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Range query is the hot topic of the privacy-preserving data publishing. To preserve privacy, the large range query means more
accumulate noise will be injected into the input data.,is study presents a research on differential privacy for range query via Haar
wavelet transform and Gaussian mechanism. First, the noise injected into the input data via Laplace mechanism is analyzed, and
we conclude that it is difficult to judge the level of privacy protection based on the Haar wavelet transform and Laplace mechanism
for range query because the sum of independent random Laplace variables is not a variable of a Laplace distribution. Second, the
method of injecting noise into Haar wavelet coefficients via Gaussian mechanism is proposed in this study. Finally, the maximum
variance for any range query under the framework of Haar wavelet transform and Gaussian mechanism is given. ,e analysis
shows that using Haar wavelet transform and Gaussian mechanism, we can preserve the differential privacy for each input data
and any range query, and the variance of noise is far less than that just using the Gaussianmechanism. In an experimental study on
the dataset age extracted from IPUM’s census data of the United States, we confirm that the proposed mechanism has much
smaller maximum variance of noises than the Gaussian mechanism for range-count queries.

1. Introduction

Over the past ten years, differential privacy has become one
of the important methods in the area of privacy-preserving
for statistical databases. Differential privacy is a promising
scheme for publishing statistical query results of sensitive
data, which has a strong privacy guarantee for opponents
with arbitrary background knowledge [1–6]. ,e strong
privacy guarantee of differential privacy ensures that any
individuals in the data set will not significantly affect the
analysis results of the data set. At present, three basic
mechanisms are widely used to ensure differential privacy:
Laplace mechanism, Gaussian mechanism, and exponential
mechanism. Laplacian and Gaussian mechanisms are ap-
plicable to numerical queries, and exponential mechanisms
are applicable to non-numeric queries [7–9]. Recently,
differential privacy is adopted on many research field, such
as social network publishing [10–12], crowdsourced data
publication [13, 14], and genomic privacy [15–17].

Along with a long-range query scope, the accumulation
of noise in the range query answered for privacy preserving

can affect the usability of the released data [18, 19]. To reduce
the accumulation of noise, the method of hierarchical de-
compositions is usually employed [20]. Zhang et al. pro-
posed a differentially private algorithm for hierarchical
decompositions and named it as PrivTree. ,is histogram
construction algorithm eliminates the dependency on a
predefined limit parameter. ,e privacy-preserving range
query is adopted in the field of Internet of ,ings (IoT) in
recent years [21–23]. Cai et al. studied the transaction ap-
proximate range counting problem of large IoT data. ,ey
proposed a sampling-basedmethod to generate approximate
counting results. For privacy reasons, these results will be
further disturbed and then published. It is theoretically
proved that this result achieves unbiasedness, bounded
variance and enhances privacy guarantee under differential
privacy. Mahdikhani et al. proposed a communication ef-
ficient privacy protection range query in the fog-enhanced
Internet of things.,e feature of this scheme is that it adopts
the Paillier homomorphic cryptosystem and the ingenious
bloom filter data structure to achieve better privacy and
higher count aggregation efficiency in the range query
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scenario of protecting privacy. Histogram is a representative
and popular tool for data publishing and visualization tasks.
Nowadays, protecting private data and preventing the
leakage of sensitive information have become one of themain
challenges faced by histogram [24–26]. Histogram is the
result of a group of counting queries. It is the core statistical
tool for reporting data distribution. In fact, it is regarded as
the basic method of many other statistical analyses, such as
range query [27]. ,e advantage of histogram representation
is that it limits the sensitivity to noise. For example, when
histograms are used to support range or count queries,
adding or deleting a single record will affect at most one box.
,erefore, the sensitivity of range or count query on the
histogram is equal to 1, and the amount of additional noise
per box will be relatively small [28]. For the differential
privacy of long-range queries on the histogram, the accu-
mulation of noise is a key issue that needs to be focused.

Discrete wavelet transform (DWT) is an important
technology in signal and image processing [29–31]. Lifting
scheme, also called second generation wavelet, has many
advantages comparing with the first generation wavelet, such
as in-place computation, integer-to-integer transforms, and
speed [32–34]. Wavelet-based privacy preserving is studied
in recent years [35–37]. Xiao et al. propose the differential
privacy via Haar wavelet transform. ,ey introduce a data
publishing technique named Privelet. Privelet not only
ensures ε-differential privacy but also provides accurate
results for range query by injecting less noise into wavelet
coefficients. ,e mechanism that can be used to build the
differential privacy in Privelet is Laplace distribution. ,e
Laplace mechanism, which is used to guarantee differential
privacy in Privelet, maybe not a good choice for building the
privacy-preserving system based on discrete wavelet. ,e
reason is that the Laplace noise does not have the property of
additivity. ,at is, the sum of two Laplace distributions is not
a Laplace distribution. ,at means we cannot obtain an
analyzable noise distribution by wavelet reconstruction where
the Laplace noise is injected into the wavelet coefficients.

,e Gaussian mechanism for differential privacy is
proposed by Dwork [38, 39].,e Gaussian noise can be used
in the structuring of hierarchical decompositions, such as
wavelet transforms. ,e property of additivity of Gaussian
noise is very important for the reconstruction of noise data.
On the one hand, additivity can ensure that the recon-
structed noise is still Gaussian noise; on the other hand,
some noise can be eliminated during reconstruction.

In view of the above analysis, we will do some research on
differentialprivacyviaGaussianmechanismandliftingscheme
of Haar wavelet transform for range query in this study. In
summary, the main contributions of this work are as follows:

(1) Differential privacy using lifting Haar wavelet trans-
formandLaplacemechanism is analyzed in this study.
,e distribution of noise injected into the input data
via wavelet reconstruction is discussed and we con-
clude that they are not noise of Laplace distribution.

(2) Differential privacy based on lifting Haar wavelet
transform and Gaussian mechanism is constructed
in this study. For range query, our analysis shows

that the noise actually added into a certain range of
original data is much less than the sum of noise at
each data for the proposed mechanism.

(3) Differential privacy for range query via lifting Haar
wavelet and Guassian mechanism is discussed. We
give an algorithm to compute the maximum variance
of any range query for any given parameter l (suppose
the length of input data is 2l). Moreover, we give a
coarse estimation of the maximum variance of range
query using a function expression. Finally, we give an
experimental study using the proposed mechanism,
and the results show the proposed mechanism has a
much smaller maximum variance of noise than the
Gaussian mechanism for range query.

