7G methylation genes were constructed. The TSV

format files of the m7G PPI networks were also downloaded.

Based on the TSV files, we plotted histograms to visualize the

core genes of the m7G PPI networks. From the DAVID website

(https://david.ncifcrf.gov June 2021), we obtained the

transcription factors associated with m7G methylation. We

constructed a transcription factor regulatory networks map of

the m7G methylation genes using Cytoscape software.
Statistical analysis

The copy number variation frequency of the m7G

methylation gene was obtained by calculating the increases

and reductions in the number of gene copies in the TCGA

samples. The “RCircos” package in R was used to plot the circle

diagram of gene copy number. Cox analysis and coexpression

analysis were used to map the prognostic gene network.
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Results

Bridging the gap between ADM and
PDAC: Bridging genes identified by DSP

The experimental design and analysis are shown in

Figure 1A. In order to identify the genes that bridge the gap

between ADM and PDAC, we collected 8 samples from PDAC

patients and selected 6 regions of interest (ROIs) from each

sample, including 2 normal, 2 ADM and 2 PDAC ROIs. The

results of hematoxylin and Eosin(H&E) staining and

immunohistochemistry (IHC) showed that the selection of the

ROIs of Normal, ADM and PDAC were correct. Microscopic

examination of the PDAC samples showed histological evidence

of conversion from normal pancreatic tissue to ADM and PDAC

(Figure 1C). GeoMx™ digital spatial profiling (DSP) analysis of

paired ADM and PDAC tissues (ADM vs Normal ∩ PDAC vs

ADM) identified a total of 224 trend genes, among which 75

genes showed gradually increasing expression, and 149 genes

showed gradually decreased expression. The gene expression

heatmap is shown in Figure 1D. ADM samples 1.1.3 and 1.1.4

appeared in the cluster of PDAC samples, so they were removed

from the study queue (Figure 1E). There was no confounding

effect between the remaining patients and samples.
High expression of m7G methylation
genes in pancreatic cancer

The proportions of m1A, m5C, m6A and m7G related

regulators in bridging genes were 14.28%, 0.04%, 5.80% and

24.10%, respectively. Since m7G-related regulators account for a

high proportion of bridging genes, we conducted more in-depth

study on this type of methylation in PDAC (Figure 2A). The

intersection of the 224 bridging genes and the 2795 m7G

methylation genes yielded 54 bridging m7G methylation genes

expressed in pancreatic cancer (Figure 2B). The 54 bridging m7G

methylation genes in the TCGA dataset were subjected to univariate

Cox analysis, and 21 prognostic-related bridging m7G genes were

obtained (Figure 2C). The frequency of copy number variations in

the 21 m7G methylation genes was observed with a histogram

(Figure 2D). In most of the bridging m7G methylation genes, the

frequency of copy number increases was higher than the frequency

of deletions. Among these genes, the LY6E methylation gene had

the most significant frequency of copy number increases. The

MAP2K2 and OAZ1 methylation genes had the most significant

frequency of copy number deletion. The gene copy number circle

diagram shows that the m7G methylation genes were mainly

concentrated on human chromosomes 8, 10, and 19 (Figure 2E).

After merging the TCGA and GEO datasets, we obtained a total of

19 m7G methylation genes by removing some of the missing genes

through batch correction. A co-expression analysis of the m7G
frontiersin.org
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methylation genes was performed, and a prognostic network was

plotted (Figure 2F). As illustrated in the figure, the vast majority of

the m7G genes regulate one another and form a functional

ensemble that jointly affects the progression of pancreatic cancer.
Three clusters of PDAC based on
bridging m7G methylation genes

