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Identifying causal regulatory variants and their target genes from the majority of non-
coding disease-associated genetic loci is the main challenge in post-Genome-Wide
Association Studies (GWAS) functional studies. Although chromosome conformation
capture (3C) and its derivative technologies have been successfully applied to nominate
putative causal genes for non-coding variants, many GWAS target genes have not been
identified yet. This study generated a high-resolution contact map from epithelial ovarian
cancer (EOC) cells with two H3K27ac-HiChIP libraries and analyzed the underlying
gene networks for 15 risk loci identified from the largest EOC GWAS. By combinatory
analysis of 4,021 fine-mapped credible variants of EOC GWAS and high-resolution
contact map, we obtained 162 target genes that mainly enriched in cancer related
pathways. Compared with GTEx eQTL genes in ovarian tissue and annotated proximal
genes, 132 HiChIP targets were first identified for EOC causal variants. More than half
of the credible variants (CVs) involved interactions that were over 185 kb in distance,
indicating that long-range transcriptional regulation is an important mechanism for the
function of GWAS variants in EOC. We also found that many HiChIP gene targets
showed significantly differential expressions between normal ovarian and EOC tumor
samples. We validated one of these targets by manipulating the rs9303542 located
region with CRISPR-Cas9 deletion and dCas9-VP64 activation experiments and found
altered expression of HOXB7 and HOXB8 at 17q21.32. This study presents a systematic
analysis to identify putative target genes for causal variants of EOC, providing an in-
depth investigation of the mechanisms of non-coding regulatory variants in the etiology
and pathogenesis of ovarian cancer.

Keywords: H3K27ac-HiChIP, credible variants, CRISPR activation, CRISPR-Cas9 deletion, long-range
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INTRODUCTION

Ovarian cancer is one of the most common malignancies in the
female reproductive system and accounts for the most deaths
from gynecological tumors (Matulonis et al., 2016). Heritable
factors play an important role in the development of epithelial
ovarian cancer (EOC; Lichtenstein et al., 2000). To date, GWAS
have identified approximately 27 loci associated with increased
risk of EOC (Song et al., 2009; Bolton et al., 2010; Goode et al.,
2010; Bojesen et al., 2013; Permuth-Wey et al., 2013; Pharoah
et al., 2013; Kelemen et al., 2015; Kuchenbaecker et al., 2015;
Phelan et al., 2017). GWAS identified susceptibility variants are
responsible for 6.4% of EOC risk (Phelan et al., 2017). However,
most of the GWAS identified risk variants in EOC are located in
non-coding regions, which presents challenges when exploration
the molecular mechanisms underlying these variants.

Traditionally, the GWAS identified variants were annotated
with the nearest gene or biologically relevant proximal genes
as the target genes. However, this approach does not consider
the three-dimensional conformation of the human genome and
its essential role for gene regulation in eukaryotic cells, and
these genes may not be true target genes for GWAS identified
variants. Recently, chromosome conformation capture (3C) and
its derivative technologies (ChIA-PET, capture Hi-C, 4C, etc.)
have been successfully used to identify target genes for risk
variants and the results revealed that distal rather than the nearest
genes are usually the causal targets for the functional variants at
GWAS loci. For example, lots of distal target genes for functional
GWAS variants have been found through promoter capture Hi-
C in colorectal cancer (Jager et al., 2015), cardiovascular diseases
(Montefiori et al., 2018), type II diabetes (Miguel-Escalada et al.,
2019), and bone mineral density (Chesi et al., 2019). 4C results
revealed that vascular diseases susceptibility associated variant
rs9349379 was linked with EDN1 which is located 600 kb
downstream of the variant (Gupta et al., 2017). HiChIP is a
newly developed protein-directed 3C derivative technology with
high chromatin conformation capture efficiency and sensitivity
(Mumbach et al., 2016). The technology has proven robust
in identifying target genes for GWAS identified variants in
autoimmune and cardiovascular diseases (Lopez-Isac et al., 2019)
and systemic sclerosis (Jeng et al., 2019). In endometrial cancer,
the H23K27ac-HiChIP generated chromatin contact map was
used to identify target genes for GWAS variants in endometrial
cancer (O’Mara et al., 2019). However, there remains a lack of
high-resolution genome-scale chromatin contact map in EOC
cells to identify target genes for GWAS identified variants.