,e remainder of the study is organized as follows:
Section 2 introduces the fundamental definitions and the-
orems about the differential privacy and its implement
mechanism. Section 3 gives the theorems for how to inject
Gaussian noise into the Haar wavelet coefficients. Section 4
analysis the noise of range query under the framework of
Gaussianmechanism andHaar wavelet. First, the computing
method for the variance of range query is given. Second, the
algorithm of computing maximum variance for any range
query is introduced, and how to get the interval of the range
query when obtaining the maximum variance is introduced
in detail. Finally, the coarse estimation of the maximum
variance of range query is given as a function expression.
Section 5 introduces the experimental verification of the
computing of maximum variance for the range query based
on Gaussian mechanism and lifting Haar wavelet. Con-
clusions is given in Section 6.

2. Preliminaries

In this section, the fundamental definitions and theorems
about the differential privacy and its implement mechanism
are introduced first. Furthermore, the method of injecting
Laplace noise into the Haar wavelet coefficients is given.
,ey are the basis of the other sections.

2.1. Differential Privacy

Definition 1 ((ε, δ)-Differential privacy [38, 39]). A ran-
domized mechanism M with domain N|χ|⟶ Rd is (ε,
δ)-differential privacy if for all S⊆Range(M) and for all
x, y ∈ N|χ| such that ‖x − y‖1 ≤ 1.

Pr [M(x) ∈ S]≤ exp(ε)Pr [M(y) ∈ S] + δ, (1)

where the symbol ‖x‖1 denotes the l1-norm of a database x,
‖x‖1 �  |xi|, and ‖x − y‖1 denotes the l1-distance between
two databases x and y.

2.2. Laplace Mechanism

Definition 2 (l1-sensitivity [39]). Let N|χ|⟶ Rd be an
arbitrary d-dimensional function, then define the l1-sen-
sitivity of function f as follows:
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Δ1f � max
x, y∈N|χ|

‖x − y‖1 � 1

‖f(x) − f(y)‖1.
(2)

Definition 3. (Laplace distribution, Lap(λ)). ,e Laplace
distribution with mean zero and scale λ is the distribution
with probability density function:

Lap(x|λ) �
1
2λ

  exp −
|x|

λ
 . (3)

In Definition 3, the variance of this distribution is
σ2 � 2λ2. We write Lap(λ) to denote the Laplace distribution
with mean zero and scale λ in this study.

Theorem 1 (Laplace mechanism [39]). Let f is a function
with l1-sensitivity, the Laplace mechanism, which adds in-
dependently random drawn noise distributed as Lap(Δ1f/ε)
into each of the d components of the output, preserves
(ε, 0)-differential privacy.

Remark 1. ,roughout the study, we use the term “noise” to
refer to a random variable with a zero mean.

2.3. Gaussian Mechanism

Definition 4 (l2-sensitivity [39]). Let f: N|χ|⟶ Rd be an
arbitrary d-dimensional function, then define the l2-sen-
sitivity of function f as follows:

Δ2f � max
x, y∈N|χ|

‖x − y‖2 � 1

‖f(x) − f(y)‖2,
(4)

where the symbol ‖x‖2 denotes the l2-norm of a database x,
‖x‖2 �  x2

i , and ‖f(x) − f(y)‖2 denotes the l2-distance
between f(x) and f(y).

Definition 5 (Gaussian distribution, Gauss(σ2)). ,e
Gaussian distribution with mean zero and variance σ2 is the
distribution with probability density function:

Gauss x|σ2  �
1

(
���
2π

√
σ)exp −x

2/ 2σ2  
. (5)

In Definition 5, the variance of this distribution is σ2. We
write Gauss (σ2) to denote the Gaussian distribution with
mean zero and variance σ2.

Theorem 2 (Gaussian mechanism [38, 39]). Let f be a
function with l2-sensitivity and let ε ∈ (0, 1) be arbitrary. For
σ ≥Δ2f ·

����������
2 ln (1.25/δ)


/ε, the Gaussian mechanism, which

adds independently drawn random noise distributed as
Gauss(σ2) into each of the d components of the output,
ensures (ε, δ)-differential privacy.

In ;eorem 2, to ensure (ε, δ)-differential privacy, we can
inject the Gaussian noise with σ2 � 2 ln (1.25/δ) · (Δ2f/ε)

2

into the input data directly.

2.4. Injecting Noise into the Input Data via Lifting Haar
Wavelet

2.4.1. Lifting Scheme of Haar Wavelet. ,e lifting scheme of
Haar wavelet transform is shown in Figure 1. In Figure 1,
x(z) is the input data, xo (z) and xe (z) denote the odd indexed
samples and even indexed samples, respectively. a (z) and d
(z) are the approximate coefficients and detail coefficients,
respectively. For lifting scheme of Haar wavelet, we have p
(z)� −1 and u (z)� 1/2.

In Figure 1, we have

x(z) � 
n−1

i�0
xi · z

−i

�  x2k · z
2

 
− k

+ z
− 1

·  x2k+1 · z
2

 
− k

� xe z
2

  + z
− 1

xo z
2

 .

(6)

,erefore, the approximate coefficients a (z) and detail
coefficients d (z) can be given as follows:

a(z) �
1
2

xe(z) + xo(z)( , (7)

d(z) �
1
2

xe(z) − xo(z)( . (8)

In Figure 1, the lifting structure has the reconstruction
property, that is

xo
′(z) � xo(z), xe

′(z) � xe(z), x(z) � x(z). (9)

Figure 1 shows one-level decomposition and recon-
struction via lifting Haar wavelet transform. ,e wavelet
transform usually consists of many decomposition levels.
We can apply the same procedure to the approximate co-
efficients a (z) to get the multilevel Haar wavelet decom-
position, as shown in Figure 2.

In Figure 2, the top decomposition level is 3 (l� 3), c3,0 is
the approximate coefficient, ck,i (i≠ 0) denotes the ith
wavelet coefficient in kth decomposition level, and
xm(m ∈ [0, 7]) denotes the input data. In Figure 2, we
observe that the number of wavelet coefficients in kth de-
composition level is 2l− k.

In Figure 2, given the Haar wavelet coefficients, any entry
xm can be easily reconstructed as follows:

xm � cl,0 + 

ck,i∈C\ cl,0{ }

ck,i · gk,i ,
(10)

where cl,0 is the approximate coefficient, ck,i(i≠ 0) denotes
the ith wavelet coefficient in kth decomposition level, and
gk,i equals 1 (−1) if xm is in the left (right) subtree of ck,i,
equals 0 if xm is not in any subtree of ck,i. For example,

x1 � 3 � c3,0 + c3,1 + c2,1 − c1,1. (11)

In Figure 2, if we inject the noise into the approximate
coefficients and detail coefficients, then we can obtain the
reconstruction data with noise.
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2.4.2. Injecting Noise into Haar Wavelet Coefficients. For the
noise injected into Haar wavelet coefficients, the tree
structure of noise can be obtained by changing the symbol
“c” and “x” to n in Figure 2 because they use the same
decomposition of multilevel lifting Haar wavelet transform.