Through a cluster analysis of the bridging m7G methylation

genes, we divided all the samples into three clusters (Figures 2G–

I). The survival analysis of the three clusters of pancreatic cancer

showed that cluster 2 had the lowest overall survival rate, while

cluster 3 had the highest survival rate (Figure 2J). This indicates

that the degree of malignancy of cluster 2 was relatively high,

and the degree of malignancy of cluster 3 was relatively low. On

the heat map (Figure 2L), the expression of most m7G

methylation genes was significantly increased in cluster 2 and

significantly decreased in cluster 3. Figure 4K shows that of the

23 types of immune cells, there were statistically significant

differences in the expression of 20 types of immune cells among

the three clusters of pancreatic cancer. These results indicate that

bridging m7G methylation genes can regulate immune cell

infiltration in pancreatic cancer. We performed GO and

KEGG enrichment analyses between three clusters of

pancreatic cancer (Figures S1A–F). Cluster 2 has the highest

degree of malignancy, and its enrichment pathways are mainly

concentrated in cell differentiation pathways, tumor

microenvironment pathways and carcinogenic pathways,

including regulation of cell morphogenesis involved in

differentiation, ECM receptor interaction, pancreatic cancer,

P53 signaling pathway and so on. The degree of malignancy of

cluster 1 is weaker than that of cluster 2, and its pathways mainly

focus on metabolism and tumor-related pathways, such as

integrin mediated signaling pathway, movement in host

environment and pathways in cancer. Cluster 3 has the lowest

degree of malignancy. Moreover, 907 genes (intergenes) were

overlapped among the three clusters of pancreatic cancer (Figure

S1G). GO and KEGG analysis results showed that the intergenes

were mainly enriched in ECM-receptor interaction, focal

adhesion and Wnt signaling pathway (Figures S1H–K).
Risk stratification of PDAC based on PCA
analysis and m7G scores

Through the PCA analysis of all the samples (Figure 3A), we

found that there was basically no overlap in m7G scores among

the three clusters of pancreatic cancer, and there was a good

correlation within the clusters. This indicates that our m7G

classification is very accurate. Figure 3B shows that the m7G

score was the highest for cluster 2 and lowest for cluster 3. In

addition, the m7G scores of the three clusters were significantly
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different. Through the PCA analysis, we obtained m7G scores

and divided all the pancreatic cancer samples into high and low

m7G score groups. We conducted ROC analysis on the

m7Gscore model and found that its 1, 2, and 3-year AUC

areas were all greater than 0.6 (Figure S1L). Sankey diagram

showed that most of the cases in cluster 2 with the highest degree

of malignancy belong to the high m7G score group, most of the

cases in cluster 1 belong to the low m7G score group, and all the

cases in cluster 3 with the lowest degree of malignancy belong to

the low m7G score group (Figure 3C). Moreover, the survival

rate of the high m7G score group was significantly lower than

that of the low m7G score group (Figure 3D). This indicates that

a high m7G score is associated with high risk, while a low m7G

score often reflects a low risk. This is consistent with the results

of previous studies. Cluster 2 pancreatic cancer has a high m7G

score and low survival rate, while cluster 3 has a low m7G score

and a high survival rate.
m7G score is associated with immune
cell infiltration and tumor mutation
burden

We performed a correlation analysis for m7G score and

immune cell infiltration (Figure 3E). Among the 23 types of

immune cells, the expression of 20 types of immune cells was

statistically significantly associated with the m7G score: 18 types

were positively correlated with the m7G score, and 2 types were

negatively correlated with the m7G score. We also analyzed the

relationship between m7G score and immune cell infiltration

through multiple softwares. Multiple software results showed

that m7G score was closely related to a variety of inflammatory

related immune cells, including macrophage, neutrophil and

cancer associated fibroblast (Figure 3F). Figure 3G shows that

the expression level of UBQLN4 in the high m7G score group

was significantly higher than that in the low m7G score group,

indicating that the higher the m7G score was, the greater the

genomic instability (25). Figure 3H shows that the m7G score

was positively correlated with tumor mutation burden, with

cluster 2 having the highest tumor mutation burden and cluster

3 having the lowest tumor mutation burden. The waterfall chart

shows that the gene mutation frequency of the high m7G score

group was significantly higher than that of the low m7G score

group (Figure 3I, J). The genes with the highest mutation

frequency in the high and low m7G score groups were KRAS,

TP53, CDKN2A and SMAD4 (26, 27). Figure 3K shows that the

survival rate of the high tumor mutation burden group was

significantly higher than that of the low tumor mutation burden

group. We also performed a joint analysis of the high and low

tumor mutation burden groups and the high and low m7G score

groups (Figure 3L), and the results showed significant differences

(p<0.001), indicating that both the tumor mutation burden and

m7G scores were correlated with patient prognosis.
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FIGURE 2