In this study, we generated a high-resolution H3K27ac-
HiChIP contact map from two H23K27ac-HiChIP libraries in
EOC cell lines and applied the contact map to identify novel
target genes for EOC risk variants. In the largest EOC GWAS
study, we fine-mapped 15 risk loci of EOC and created a credible
variants (CV) set of 4,021 single nucleotide polymorphisms
(SNPs), which covered an estimated 99% of all likely causal
variants at the 15 risk loci. After intersecting the CVs with
HiChIP generated chromatin contact map, we identified 162
target genes linking to 649 CVs. Most HiChIP targets were newly
identified, such as LINC001116, LINC01137, TRIP13, PRC1,

and PRC1-AS1. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis revealed that the target genes were
mainly enriched in cancer related pathways, including Wnt and
proteoglycans in cancer signaling pathways. In addition, we
validated the regulatory relations between rs9303542 and HOXB
genes at 17q21.32 with CRISPR-Cas9 deletion and CRISPR
activation. Overall, our results provided unique insights into
the interaction between risk variants and potential targets with
H3K27ac-HiChIP data from EOC cells.

RESULTS

A High-Resolution H3K27ac-HiChIP
Chromatin Contact Map in EOC Cell Lines
To generate a high-resolution genome-wide long-range
chromatin contact map in EOC, we performed H3K27ac-
HiChIP in two EOC cell lines, OVCA432 and SKOV3. We
sequenced the HiChIP library of SKOV3 to 400 million reads
and OVCA432 to 200 million reads. We used the HiC-pro
pipeline for quality control (QC) with default settings (Servant
et al., 2015). After removing the unmapped reads and duplicated
interaction pairs, 267,408,761 valid interaction pairs were
identified in SKOV3, in which 84% were classified as unique
valid interactions. In all valid interaction pairs, 55% were cis
long-range interactions (>20,000 bp), 18% were cis short-range
interactions (<20,000 bp) and 11% were trans interactions
(Supplementary Figure 1A). Among the 137,387,655 valid
interaction pairs identified in OVCA432, 83% were unique valid
interaction pairs. The percentage of cis long-range interactions,
cis short-range interactions, and trans contacts were 52, 17,
and 14%, respectively (Supplementary Figure 1B). Detailed
QC results are listed in Supplementary Table 1. Both libraries
fulfilled the requirement for a high-quality HiChIP library. We
used the Fit-HiChIP pipeline (Bhattacharyya et al., 2019) to call
significant interactions that were ranged from 20 to 2,000 kb in
distance. In total, we identified 161,309 significant loops with
a median distance of 145 kb (mean distance: 258,124 bp) in
SKOV3 (Supplementary Figure 1C) and 113,357 significant
interactions with a median distance of 110 kb (mean distance:
163,129 bp) in OVCA432 (Supplementary Figure 1D).

The distal regulatory elements usually physically interacted
with the gene promoter to regulate its expression. Therefore, we
selected promoter-associated loops that looped with a promoter
region in at least one end. We separated the promoter-associated
loops into four categories, including promoter–promoter,
promoter–distal intergenic, promoter–intron, and promoter–
others (UTR, gene downstream, and exon) (Supplementary
Figure 2A). The results suggested that about half of the
promoter-associated loops were either promoter to distal
intergenic or promoter to intron interactions. This result
reflects the distribution of H3K27ac marked enhancers in
the human genome. Approximately 20% of the promoter-
associated loops were promoter–promoter loops, indicating that
promoters could contact and thus influence each other under
transcription regulation in EOC development. About one-third
of promoter-associated loops overlapped between the two EOC
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cell lines, indicating there were shared mechanisms for long-
range regulation in these cells (Supplementary Figure 2B).

To explore the transcription factors that mediate long-range
gene regulation in EOC, we conducted HOMER (Heinz et al.,
2010) analysis on ATAC-seq marked sequence in non-promoter
end of promoter-associated loops. As expected, CCCTC-binding
factor (CTCF) showed enrichment of the non-promoter end
in promoter-associated loops, which was consistent with its
function in mediating long-distance chromatin contact (Li et al.,
2020). The results also suggested that AP-1 transcription factor
complex members, such as JUNB, FRA1, FRA2, and FOSL2, were
the most enriched motifs in both EOC cells (Supplementary
Figures 2C,D). This data indicates that AP-1 transcription
factors may act as a master organizer for the long-range gene
regulation in EOC.