Referring to equation (10), the noise nm that injected into
data xm can be given as follows:

nm � nl,0 + 

nk,i∈N\ nl,0{ }

nk,i · gk,i ,
(12)

where nl,0 is the noise injected into approximate coefficient,
nk,i (i≠ 0) denotes the noise injected into the ith wavelet
coefficient in kth decomposition level, and gk,i equals 1 (−1)
if nm is in the left (right) subtree of nk,i and equals 0 if nm is
not in any subtree of nk,i.

,e range sum of these noise has a special property; that
is, some subnoise items can be eliminated when computing
some sum of range count. For example, referring to Figure 2
and equation (12), we have



2l−1

i�0
ni � 

7

i�0

ni � 8 · n3,0. (13)

In the above equation, the other subnoise items except
n3,0 have been eliminated. ,is gives us the inspiration to
apply this property to range query for differential privacy.

2.4.3. Getting Input Data with Noise. Based on the above two
sections, we reconstruct the input data with noise by using
the multilevel lifting Haar wavelet transform. Considering
Figure 2, the input data with noise is shown in Figure 3.

In Figure 3, xm(m ∈ [0, 7]) denotes the input data
reconstructed, nm is the noise injected into data xm. xm + nm

denotes the input data with noise. Referring to equations
(10) and (12), we have

xm +nm �cl,0+ 

ck,i∈C\ cl,0{ }

ck,i ·gk,i +nl,0+ 

nk,i∈N\ nl,0{ }

nk,i ·gk,i 

� cl,0+nl,0 + 

ck,i∈C\ cl,0{ }
nk,i∈N\ nl,0{ }

ck,i +nk,i  ·gk,i ,

(14)

where the meanings of the symbols cl,0, nl,0, ck,i, nk,i, and gk,i

are as stated before.
Based on the analysis of above, we conclude that the

input data with noised can be obtained by injecting the
noise, such as Laplace noise or Gaussian noise, into the
approximate and detail coefficients. Moreover, the noise
injected into each input data is the sum of the noise injected
into approximate and detail coefficients.

2.4.4. Injecting Noise via Haar Wavelet and Laplace
Mechanism. In equation (12), we set nk,i as the noise with the
Laplace distribution, as given in Definition 3. We have

nk,i ∼ Lap
λ
2k

 , (15)

where λ is the scale parameter of Laplace distribution and k
denotes the kth decomposition level of lifting Haar wavelet
transform.

According to equations (12) and (15), there is

nm ∼ Lap
λ
2l

  + 

nk,i∈N\ nl,0{ }

Lap
λ
2k

  · gk,i , (16)

where the symbols of nm, nk,i, nl,0, and gk,i are the same as
those in equation (12).

Using equations (12) and (16), we can describe the
Laplace noise injected into Haar wavelet coefficients, as
listed in Table 1.
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p (z) p (z)
u (z) u (z)
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d (z)
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2
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–
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Figure 1: Lifting scheme of Haar wavelet transform.
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According to Table 1, letting the range of the range query
is n0 to n7, we have



2l−1

i�0
ni � 

7

i�0

ni � 8 · n3,0 ∼ Lap 8 ·
λ
23

  � Lap(λ). (17)

,at means the sum of all noise injected into the input
data is a noise with Laplace distribution with mean zero and
scale λ.

Letting λ � Δ1f/ε, then ε � Δ1f/λ, according to ,eo-
rem 1, we conclude the (ε, 0)-differential privacy is pre-
served for the range query from n0 to n7 using Laplace
mechanism.

According to Table 1, letting the range of the range query
is n1 to n3, we have

n1 + n2 + n3 � 3 · n3,0 + 3 · n3,1 − n2,1 − n1,1. (18)

,erefore,

n1 + n2 + n3 ∼ Lap 3 ·
λ
23

  + Lap 3 ·
λ
23

 

− Lap
λ
22

  − Lap
λ
21

 .

(19)

As we know, the sum of independent random Laplace
variables is not a variable of Laplace distribution, so the
compositive noise of range query of n1 + n2 + n3 that in-
jected into input data x1 + x2 + x3 is not a noise with Laplace
distribution. ,erefore, we conclude that it is difficult to
judge the level of differential privacy protection based on the
Haar wavelet transform and Laplace mechanism.

To solve this problem, we consider adopting the
Gaussian mechanism for the differential privacy via Haar
wavelet transform in the next section.

3. Injecting Noise into Haar Wavelet
Coefficients via Gaussian Mechanism

To inject Gaussian noise into Haar wavelet coefficients in
Figure 3, we can set nk,i as the noise with the Gaussian
distribution, as given in Definition 5.

Let

nk,i ∼ Gauss
3σ2

4k
 , (20)

where 3σ2/4k is the variance of Gaussian distribution.

According to equations (12) and (20), we have

nm ∼Gauss
3σ2

4l
  + 

nk,i∈N\ nl,0{ }

Gauss
3σ2

4k
  · gk,i , (21)

where the symbols of nm, nk,i, nl,0, and gk,i are same as those
in equation (12).

Using equations (20) and (21), we can describe the
Gaussian noise injected into Haar wavelet coefficients, as
listed in Table 2.

Theorem 3. Suppose that X1 and X2 are independent ran-
dom variables, and Xi has Gaussian distribution with mean
zero and variance σ2i for i ∈ 1, 2{ }. ;en, X1±X2 is Gaussian
distribution with mean zero and variance σ21 + σ22; kX1 is
Gaussian distribution with mean zero and variance (kσ1)

2.

,e proof of ,eorem 3 will not be given because it is a
basic property of Gaussian distribution.

According to Table 2 and ,eorem 3, there is



2l−1

i�0
ni �

7

i�0

ni �8 ·n3,0 �Gauss 82 ·
3σ2

43
 �Gauss 3σ2 . (22)

,at means the sum of all noise injected into the input
data is a noise with Gaussian distribution. We analyze the
distribution of the noise injected into each input data as
follows.

Theorem 4. Injecting Gaussian noise with variance σ2k � 3σ2/4k

into the Haar wavelet coefficients in the kth decomposition level
(the maximum decomposition level is l, as shown in Figure 3), the
noise injected into each input data viaHaarwavelet reconstruction
is Gaussian noise with variance (1+2/4l) σ2.

Proof. According to Definition 5, ,eorem 3, Table 2, and
equation (21), we have

nm ∼ Gauss
3σ2

4l
  ± 

1

i�l

Gauss
3σ2

4i
 ,

∼ Gauss
1
4l

+ 
l

i�1
1/4i

 ⎛⎝ ⎞⎠ · 3σ2⎛⎝ ⎞⎠,

∼ Gauss 1 +
2
4l

  · σ2 .