Classification of PDAC based on m7G methylation related bridging genes. (A) The proportion of four common methylation type genes in
bridging genes. m7G methylation genes have the highest proportion. (B) Intersection of the bridging genes and the m7G methylation genes.
(C) Univariate Cox analysis of the m7G methylation genes. (D) Diagram of the frequency of copy number variations in the m7G methylation
genes. (E) Copy number circle diagram for the m7G methylation genes. (F) Prognostic network of the m7G methylation genes. (G–I)
Classification of pancreatic cancers based on m7G methylation related bridging genes. Changes in the length and inclination of the CDF curve
for k=2–9. Area under the cumulative distribution function curve for k=2–9. Division of the pancreatic cancer samples into three clusters. (J)
Kaplan–Meier survival curves of the three clusters. (K) Immune cell infiltration of the three clusters. *p<0.05; **p<0.01; ***p<0.001; ns, no
significance. (L) Heat map of pancreatic cancer classification, m7G methylation genes, and clinicopathological characteristics.
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FIGURE 3

Immune cell infiltration and genomic instability in the m7G score. (A) PCA of the m7G methylation genes. (B) The m7G scores for the three
clusters of pancreatic cancers. (C) The Sankey plots revealed the correlation results of m7G clusters, m7G scores and the future state of
patients. (D) Kaplan–Meier survival curves of the high m7G score group and the low m7G score group. (E) Spearman correlation analysis of the
relationship between m7G scores and immune cell types *p<0.05. (F) Correlation of m7G score and immune cell infiltration through multiple
software. (G) UBQLN4 expression in the high m7G score group and the low m7G score group. (H) Correlation analysis of the relationship
between m7G scores and tumor mutation burden among the three clusters of PDAC. (I, J) Waterfall plot of gene mutation frequencies for low
and high m7G score groups. (K) Kaplan–Meier survival curves of the high tumor mutation burden group and the low tumor mutation burden
group. (L) Combined survival analysis results for the high and low tumor mutation burden groups and the high and low m7G score groups.
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m7G score is associated the clinical
behavior of PDAC

We ana l y z e d t h e p a t i e n t s ’ m7G sco r e s and

clinicopathological characteristics, including survival, T stage,

and N stage. Figures 4A–C shows that a high m7G score was

closely associated with a poor prognosis, local tumor invasion,

and lymph node metastasis. This indicates that from the

perspective of clinical pathological characteristics, a high m7G

score represents a higher degree of malignancy. We scored

various clinicopathological features and m7G scores and drew

a NOMO map to predict the prognosis of patients. If the total

score reaches 753, the probability that the patient’s survival time

was less than 1, 2, and 3 years is 0.0842%, 0.278%, and 0.327%,

respectively (Figure 4D). Among multiple indicators, only the

m7G score was statistically significant. The ROC curve results

showed that the 1, 2, and 3-year AUC areas of the NOMOmodel

were 0.713, 0.834, and 0.847, respectively (Figure 4E).
m7G score predicts tumor response to
immune checkpoint inhibitor treatment

The results of TIDE signatures showed that the immune evasion

mechanism of the high m7G score group was mainly immune

rejection, and the immune evasion mechanism of the low m7G

score groupwasmainly immune dysfunction. TheTIDE score of the

low m7G score group was significantly higher than that of the high

m7G score group. (Figures 5A–C) The resul t s of

immunosuppressant monotherapy and combination therapy

analysis showed that tumors with low m7G scores had a higher

rate of response to single immune checkpoint treatment (ICI).

Although the efficacy of PD-1 and CTLA-4 as single immune

checkpoint treatment was lower in patients with high m7G scores

than in those with low m7G scores, the efficacy of two-drug

combination immune checkpoint therapy in patients with high

m7G scores was higher than that of the low m7G score group

(Figure 5D). The observation was in agreement with the results of

most drug clinical trials, in which combination immune checkpoint

therapy had better efficacy than monotherapy for advanced

pancreatic cancer. We also conducted drug sensitivity analysis in

patients with high and low m7G score groups, so as to predict

potential effective drugs for pancreatic cancer patients (Figure 5E). A

total of 9 drugs were screened for patients with highm7G score, and

25 drugs were selected for patients with low m7G score (Figure S2).
FN1 and ITGB1 were the core genes
regulating m7G methylation