H3K27ac-HiChIP Interactions Linked the
Likely Causal SNPs of EOC to Their
Target Genes
To understand the gene regulation mechanisms underlying EOC
GWAS variants, we focused our analysis on 15 genomic regions
identified from the largest GWAS study in EOC. We fine-mapped
the 15 risk loci with a Bayesian approach and generated a credible
set that covered a 99% estimate of all likely causal variants at each
locus. In total, we got 4,021 credible variants (Supplementary
Table 2). After intersecting the CVs with significant HiChIP
loops, we achieved 162 putative target genes for 649 CVs that
fell in the loops (Table 1). The 649 CVs located in the significant
HiChIP loops were defined as HiChIP-CVs, and the genes located
on the other end of the loops, which have CVs at one end,
were defined as HiChIP target genes. The distance between the
HiChIP-CVs to gene targets ranged from 20 to 1,810 kb. The
median distance between the causal variants and their targets
is 210 kb in SKOV3 and 182 kb in OVCA432 (Figure 1A). For
example, the HiChIP results revealed that MYC and PVT1 were
the most likely targets for CVs at 8q24.21 (Pomerantz et al., 2009;
Ahmadiyeh et al., 2010; Sotelo et al., 2010; Grampp et al., 2016;
Lancho and Herranz, 2018), which was 815 kb away from their
linked variants (Figure 1B). Detailed information on HiChIP-
CVs and target genes is listed in Supplementary Tables 3, 4.

We performed KEGG pathway analysis for the HiChIP target
genes and found that these target genes were enriched in
some cancer related pathways, like signaling pathways regulating
pluripotency of stem cells, homologous recombination, Wnt
signaling pathway, and proteoglycans in cancer (Figure 1C).
To further test the relevance of the HiChIP target genes
in tumorigenesis of EOC, we compared the HiChIP targets
with differential expressed genes between tumor and normal
ovarian tissue from three GEO datasets [GSE18520 (Mok et al.,
2009), GSE27651 (King et al., 2011), and GSE54388 (Yeung
et al., 2017)]. We found that 24% (39 out of 162) HiChIP
target genes had significant difference in expression between
normal and tumor ovary samples (Table 1). Moreover, the
162 HiChIP target genes showed a higher enrichment score in
tumor ovarian samples than normal ovarian samples in all three
GEO datasets (Supplementary Figure 3A). The difference is

TABLE 1 | HiChIP target genes at EOC risk loci.

Locus CV Counts HiChIP Target Genes

1p34.3 5 RP11-109P14.10, MTF1, INPP5B, GNL2*,
LINC01137, ZC3H12A

2q31.1 17 LINC01116*, LINC01117, HOXD1,
AC079305.8, MIR4444-2, HNRNPA3

3q25.31 54 PLCH1, AC104472.1, C3orf33, SSR3, TIPARP,
TIPARP-AS1*, LEKR1, LINC00880,
RP11-6F2.5, LINC00881, CCNL1,
RNA5SP146, RP11-550I24.2, LINC00886*,
PA2G4P4

5p15.33 1 TRIP13*

8q24.21 32 CASC8, CASC11, RP11-419K12.1,
RP11-89M16.1, MYC, PVT1

9p22.2 11 BNC2*

9q34.2 35 ABO, RP11-430N14.4, RALGDS, SURF4*,
C9orf96, REXO4, ADAMTS13

10p12.31 5 RP11-275N1.1, NEBL-AS1, NEBL*, MLLT10*

15q26.1 28 RN7SL346P, SEMA4B*, RP11-154B12.3,
IQGAP1*, HDDC3*, RP11-387D10.2,
RP11-387D10.3, UNC45A*, AC068831.3,
RCCD1*, AC068831.6, VPS33B,
AC068831.10, PRC1*, PRC1-AS1,
AC068831.11, AC068831.12,
RP11-661P17.1, CTD-2313J17.1, FAM174B*

17q12 10 GGNBP2,DHRS11*, SYNRG*, DDX52,
RP11-697E22.1, RP11-697E22.2,
RP11-697E22.3, HNF1B, YWHAEP7,
AC124789.1, ARHGAP23*

17q21.31 244 AC002117.1, HEXIM2*, CTD-2020K17.1,
FMNL1*, DND1P1, RP11-259G18.1, KANSL1*,
NSF, WNT3, ARL17B

17q21.32 96 SKAP1*, RP11-456D7.1, RNU6-1152P,
HOXB3*, HOXB-AS3, HOXB-AS2, HOXB4*,
MIR10A, HOXB7*, HOXB8*, HOXB9, HOXB6,
HOXB5, HOXB2, HOXB-AS1, Y_RNA, COPZ2*,
CBX1, SNX11*, MIR1203, RP11-357H14.17,
RP11-433M22.2, HOXB-AS4, MIR196A1