(23)

Table 1: Laplace noise injected into Haar wavelet coefficients.
n 0� n 3, 0 +n3, 1 +n2, 1 +n1, 1
n 1� n 3, 0 +n3, 1 +n2, 1 −n1, 1
n 2� n 3, 0 +n3, 1 −n2, 1 +n1, 2
n 3� n 3, 0 +n3, 1 −n2, 1 −n1, 2
n 4� n 3, 0 −n3, 1 +n2, 2 +n1, 3
n 5� n 3, 0 −n3, 1 +n2, 2 −n1, 3
n 6� n 3, 0 −n3, 1 −n2, 2 +n1, 4
n 7� n 3, 0 −n3, 1 −n2, 2 −n1, 4
n k,i ∼ Lap (λ/23) Lap (λ/23) Lap (λ/22) Lap (λ/21)

Table 2: Gaussian noise injected into wavelet coefficients.
n 0� n 3, 0 +n3, 1 +n2, 1 +n1, 1
n 1� n 3, 0 +n3, 1 +n2, 1 −n1, 1
n 2� n 3, 0 +n3, 1 −n2, 1 +n1, 2
n 3� n 3, 0 +n3, 1 −n2, 1 −n1, 2
n 4� n 3, 0 −n3, 1 +n2, 2 +n1, 3
n 5� n 3, 0 −n3, 1 +n2, 2 −n1, 3
n 6� n 3, 0 −n3, 1 −n2, 2 +n1, 4
n 7� n 3, 0 −n3, 1 −n2, 2 −n1, 4
n k,i∼

Gauss (3σ2/
43)

Gauss (3σ2/
43)

Gauss (3σ2/
42)

Gauss (3σ2/
41)

Computational Intelligence and Neuroscience 5



,e proof is completed.
Using ,eorems 2 and 4, we can obtain the (ε, δ)-dif-

ferential privacy with variance (1 + 2/4l) σ2 for each input
data under the framework of Gaussian mechanism via Haar
wavelet transform. □

Theorem 5 (Differential privacy using Gaussian mechanism
andHaar wavelet). Let f be a function with l2-sensitivity, let
ε ∈ (0, 1) be arbitrary, and let σ � Δ2f ·

����������
2 ln (1.25/δ)


/ε.

;e mechanism adopting Gaussian and Haar wavelet, which
adds Gaussian noise with variance σ2k � 3σ2/4k into the Haar
wavelet coefficients in the kth decomposition level (Figure 3),
ensures (ε, δ)-differential privacy.

Proof. In ,eorem 4, if the Gaussian noise with variance
σ2k � 3σ2/4kis injected into the wavelet coefficients, the
reconstructed data will be the one with the Gaussian noise

with variance
�������
1 + 2/4l

√
σ. According to ,eorem 2, the

condition of
�������
1 + 2/4l

√
σ ≥Δ2f ·

����������
2 ln (1.25/δ)


/ε should be

satisfied. ,erefore, letting σ � Δ2f ·
����������
2 ln (1.25/δ)


/ε, the

condition is met and the proof is completed.
We simulate the process of injecting Gaussian noise

with� 12 into wavelet coefficients with 15-level decomposi-
tion using,eorem 4 and injecting Gaussian noise into input
data directly and draw the noise-count figures as follows.

Figure 4(a) shows the count of the noise injected into
input data by injecting the Gaussian noise with σ � 12 into
Haar wavelet coefficients with 15-level decomposition using
equation (20); Figure 4(b) denotes the noise count by
injecting Gaussian noise with mean zero and variance (1 + 2/
4l) σ2 into the input data directly. In Figure 4(c), we draw the
two curves together and we find that they are almost
overlapped. Figure 4(c) shows that the method injecting
Gaussian noise into Haar wavelet coefficients has the same
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Figure 4: Comparison between injecting Gaussian noise into wavelet coefficients using ,eorem 4 and injecting Gaussian noise into input
data directly.
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level of differential privacy protection as the method
injecting Gaussian noise into the input data directly. In this
study, we will focus on the application of range query.

According to ,eorems 3−5, we find that the distribu-
tion of noise for the range query using Gaussian mechanism
and Haar wavelet is a Gaussian distribution. ,erefore, we
can calculate the variance of noise easily, for example, as
listed in Table 2, we have

n1 + n2 + n3 � n3,0 + n3,1 + n2,1 − n1,1

+ n3,0 + n3,1 − n2,1 + n1,2

+ n3,0 + n3,1 − n2,1 − n1,2

� 3n3,0 + 3n3,1 − n2,1 − n1,1,

∼ 3Gauss
3σ2

43
  + 3Gauss

4σ2

43
 

− Gauss
3σ2

42
  − Gauss

3σ2

41
 ,

∼ Gauss 32 ·
3σ2

43
+ 32 ·

3σ2

43
+
3σ2

42
+
3σ2

41
 ,

∼ Gauss
57
32
σ2 .

(24)

From this example, we find that some noises (such as n2,1
and −n2,1, n1,2 and −n1,2) are eliminated by the operation of
addition. According to ,eorem 4, the variance of noise
injected into each input data should be (1 + 2/43)σ2 for l� 3.
,e total noise variance is 3∗ (1 + 2/43)σ2 � (99/32)∗ σ2.
Compared with equation (24), we conclude that, for the
range query, the noise actually added into a certain range of
the original data is much less than the sum of the noise at
each data. ,erefore, it is a very important property for
Gaussian mechanism to be used on range query. □

4. NoiseofRangeQueryunder theFrameworkof
Haar Wavelet and Gaussian Mechanism

In this section, we discuss how to compute the noise of the
range query under the framework of Haar wavelet transform
and Gaussian mechanism. First, we give the computing
method for the variance of range query in detail. Second, the
interval of the range query when obtaining the maximum
variance is introduced. ,ird, to speed up the computing of
maximum variance, we observe the results of the range-
count interval when getting the maximum variance and give
a speed computing method. Finally, we give a coarse esti-
mation of the maximum variance of range query as a
function expression.

4.1. Computing Method for the Variance of Range Query.
In Figure 3, we choose the Gaussian noise and inject them
into the approximate coefficient and each wavelet coefficient.

,e variance of Gaussian noise injected into approximate
coefficient is 3σ2/43. ,e variance of Gaussian noise injected
into each wavelet coefficient is 3σ2/4k for level k(k ∈ [1, 3]).
,e relationship between decomposition level and variance
of noise is listed in Table 3.