We obtained 6 m7G target genes by taking the overlapping

genes between clusters intergenes, m7G genes, and bridging
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genes (Figure 6A). By constructing a PPI network (Figures 6B,

C), we found that the m7G methylation genes were closely

related to each other and could interact with one another to form

a functional ensemble and jointly regulate the occurrence and

development of tumors. Among these, FN1 and ITGB1 were the

core genes in the PPI network and play a leading role in

regulation. M7G score was positively correlated with the

expression of 6 m7G target genes (Figure 6D). The expression

levels of six m7G target genes in the high m7G score group were

significantly higher than those in the low m7G score group

(Figure 6E). M7G target genes and m7Gscore were closely

correlated with multiple immune checkpoint genes

(Figure 6F). Through GSVA analysis, it was found that m7G

target genes and m7Gscore were closely related to multiple

carcinogenic pathways (Figures 6G, H).
IHC and immunofluorescence results for
FN1 and ITGB1

To validate the RNA results at protein level, we performed

IHC and immunofluorescence analysis of the core genes (FN1,

ITGB1) in the m7G methylation model (Figures 7A, B).

Compared with the negative staining in normal pancreas acini,

FN1 showed strong expression in the stroma of ADM and

PDAC (Figure 7A), whereas ITGB1 showed strong expression

in the epithelial cells of both ADM and PDAC (Figure 7B). The

ADM epithelium was further validated by co-staining with the

ductal marker CK19 and SMA highlighted activated stromal

myofibroblasts and smooth muscle in vessel walls.
Analysis of FN1 in pan-cancer

Figure 8A shows the expression of FN1 in 33 cancers, among

which FN1 most expressed in THCA. Figures 8B–E shows that

FN1 can affect overall survival、disease free survival disease

specific survival and progression free survival of patients in a

variety of cancers (including PAAD). Moreover, FN1 can affect

immune cell infiltration in pan-cancer (Figure 8F). FN1 is closely

associated with tumor mutation burden and microsatellite

instability in a variety of tumors (Figures 8G, H). We further

analyzed the role of FN1 in the immune microenvironment of

pancreatic cancer. Based on the ESTIMATE analysis, we found

that the estimate score, stromal score and immune score of FN1

high-expression group were significantly higher than those of

FN1 low-expression group (Figure 8I). FN1 is also closely

associated with multiple immunotherapy pathways and

classical process of the cancer immunity cycle (Figure 8J).

Using CIBERSORT algorithm, we calculated the correlation

between FN1 and immune cells (Figure S3A). The results

showed that FN1 was positively correlated with macrophages
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and neutrophils, and negatively correlated with various immune

T cells (Figure 8K). Figure 8L showed that the response rate of

PD1 and CTLA4 treatment in FN1 low-expression group was

significantly higher than that in FN1 high-expression group,
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which was consistent with the results of m7G score model on the

response rate of ICIs. We also calculated the response possibility

of FN1 to immunotherapy by TIDE algorithm, and the results

showed that the response of FN1 low-expression group was
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C

FIGURE 4

The relationship between m7G scores and prognosis in PDAC. (A) Survival in the high and low m7G score groups. (B) T staging of the high and
low m7G score groups. (C) N staging of the high and low m7G score groups. (D) NOMO map associated with m7G score and clinical
information. (E) Area under the curve (AUC) for time-dependent receiver operating characteristic curves demonstrating the prognostic
performance of the NOMO model.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.961457
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2022.961457
A B

D E

C

FIGURE 5

Immune checkpoint treatment and drug sensitivity. (A–C) TIDE score, Exclusion score and Dysfunction score of high and low m7G score
groups. **p<0.01; ***p<0.001 (D) Immune checkpoint treatment in the high and low m7G score groups. (E) Drug sensitivity in the high and low
m7G score groups.
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FIGURE 6

Network of m7G target genes in the m7G score model *p<0.05; **p<0.01; ***p<0.001. (A) Venn diagram of cluster intergenes, bridging genes
and m7G target genes. (B) Core genes of the PPI network of m7G methylation genes. (C) PPI network of the m7G methylation genes. (D)
Correlation analysis of m7Gscore and m7G target gene. (E) Expression of m7G target genes in high and low m7G groups. (F) Correlation analysis
of m7G target genes and m7G score with immune checkpoint related genes. (G, H) GSVA analysis of m7G target genes and m7Gscore.
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significantly higher than that of FN1 high-expression group

(Figure 8M). Furthermore, the expression of TIDE score,

exclusion score and MSI expr sig in the FN1 high-expression

group was higher than that in low-expression group (Figure 8N).