,e noise-sum of range query via Haar wavelet trans-
form for interval S can be given by the following equation
(Figure 3):

nsum � |S| · nl,0 + 

nk,i∈N\ nl,0{ }

nk,i · α nk,i  − β nk,i   ,
(25)

where S is the interval of any range query, nk,i presents the ith
noise injected into wavelet coefficient in kth decomposition
level, α(nk,i) denotes the number of left leaves in the left
subtree of nk,i that are contained in S, and β(nk,i) denotes the
number of right leaves in the right subtree of nk,i that are
contained in S (Figure 3).

Now we analyze the noise variance of range query.
According to equation (20), we know that the noise injected
into approximate coefficient is nl,0 and its variance is 3σ2/4l;
the noise injected into wavelet coefficient is nk,i and its
variance is 3σ2/4k. ,erefore, according to ,eorem 3, we
can compute the noise-variance of range query by replacing
nl,0 and nk,i with 3σ2/4l and 3σ2/4k in equation (25),
respectively.

σ2sum �|S|
2
·
3σ2

4l
+ 

nk,i∈N\ nl,0{ }

3σ2

4k
α nk,i −β nk,i  

2
 

� |S|
2
·
1
4l

+ 

nk,i∈N\ nl,0{ }

1
4k

α nk,i −β nk,i  
2

 ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ ·3σ2.

(26)

To compute the value of σ2sum, we need to calculate the
values of α(nk,i) and β(nk,i) firstly. In Figure 3, the length of
interval of leaves in the subtree of nk,i is 2k. ,e left point of
this interval has the subscript (i − 1) · 2k and the right point
of this interval has the subscript i · 2k − 1. ,erefore, the
subtree of nk,i has the subscript interval of leaves.

Snk,i
� (i − 1) · 2k

, i · 2k
− 1 . (27)

For example, the wavelet coefficient n2,2 in Figure 3 has
the subscript interval of leaves [4, 7].

According to equation (27), we can obtain the left-half
interval [αL, αR]and right-half interval [βL, βR] of S nk,i:

αL, αR  � (i − 1) · 2k
, i · 2k

− 2k− 1
− 1 ,

βL, βR  � i · 2k
− 2k− 1

, i · 2k
− 1 .

(28)

Table 3: Noise variance and decomposition level k.

k Variance of noise Number of wavelet coefficients
3 3σ2/43 23− 3

2 3σ2/42 23− 2

1 3σ2/41 23−1
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,erefore, α(nk,i) and β(nk,i) can be given by computing
the number of intersection between S and [αL, αR], S and
[βL, βR], respectively.

α nk,i  � S∩ αL, αR 


,

β nk,i  � S∩ βL, βR 


.
(29)

Let S � [SL, SR], where SL and SR denote the left and right
points of the given range query interval, respectively.
,erefore, we have

α nk,i  � SL, SR ∩ αL, αR 


, (30)

β nk,i  � SL, SR ∩ βL, βR 


, (31)

where k ∈ [1, l] and i ∈ [1, 2l− k] (Figure 3).

4.2. Maximum Variance of Range Query. ,e aim of this
study is to obtain the maximum value of range query for any
fixed maximum decomposition level l (the number of input
data is 2l). According to equation (26), we have

σ2sumMax �max |S|
2

·
1
4l

+ 

nk,i∈N\ nl,0{ }

1
4k

α nk,i  −β nk,i  
2

 ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ ·3σ2.

(32)

In equation (32), the given parameter is l. To compute
the value of σ2sumMax, we need to calculate any range query
interval S � [SL, SR] in all data and obtain the count α(ck,i)

and β(ck,i) using equations (30) and (31). We give the
pseudocode of computing σ2sumMax as follows:

Algorithm 1 illustrates the details of the algorithm of
computing σ2sumMax for fix l (l≥ 2). Step 1 is the initialization
of σ2sumMax. Steps 2 to 3 are the range loop of SL and SR. Step 5
is the loop of the subscript of decomposition level k. Step 6 is
the loop of the subscript of the wavelet coefficient in kth
decomposition level. Step 7 is the computation of the αL, αR,
βL, and βR of nk, i. Steps 8 to 13 denote the computation of α
(nk, i). Steps 14 to 19 denote the computation of β (nk, i). Step
20 is the computation of right part of σ2sum using equation
(26). Step 23 is the computation of σ2sum using equation (26).
Steps 24 to 26 denote the computation of σ2sumMax using
equation (34). Step 29 denotes the output of Algorithm 1.

According to Algorithm 1, we calculate the values of
σ2sumMax, SL, and SR, as listed in Table 4.

In Table 4, SR − SL+ 1 denotes the length of interval for
the σ2sumMax. It will take a very long time to compute the
σ2sumMax using Algorithm 1 when l> 14, so we need to find
some method to speed up Algorithm 1.

4.3. Speeding Algorithm for Computing the Maximum Vari-
ance of Range Query. Observing the values of SL and SR in

Input: the maximum decomposition level l
Output: σ 2

sumMax, SL and SR (for σ2sumMax)
(1) σ 2

sumMax � 0
(2) For SL � 0 to 2l−1
(3) For SR � SL to 2l−1
(4) sum� 0
(5) For k� 1 to l
(6) For i� 1 to 2l−k

(7) Compute αL, αR, βL, βR of nk, i using equations (38) and (39)
(8) If SR< αL or SL> αR then α (nk, i)� 0
(9) Elseif SL≥ αL and SR≤ αR then α (nk, i)� SR − SL+ 1
(10) Elseif SL< αL and SR> αR then α (nk, i)� αR − αL+ 1
(11) Elseif SL< αL and αL≤ SR≤ αR then α (nk, i)� SR − αL+ 1
(12) Elseif SR> αR and αL≤ SL≤ αR then α (nk, i)� αR − SL+ 1
(13) End If
(14) If SR< βL or SL> βR then β (nk, i)� 0
(15) Elseif SL≥ βL and SR≤ βR then β (nk, i)� SR − SL+ 1
(16) Elseif SL< βL and SR> βR then β (nk, i)� βR − βL+ 1
(17) Elseif SL< βL and βL≤ SR≤ βR then β (nk, i)� SR − βL+ 1
(18) Elseif SR> βR and βL≤ SL≤ βR then β (nk, i)� βR − SL+ 1
(19) End If
(20) Compute sum� sum+ (1/4k) (α (nk, i)− β (nk, i))2

(21) End For
(22) End For
(23) Compute σ2sum using sum and (26)
(24) If σ2sum> σ2sumMax
(25) σ2sumMax � σ2sum
(26) End IF
(27) End For
(28) End For
(29) Import σ2sumMax, SL and SR.

ALGORITHM 1: Compute σ2sumMaxfor fix l (l≥ 2).
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Table 4, we give some statistical rules to compute them
directly in Table 5.