We analyzed the correlation of checkpoint genes between the

high and low expressed FN1 groups, the result showed that

multiple checkpoint genes were found to be highly expressed in

the high-expression FN1 group (Figure S3B). These results were

consistent with the results of m7G score model, suggesting that

FN1 may cause immunotherapy resistance in pancreatic cancer

patients through immune evasion.
Analysis of ITGB1 in pan-cancer

Figure 9A shows the expression of ITGB1 in 33 cancers,

among which ITGB1 expressed highest in CHOL and PAAD.

Figures 9B–E shows that ITGB1 can affect overall survival、

disease free survival disease specific survival and progression

free survival of patients in a variety of cancers (including

PAAD). Moreover, ITGB1 can affect immune cell infiltration in

pan-cancer (Figure 9F). ITGB1 is closely associated with tumor

mutation burden and microsatellite instability in a variety of

tumors (Figures 9G, H). ITGB1 can also affect the immune

microenvironment in pancreatic cancer (Figure 9I). Based on

the ESTIMATE analysis, we found that the estimate score, stromal

score and immune score of ITGB1 high-expression group were

significantly higher than those of ITGB1 low-expression group.

ITGB1 is also closely associated with multiple immunotherapy

pathways and classical process of the cancer immunity cycle

(Figure 9J). Using CIBERSORT algorithm, we calculated the

correlation between ITGB1 and immune cells (Figure S3C). The

results showed that ITGB1 was positively correlated with

macrophages and neutrophils, and negatively correlated with

various immune T cells (Figure 9K). Figure 9L showed that the

response rate of CTLA4 treatment in ITGB1 low-expression

group was significantly higher than that of ITGB1 high-

expression group, while there was no significant statistical

difference to PD1 treatment between ITGB1 high- and low-

expression group. We also calculated the response possibility of

ITGB1 to immunotherapy by TIDE algorithm, and the results

showed that the response of ITGB1 low-expression group was

significantly higher than that of ITGB1 high-expression group

(Figure 9M). In addition, the expression of TIDE score, exclusion

score and MSI expr sig in the ITGB1 high-expression group was

higher than that in low-expression group (Figure 9N). We

analyzed the correlation of checkpoint genes between the high

and low expressed ITGB1 groups, the result showed that multiple

checkpoint genes were found to be highly expressed in the high-

expression ITGB1 group (Figure S3D).
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Discussion

Although ADM is a benign and reversible process in the

setting of acute pancreatitis, long-term pancreas inflammatory

stimulation can lock metaplastic cells into a duct-like state.

Persistent ADM has been proven to be a precursor lesion for

the development of PDAC (28, 29). Pancreatic cancer develops

through a series of genetic events triggered by different driver

gene mutations. These differences in the mutated driver genes

lead to differences in the molecular phenotypes and biological

behaviors of pancreatic cancer, ultimately resulting in different

clinical outcomes (30). Studies have shown that the progression

from ADM to PDAC is driven by complex malignant bridging

genes and pathways (31). It is still unclear whether these

bridging genes can continue to play a malignant driving role

and how they function after the occurrence of PDAC. As a

newly-developed spatial genomics technology, DSP can

accurately detect the in situ expression of RNAs and proteins

in both ADM and PDAC areas simultaneously. This technology

avoids contaminat ion during the process of laser

microdissection and RNA preparation (32). In this study, we

collected tissues from 8 PDAC patients with a history of chronic

pancreatitis, and with histological manifestation of the

malignant progression from ADM to PDAC on the same

tissue section. Analysis using DSP technology on these human

PDAC tissue samples identified 224 bridging genes in the

progression from ADM to PDAC. Among these 224 genes,

there was a significantly a higher degree of overlap with the

m7G methylation genes. Therefore, we speculated that the

development of pancreatic cancer might be closely related to

the m7G methylation genes.

Cluster analysis is a powerful tool that can classify tumors into

subtypes based on their genomic similarities and differences in

association with patients’ clinical parameters and outcome data. It

can also facilitate comparative study of different subtypes and

discovery of new tumor subtypes (33). Cluster 2 had the lowest

overall survival rate, and Cluster3 had the highest overall survival

rate. The expression of most m7G methylation genes in Cluster2

was significantly higher than that in cluster 3. Some classic

oncopathways have also been significantly activated in Cluster2,

such as TGF-beta, ERBB, Wnt and so on. These results suggest that

m7G regulators may affect the malignant progression of pancreatic

cancer through a variety of cancer pathways.

Malignant progression of tumor-related diseases is often

accompanied by changes in cell morphology, such as ADM

and epithelial to mesenchymal transition (34). Roland et al.

found that PDAC is a process characterized by the extreme

involvement of the ECM, and the changes in the ECM-receptor

interaction pathway in PDAC are consistent with ECM

remodeling (35). Functional analysis showed the most
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malignant Cluster2 was closely related to differentiation-related

pathways, such as regulation of cell morphogenesis involved in

differentiation. In this study, we found that several ECM and

tumor microenvironment pathways were activated in cluster 2,

such as ECM receptor interaction and cell substrate junction.

PDAC is characterized histologically by the presence of

abundant desmoplastic stroma containing very small number of

infiltrating lymphocytes, indicating an overall immunosuppressive

microenvironment (36). It is well known that the degree of immune

cell infiltration is closely related to the efficacy of immunotherapy

and the prognosis of cancer patients. Studies have found that

immune cell infiltration was regulated by a variety of epigenetic

factors, including m6a and m5c methylation (37). But as a newer
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type of methylation, there are few immune-related studies on m7G

methylation. The results of this study suggest that m7Gmethylation

regulators may affect immune cell infiltration, which further affect

the immunotherapy response and patient’s prognosis.

In this study, the PCA algorithm showed that m7G scores were

negatively correlated with the overall survival rate. The Sankey chart

showed that most of the cases in Cluster2 with the worst prognosis

belong to the high m7G score group. These results support the

notion that m7G regulators play an important role in the malignant

progression of pancreatic cancer.

Through the TIDE score, we can intuitively understand the

immune escape mechanism of the high and low m7G score

groups. Studies have shown that in some tumors, although the
A

B

FIGURE 7

The expression of FN1 and ITGB1 in normal tissue, ADM tissue and PDAC tissue. (A) The expression of FN1 was gradually increased by IHC and
immunofluorescence. Its expression location was mainly in the intercellular substance. (B) The expression of ITGB1 was gradually increased by
IHC and immunofluorescence. Its expression location was mainly inside the cancer cell.
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FIGURE 8

Analysis of FN1 in cancers. *p<0.05; **p<0.01; ***p<0.001. (A) Expression of FN1 in 33 cancers. (B) Overall survival of FN1 in pan-cancer. (C) Disease free
survival of FN1 in pan-cancer. (D) Disease special survival of FN1 in pan-cancer. (E) Progression free survival of FN1 in pan-cancer. (F) Co-expression
analysis of FN1 and immune cells in pan-cancer. (G) Tumor mutation burden of FN1 in pan-cancer. (H) Microsatellite instability of FN1 in pan-cancer. (H)
(I) ESTIMATE analysis of FN1 high- and low-expression group. (J) Correlation between FN1, immunotherapy pathway and cancer immunity cycle. (K)
Correlation analysis between FN1 and CIBERSORT immune cells. (L) Response rate of ICIs in FN1 high- and low-expression group. (M) Response of
immunotherapy treatment in FN1 high- and low-expression group. (N) TIDE analysis of FN1 high- and low-expression group.
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FIGURE 9