According to Table 5, we can compute σ2sumMax using the
following algorithm:

Algorithm 2 illustrates the details of the algorithm of
computing σ2sumMax,l for any l (l≥ 2). Step 1 is the initial-
ization of SL and SR. Step 2 is the loop of the maximum
decomposition level l. Steps 3 to 7 denote the computation of
SL and SR according to the maximum decomposition level l.
Step 10 is the loop of the subscript of decomposition level k.
Step 11 is the loop of the subscript of the wavelet coefficient
in kth decomposition level. Step 12 is the computation of the
αL, αR, βL, and βR of nk, i. Steps 13 to 18 denote the com-
putation of α (nk, i). Steps 19 to 24 denote the computation of
β (nk, i). Step 25 is the computation of right part of σ2sum
using equation (26). Step 28 is the computation of σ2sum
using equation (26). Step 30 denotes the output of Algorithm
2 for any l.

SL and SR can also be given directly by simplifying the
results in Table 5.

If l is an even number,

SL �
2l− 2

− 1
3

, SR �
11 × 2l− 2

− 2
3

. (33)

If l is an odd number,

SL �
2l− 2

+ 1
3

, SR �
11 × 2l− 2

− 4
3

. (34)

,erefore, we give the values of σ2sumMax, SL, SR, and
SR − SL+ 1 for l from 2 to 30 in Table 6.

In Table 6, SL and SR denote the left and right points of
the range query interval when the σ2sumMax is met. SR − SL+ 1
denotes the length of interval for the σ2sumMax. In Table 6, we
observe that σ2sumMax will increase about (2/3) σ2 if the
parameter l increases 1.

4.4. Coarse Estimation of the Maximum Variance of Range
Query. In previous sections, the maximum variance of
range queries via Gaussian mechanism and Haar wavelet
transform is given for any l. But it is obtained using a
computer program, not from a function expression. In this
section, the coarse estimation of the maximum variance is
given in ,eorem 6, and it is a function expression with
parameters l and σ2.

Theorem 6 (Coarse estimation of the maximum
variance). Let N be a set of independent Gaussian noise
nk,i ∈ N with a variance 3σ2/4k, which is injected into one-
dimensional Haar wavelet coefficients and approximate co-
efficient (Figure 3). Suppose l � log2|N|, that means the
number of Gaussian noise injected into Haar wavelet

Table 4: Max-variance of range query via Haar wavelet and Gaussian mechanism (l from 2 to 14).

l σ 2
sumMax (∗ σ2) S L S R S R − SL+ 1

2 3.000000 0 3 4
3 3.562500 1 6 6
4 4.265625 1 14 14
5 4.910156 3 28 26
6 5.586914 5 58 54
7 6.248291 11 116 106
8 6.917542 21 234 214
9 7.582901 43 468 426
10 8.250217 85 938 854
11 8.916558 171 1876 1706
12 9.583388 341 3754 3414
13 10.249973 683 7508 6826
14 10.916680 1365 15018 13654

Table 5: Statistic results of SL and SR.

l S L S R

2 0 3
3 1 0× 2 + 1 6 3× 2
4 1 1× 2−1 14 6× 2 + 2
5 3 1× 2 + 1 28 14× 2
6 5 3× 2−1 58 28× 2 + 2
7 11 5× 2 + 1 116 58× 2
8 21 11× 2−1 234 116× 2 + 2
9 43 21× 2 + 1 468 234× 2
10 85 43× 2−1 938 468× 2 + 2
11 171 85× 2 + 1 1876 938× 2
12 341 171× 2−1 3754 1876× 2 + 2
13 683 341× 2 + 1 7508 3754× 2
14 1365 683× 2−1 15018 7508× 2 + 2
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coefficients and approximate coefficient is 2l (the number of
input data is also 2l). Let M be the noisy data reconstructed
from C+N (C is the set of one-dimensional Haar wavelet
coefficients of the input data, refer to Figure 2). ;en, for any
range query answered using M, the variance of noise in the
answer is at most ((6l + 9)/4)σ2.

Proof. Referring to Figure 3 and equation (26), we observe
that for any noise nk,i, if none of the leaves under nk,i is
contained in S, then there is α(nk,i) � β(nk,i) � 0. On the
other hand, if all leaves under nk,i are covered by S, then
α(nk,i) � β(nk,i) � 2k− 1. ,erefore, α(nk,i) − β(nk,i)≠ 0, if
and only if the left or right subtree of nk,i partially intersects
S. At any level of the decomposition tree except for the lth
level, there exist at most two such noises. At the level l, at
most one such noise that letting the condition α(nk,i)−

β(nk,i)≠ 0 be sufficient.
Considering a noise nk,i at level k (k ∈ [1, l]), such that

α(nk,i) − β(nk,i)≠ 0. Since the left (right) subtree of nk,i

contains at most 2k− 1 leaves, we have α(nk,i), β(nk,i)

∈ [0, 2k− 1]. So, there is |α(nk,i) − β(nk,i)|≤ 2k− 1. ,erefore,
the variance of the range query about the noise nk,i(k ∈
[1, l]) at most is

α nk,i  − β nk,i  
2

·
3σ2

4k
 ≤ 4k− 1

·
3σ2

4k
  � 3σ2/4. (35)

On the other hand, the noise in the approximate coef-
ficient (nl,0) has a variance at most:

2l
 

2
·

3σ2

4l
  � 4l

·
3σ2

4l
  � 3σ2. (36)

,erefore, the total variance injected into wavelet coef-
ficients of 1 to l− 1 level is 2 · (l − 1) · 3σ2/4, and the variance
injected into wavelet coefficients of level l is 1 · 3σ2/4.
According to equation (26), the variance of noise at most is

3σ2 + 2•(l − 1) ·
3σ2

4
+ 1•

3σ2

4
�

6l + 9
4

 σ2, (37)

which completes the proof.
,is conclusion in ,eorem 6 can also be obtained by

observing Table 2. Now, we give the intuitive explanation of
,eorem 6.

According to Table 2, we can give a coarse estimation
of the maximum variance of range query. In Table 2, we
insert a row at the bottom to calculate the maximum
variance sum for each column. ,e new table is shown as
follows.