Analysis of ITGB1 in cancers *p<0.05; **p<0.01; ***p<0.001. (A) Expression of ITGB1 in 33 cancers. (B) Overall survival of ITGB1 in pan-cancer.
(C) Disease free survival of ITGB1 in pan-cancer. (D) Disease special survival of ITGB1 in pan-cancer. (E) Progression free survival of ITGB1 in
pan-cancer. (F) Co-expression analysis of ITGB1 and immune cells in pan-cancer. (G) Tumor mutation burden of ITGB1 in pan-cancer. (H)
Microsatellite instability of ITGB1 in pan-cancer. (I) ESTIMATE analysis of ITGB1 high- and low-expression group. (J) Correlation between ITGB1,
immunotherapy pathway and cancer immunity cycle. (K) Correlation analysis between ITGB1 and CIBERSORT immune cells. (L) Response rate
of ICIs in ITGB1 high- and low-expression group. (M) Response of immunotherapy treatment in ITGB1 high- and low-expression group. (N)
TIDE analysis of ITGB1 high- and low-expression group.
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degree of cytotoxic T cell infiltration is high, these T cells are

often in a state of dysfunct ion. In other tumors ,

immunosuppressive factors can eliminate T cells infiltrating

the tumor tissue (38). The TIDE score results showed that the

immune escape mechanism of the low m7G score group was

mainly by dysfunction, while the high m7G score group was

mainly by immune exclusion.

In a phase I clinical trial of 207 patients with different

types of advanced cancer who received ICI monotherapy,

Brahmer et al. found that drug efficacy was relatively poor in

patients with advanced pancreatic cancer (39). Another

randomized phase II trial of 65 patients with metastatic

pancreatic cancer who failed first-line treatment with 5-FU

or gemcitabine showed that the disease control rate of the

combined drug treatment was significantly better than that of

the monotherapy (40). We performed immune checkpoint

assessments of the different m7G scores groups. The results

showed that tumors with low m7G scores had a higher rate of

response to ICI monotherapy. ICI monotherapy had poor

efficacy in the high m7G score group, although the efficacy of

combination therapy was relatively good, which is consistent

with the results of multiple clinical studies. Studies have

shown that the tumor microenvironment contributes to ICI

resistance. A nonimmunogenic tumor microenvironment

could potentially inhibit the immune response and prevent

the accumulation of immune lymphocytes in tumor tissues

(41), thereby affecting the efficacy of ICI treatment and

leading to the development of drug resistance. On the other

hand, long-term pancreatic cancer survivors have high-

quality neoantigens in the tumor microenvironment.

Therefore, it is conceivable that targeting these neoantigens

may improve the effectiveness of ICIs in the treatment of

pancreatic cancer (42).

We constructed a PPI network for the 6 m7G target genes.

In the PPI network, the core genes were FN1 and ITGB1. FN1

is a glycoprotein that is mainly involved in the processes of

cell adhesion and migration. Studies have reported that FN1

expression is upregulated in a variety of tumors and is

negatively correlated with patients ’ prognosis. FN1

overexpression can be used as a molecular marker for the

invasive phenotype of PDAC (43). Tsukamoto et al. found

that alcohol consumption could induce pancreatitis in mice,

increase FN1 expression and promote PDAC carcinogenesis

(44). In a TGF-b treatment-induced PDAC model, Yuzuru et

al. found that upregulation of FN1 was a hallmark of the

ductal growth of PDAC (45). It has been shown that stromal

cells are capable of inducing epithelial-mesenchymal

transformation, an event that is closely associated with the

progression of inflammation to tumors (46).Margareta et al.

demonstrated that FN1 functions in epithelial misplacement

(AEM) and adenomas with early carcinoma (AEC)

transformation in colon cancer (47), suggesting that FN1
Frontiers in Immunology 18
plays a role in the inflammatory transformation of cells to

colon cancer. Proteomics study showed that abundant FN1 is

present in extracellular vesicles (EVs) of PDAC and that high

expression of FN1 reduces the sensitivity of PDAC to

gemcitabine treatment (48). A member of the integrin

family, ITGB1 was also reported to play an important role

in PDAC carcinogenesis and biological behavior. ITGB1

signaling has been shown to promote the proliferation and

metastatic ability of pancreatic carcinoma in situ in mice by

stimulating the production of inflammatory cytokines (49).