Input:
Output: l, σ2sumMax, l, SL and SR (for l and σ2sumMax, l)

(1) S L � 0, SR � 3 (for l� 2)
(2) For l� 3 to 30
(3) If l is odd then
(4) SL = SL × 2 + 1, SR = SR × 2
(5) Elseif l is even then
(6) SL = SL × 2 − 1, SR = SR × 2+ 2
(7) End If
(8) σ2sumMax, l � 0
(9) sum� 0
(10) For k� 1 to l
(11) For i� 1 to 2l−k

(12) Compute αL, αR, βL, βR of nk, i using equations (38) and (39)
(13) If SR< αL or SL> αR then α (nk, i)� 0
(14) Elseif SL≥ αL and SR≤ αR then α (nk, i)� SR − SL+ 1
(15) Elseif SL< αL and SR> αR then α (nk, i)� αR − αL+ 1
(16) Elseif SL< αL and αL≤ SR≤ αR then α (nk, i)� SR − αL+ 1
(17) Elseif SR> αR and αL≤ SL≤ αR then α (nk, i)� αR − SL+ 1
(18) End If
(19) If SR< βL or SL> βR then β (nk, i)� 0
(20) Elseif SL≥ βL and SR≤ βR then β (nk, i)� SR − SL+ 1
(21) Elseif SL< βL and SR> βR then β (nk, i)� βR − βL+ 1
(22) Elseif SL< βL and βL≤ SR≤ βR then β (nk, i)� SR − βL+ 1
(23) Elseif SR> βR and βL≤ SL≤ βR then β (nk, i)� βR − SL+ 1
(24) End If
(25) Compute sum� sum+ (1/4k) (α (nk, i)− β (nk, i))2

(26) End For
(27) End For
(28) Compute σ2sum using sum and (26)
(29) σ2sumMax, l � σ2sum
(30) Import l, σ2sumMax, l, SL and SR
(31) End For.

ALGORITHM 2: Compute σ2sumMax, l for any l (l≥ 2).
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In Table 7, each value of the last row is given by cal-
culating the maximum sum of variance of some continued
parts for each column according to,eorem 3. For example,
the value of column 2 in the last row, 3σ2, is calculated by
range from n0 to n7:

8n3,0 ∼ 8Gauss
3σ2

43
  � Gauss 82 ·

3σ2

43
  � Gauss 3σ2 .

(38)

,e value of column 3 in the last row, 3σ2/4, is calculated
by range from n0 to n3 or from n4 to n7:

±4n3,1∼4Gauss
3σ2

43
 �Gauss 42 ·

3σ2

43
 �Gauss

3σ2

4
 .

(39)
,e value of column 4 in the last row, 3σ2/2, is calculated

by range from n2 to n5:

−2n2,1 + 2n2,2 ∼ 2Gauss
3σ2

42
  + 2Gauss

3σ2

42
 ,

∼ Gauss 22 ·
3σ2

42
  + Gauss 22 ·

3σ2

42
 ,

∼ Gauss 2 · 22 ·
3σ2

42
 ,

∼ Gauss
3σ2

2
 .

(40)

,e value of column 5 in the last row, 3σ2/2, is calculated
by range from n1 to n2 or from n3 to n4 or from n5 to n6:

−n1,1 + n1,2 ∼Gauss 3σ2/4+3σ2/4  � Gauss 3σ2/2 

−n1,2 + n1,3 ∼Gauss 3σ2/4+3σ2/4  � Gauss 3σ2/2 

−n1,3 + n1,4 ∼Gauss 3σ2/4+3σ2/4  � Gauss 3σ2/2 

. (41)

,erefore, we can obtain an estimation of the maximum
variance of range query as follows:

σ2sumMaxEstim � 3σ2 +
3
4
σ2 +

3
2
σ2 +

3
2
σ2 �

27
4
σ2 �

6∗ 3 + 9
4

σ2.

(42)

In Table 7, the wavelet decomposition level is 3 (the
number of input data is 23). Supposing that the decompo-
sition level is l, then we can give an estimation of the
maximum variance of range query:

σ2sumMaxEstim �
6l + 9
4

 σ2. (43)

Note that equation (43) gives the same result with the
conclusion in ,eorem 6.

Comparing the estimation maximum variances (equa-
tion (43)) with the real maximum variances (Table 6), we
find that

σ2sumMax≪ σ
2
sumMaxEstim. (44)

Table 6: Max-variance of range query via Haar wavelet and Gaussian mechanism (any l).

l σ 2
sumMax (∗ σ2) S L S R S R − SL+ 1

2 3.000000 0 3 4
3 3.562500 1 6 6
4 4.265625 1 14 14
5 4.910156 3 28 26
6 5.586914 5 58 54
7 6.248291 11 116 106
8 6.917542 21 234 214
9 7.582901 43 468 426
10 8.250217 85 938 854
11 8.916558 171 1876 1706
12 9.583388 341 3754 3414
13 10.249973 683 7508 6826
14 10.916680 1365 15018 13654
15 11.583327 2731 30036 27306
16 12.250003 5461 60074 54614
17 12.916665 10923 120148 109226
18 13.583334 21845 240298 218454
19 14.250000 43691 480596 436906
20 14.916667 87381 961194 873814
21 15.583333 174763 1922388 1747626
22 16.250000 349525 3844778 3495254
23 16.916667 699051 7689556 6990506
24 17.583333 1398101 15379114 13981014
25 18.250000 2796203 30758228 27962026
26 18.916667 5592405 61516458 55924054
27 19.583333 11184811 123032916 111848106
28 20.250000 22369621 246065834 223696214
29 20.916667 44739243 492131668 447392426
30 21.583333 89478485 984263338 894784854
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σ2sumMaxEstim provides a function expression using pa-
rameters l and σ2 for the maximum variance of range query
via Haar wavelet transform, but it has a very large error
comparing the real maximum variance, comparing equation
(43) with Table 6. ,erefore, for the analysis of the practical
applications, we prefer to use the maximum variance
σ2sumMax, as listed in Table 6. □

5. Experimental Verification

,is section introduces the experimental verification of the
proposed framework, that is, the computing of maximum
variance for range query based on Gaussian mechanism and
lifting Haar wavelet. We use the dataset age, which contains
census records of individuals from the United States.,e age
has 107, 974, and 787 records, each of which corresponds to
the age of an individual, extracted from the IPUM’s census
data of the United States [40]. ,e ages range from 0 to 135
and just have 128 values (ages 121, 123, 127, 128, 131, 132,
133, and 134 are empty). We count the number of each age
and give the histogram of age as the input file of our ex-
periments. Given a query length L, we test all the possible
range queries with length L and report the maximum var-
iance of the range query for input data.

,e noise injected into the input data via Gaussian
mechanism is Gaussian noise. ,e variance of Gaussian
noise is the sample variance. ,erefore, the sample variance
is adopted in this study and is computed by the following
equation:

Var(n) �
1

m − 1


m

i�1
ni −

1
m



m

j�1
nj

⎛⎝ ⎞⎠

2

, (45)

where ni (or nj) is the noise injected into the input data and
m is the number of the input data.

We research the maximum variance of the range query
of noise when ε chosen in the set {0.5, 0.75, 1.0, 1.25} and δ
chosen in the set {0.1, 0.01, 0.001}. For each special ε, we draw
the maximum variance of the range count of noise using
Gaussian mechanism and Gaussian mechanism with Haar
wavelet transform when δ is equal to 0.1, 0.01, and 0.001.

For any ε and δ, we can calculate the σ of Gaussian noise
using the equation σ �

����������
2 ln (1.25/δ)


/ε in ,eorem 5, and

the results are given in Table 8.
To compute the variance, we inject the Gaussian noise

into the input data or the Haar wavelet coefficients 10000
times. To compute themaximum variance of the range query

with fixed ε and δ, each variance of the range query for range
size k needs to be computed firstly. ,en, the maximum
value of variance for range size k can be given by comparing
all the variance of the k-range queries.

For input data with length 128 (such as 128 histogram),
we can draw the maximum variance diagram of the range
query using Gaussian mechanism and Gaussian mechanism
with Haar wavelet transform for any range sizes, as shown in
Figure 5.

In Figure 5, “Gauss” means injecting noise into each
histogram data via Gaussian mechanism directly and then
gets the noise of range query by the operation of addition.
First, “GaussWave” denotes injecting noise into the lifting
Haar wavelet coefficients using,eorem 5. Second, the noise
injected into each histogram is obtained by the inverse
wavelet transform. Finally, the range query for any range size
is obtained by injecting the noise together.

In Figure 5, we observe that the maximum variance is
increasing linearly with the “range size” for “Gauss.” In
Figure 5, for any ε and δ, the maximum variance of the noise
using “GaussWave” method is far less than the noise using
“Gauss” method.

To observe the variation tendency of “GaussWave” in
Figure 5, we just draw the maximum variance diagram of the
range query using Gaussian mechanism with Haar wavelet
transform, as shown in Figure 6.

In Figure 6, for any ε and δ, the maximum variance of the
noise using “GaussWave” method increases with the in-
crease of range size before it gets the maximum value, and it
will decrease with the increase of range size after it has gotten
the maximum value.

Table 7: Coarse estimation of max-variance for range query.
n 0� n 3, 0 +n3, 1 +n2, 1 +n1, 1
n 1� n 3, 0 +n3, 1 +n2, 1 −n1, 1
n 2� n 3, 0 +n3, 1 −n2, 1 +n1, 2
n 3� n 3, 0 +n3, 1 −n2, 1 −n1, 2
n 4� n 3, 0 −n3, 1 +n2, 2 +n1, 3
n 5� n 3, 0 −n3, 1 +n2, 2 −n1, 3
n 6� n 3, 0 −n3, 1 −n2, 2 +n1, 4
n 7� n 3, 0 −n3, 1 −n2, 2 −n1, 4
n k,i∼ Gauss (3σ2/43) Gauss (3σ2/43) Gauss (3σ2/42) Gauss (3σ2/41)
σ 2

sumMax� 3σ2 +3σ2/4 +3σ2/2 +3σ2/2

Table 8: σ for some ε and δ.

ε δ σ
0.5 0.1 4.4951
0.5 0.01 6.2150
0.5 0.001 7.5530
0.75 0.1 2.9967
0.75 0.01 4.1433
0.75 0.001 5.0353
1.0 0.1 2.2475
1.0 0.01 3.1075
1.0 0.001 3.7765
1.25 0.1 1.7980
1.25 0.01 2.4860
1.25 0.001 3.0212
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Figure 5: Continued.
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Figure 5: Maximum variance of range query using Gaussian mechanism and Gaussian mechanism with Haar wavelet on age (the United
States). (a) ε� 0.5. (b) ε� 0.75. (c) ε� 1.0. (d) ε� 1.25.
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Figure 6: Maximum variance of range query using Gaussian mechanism with Haar wavelet on age (the United States). (a) ε� 0.5. (b)
ε� 0.75. (c) ε� 1.0. (d) ε� 1.25.

Table 9: Comparison of maximum value between experimental result and theoretical analysis for range 1 to 128.

ε δ Range size Max-value σ 2
sumMax Difference

0.5 0.1 106 126.093366 126.252493 −0.159127
0.5 0.01 106 240.611130 241.347894 −0.736764
0.5 0.001 106 358.354318 356.451312 1.903006
0.75 0.1 106 56.957740 56.1109710 0.846769
0.75 0.01 106 109.807594 107.264005 2.543589
0.75 0.001 106 161.471355 158.420708 3.050647
1.0 0.1 106 31.521392 31.5617190 −0.040327
1.0 0.01 106 59.637942 60.336974 −0.699032
1.0 0.001 106 86.007548 89.112828 −3.105280
1.25 0.1 106 20.466279 20.199500 0.266779
1.25 0.01 106 38.351021 38.615663 −0.264642
1.25 0.001 106 57.678236 57.032210 0.646026
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In Table 6, we observe that the max-variance of range
query via Gaussian mechanism with Haar wavelet is
6.248291 ∗ σ2 when l� 7 (27 �128) and the length of interval
is 106. Considering the value of σ in Table 8, we give the
comparison of maximum value between experimental result
and theoretical analysis for range query in Table 9.

In Table 9, the column “max-value” presents the ex-
perimental result of the maximum value of maximum
variance for range query. ,e column “σ2sumMax” presents
the result of theoretical analysis and computed using the
formula σ2sumMax � 6.248291 ∗ σ2. ,e last column “differ-
ence” is the difference of columns “max-value” and
“σ2sumMax.” In Table 9, we find that the results of experiment
and theoretical analysis are in substantial agreement.

,is section gives the experimental verification of the
framework of the maximum variance computing for range
query. ,is framework on privacy preserving is built using
Gaussianmechanism andHaar wavelet. In Figure 6, for any ε
and δ, the maximum variance of the noise increases with the
increase of range size before it gets the maximum value of
106, and it will decrease with the increase of range size after it
has gotten the maximum value. In Table 9, the experimental
value and the theoretical value of maximum variance for
range count are compared, and the results show that they are
in substantial agreement.

6. Conclusions

In this study, we proposed a new differential privacy
framework via Haar wavelet transform and Gaussian
mechanism for the range query. ,e theorems for how to
inject Gaussian noise into the Haar wavelet coefficients are
given. ,e noise of range query under the theoretical
framework of Haar wavelet and Gaussian mechanism is
analyzed. ,e algorithm to compute the maximum variance
of any range query for any given parameter l is introduced. A
coarse estimation of the maximum variance of range query
using a function expression is given. ,e experimental re-
sults show that the maximum variance of the noise using
Gaussian mechanism and Haar wavelet is far less than the
noise using Gaussian mechanism. ,e experimental verifi-
cation of the computing of maximum variance for range
query based on lifting Haar wavelet and Gaussian mecha-
nism is proposed, and the results show the experimental
value and the theoretical value of maximum variance for
range count are substantial agreement. For future work, we
plan to apply our method to the privacy protection of
histogram publication. Furthermore, we want to investigate
how to assemble our method and machine learning algo-
rithm, such as the decision tree and random forest.
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