ITGB1 also influences the malignant progression of

epithelioid-like ovarian cancer by regulating the production

of the inflammatory factors IL-6, TGF-b1 and SDF-1 (50). A

study by Oklahoma University suggested that ZIP4 could

increase the resistance of pancreatic cancer patients to

gemcitabine by upregulating the expression of ITGB1,

which was associated with a poor prognosis (51). Another

study from MD Anderson Cancer Center showed that GAL3

regulates the production of inflammatory cytokines in

ITGB1. Inhibition of this pathway can reduce the growth

and metastasis of pancreatic cancer in mice (49). These

literature data and our PPI analysis results all suggest that

the group of FN1 and ITGB1 genes interact with one another

and exert their functions as a coordinated network. In this

study, both immunohistochemical and immunofluorescence

analysis showed that (1) FN1 protein was highly expressed in

the stroma of ADM and PDAC lesions, and (2) ITGB1 protein

was highly expressed in the epithelium of ADM and PDAC.

This result suggests that increased expression of FN1 and

ITGB1 is associated with the metaplastic transdifferentiation

of normal pancreatic acinar cells to ductal cells through ADM

and eventually, the development of PDAC.

FN1 and ITGB1 not only play a role in pancreatic cancer, but

also be closely associated with overall survival, immune cell

infiltration, tumor mutation burden and microsatellite

instability in pan-cancer. This suggests that m7G score model

and m7G target genes may be independent prognostic factors for

a variety of tumors. The expression of FN1 and ITGB1 was

positively correlated with macrophages and neutrophils, and

negatively correlated with immune-related T cells. Studies have

shown that tumor-associated macrophages (TAM) play an

important role in tumor immune evasion (52). Various

mediators in the tumor microenvironment mediate the

recruitment of myeloid-derived suppressor cells (MDSC) and

monocytes, and polarize macrophages through different

signaling pathways, thereby promoting the formation of the

immunosuppressive myeloid microenvironment. Meanwhile,

tumor-associated neutrophils (TAN) are also an important

part of the immunosuppressive myeloid microenvironment

(53). Neutrophils in tumor microenvironment can inhibit the

immune function of T cells, which leads to the failure of ICIs

treatment (54). Both CTLA4 and PD1 ICIs treatment can
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activate immune checkpoint molecules expressed on the surface

of T cells, thereby reactivating T cells to play anti-tumor role (55,

56). When T cells are depleted, tumors are more likely to form

immunosuppressive microenvironments that help tumor cells

evade immune surveillance (57). Moreover, the higher

expression levels of FN1 and ITGB1, the lower response rate

of patients to ICIs treatment. TIDE score, exclusion score and

MSI score in high-expression group were also significantly

higher than those in low-expression group. This also indicates

that the high-expression group is more prone to immune

evasion. Therefore, we conclude that FN1 and ITGB1 can lead

to immune evasion in pancreatic cancer and reduce the response

rate of ICIs by up-regulating the activity of macrophages and

neutrophils, and down-regulating expression of immune T cells.

In summary, we used spatial genomics technology DSP to

identify the bridging genes in the transition from normal

parenchyma to ADM to PDAC. We found that these

bridging genes highly overlapped with m7G methylation

genes. The integrated model of ADM-Related m7G

regulators was able to predict genomic instability, immune

checkpoint treatment effectiveness, and overall survival in

patients with pancreatic cancer. Once validated in large

clinical trials, m7G score could be used to classify PDAC into

different groups with different patterns of immune infiltration,

genomic instability, and ICI response rate. M7G target genes

have the potential to become novel diagnostic biomarkers or

therapeutic targets of PDAC.
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The GO and KEGG enrichment analysis of the three PDAC clusters. (A–C)GO
enrichment analysis of the three clusters. (D–F) KEGG enrichment analysis of
the three clusters. (G) The differentially expressed genes among the three

types were intersected, resulting in a total of 907 genes. (H, I)GO enrichment
analysis of the 907 genes. (J, K) KEGG enrichment analysis of the 907 genes.

(L) Area under the curve (AUC) for time-dependent receiver operating

characteristic curves of the m7G score model.

SUPPLEMENTARY FIGURE 2

The 25 drugs were selected for patients with low m7G score.

SUPPLEMENTARY FIGURE 3

CIBERSORT and checkpoint analysis of core genes. (A) CIBERSORT
analysis of FN1.(B) checkpoint analysis of FN1. (C) CIBERSORT analysis

of ITGB1. (D) checkpoint analysis of ITGB1.
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