19p13.11 15 CTC-429P9.4, SMIM7*, TMEM38A, HAUS8*,
MYO9B, USE1, OCEL1, NR2F6*, AC010646.3,
USHBP1, ANO8*, GTPBP3*, CTD-3131K8.2,
PGLS*, ABHD8, DDA1*, PLVAP,
CTD-2521M24.9, BST2, MVB12A*,
CTD-2521M24.6, CTD-2521M24.8,
CTD-2521M24.5

22q12.1 96 PITPNB, TTC28-AS1, MIR3199-2, TTC28,
CHEK2, CCDC117, CTA-292E10.6, XBP1,
HSCB, RN7SL162P, ZNRF3-AS1, ZNRF3,
RHBDD3, EWSR1*, MIAT*, CTA-373H7.7,
CTA-211A9.5, CTA-292E10.7

Underlined loci or genes are shown in HiChIP results of both EOC cell lines.
*Genes are differentially expressed between normal samples and tumor samples
of EOC in at least one of GSE18520, GSE27651, and GSE54388 dataset (Fold
change ≥ 2 and adjust p-value < 0.01).

more significant when only the differentially expressed HiChIP
target genes were considered (Supplementary Figure 3B). These
results indicated that HiChIP identified targets were involved in
EOC tumorigenesis.

Next, we compared the expression Quantitative Trait Loci
(eQTL) targets and proximal genes of GWAS CVs with
HiChIP targets. We collected 28 eQTL target genes from
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FIGURE 1 | HiChIP identified gene targets for GWAS loci of EOC. (A) Distribution of the distances spanning each CVs involved in the HiChIP loop in SKOV3 and
OVCA432. The red line indicates the median distance and the black line indicates the mean distance. (B) Examples of MYC and PVT1 looping to EOC GWAS CVs at
8q21.24 loci. (C) KEGG pathway analysis for HiChIP identified gene targets looping to GWAS CVs. (D) Venn plot displaying the number of HiChIP targets, eQTL
targets, and proximal targets of GWAS CVs of EOC. (E) SLDSC enrichment analysis for HiChIP loops identified from SKOV3 and OVCA432 cells.

the Genotype-Tissue Expression (GTEx) expression of ovary
tissue and 62 proximal genes from the annotation of the CVs.
Compared with eQTL and proximal targets, the HiChIP found
more target genes, with 5.4-fold to the eQTL targets and 2.5-fold
to the proximal targets (Figure 1D). Among these target genes,
7 HiChIP targets overlapped with eQTL targets, and 28 targets
overlapped with proximal targets. Five genes were identified in all
three target sets, including ABO, DND1P1, KANSL1, NSF, and
PRC1-AS1. The eQTL and proximal target genes were listed in
Supplementary Table 5.

To find out whether HiChIP loops were enriched with GWAS
signals of EOC, we applied the stratified linkage disequilibrium
score regression (SLDSR) method to quantify the enrichment of
GWAS signals at the HiChIP loops. The results suggested strong
enrichment of EOC risk variants in the HiChIP loops when
compared to the random genomic variants at the 15 risk loci from

the largest EOC GWAS study (Figure 1E). This result confirmed
that GWAS signals prefer to reside in regulatory genomic regions
and affect target genes through long-range regulation.

Functional Validation of Causal Variant
Effect on HOXB Genes at 17q21.32 Loci
To further identify the likely causal variants of these 649 HiChIP-
CVs, we intersected the 649 HiChIP-CVs with ATAC-seq peaks
from SKOV3 and OVCA432 cells. This narrowed the HiChIP-
CVs to 39 SNPs that featured ATAC-seq peaks in both cells
(Supplementary Table 6). Next, we focused on 17q21.32 loci,
as this loci presented the most HiChIP targets and likely causal
variants. At 17q21.32 loci, the index SNP rs9303542 located
genomic region interacted with HOXB genes from the HiChIP
results in both cells, which implied a regulatory element for
HOXB genes at this location. Many studies have found that
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HOXB cluster members are involved in the tumorigenesis
or progression of ovarian cancer, including HOXB2 (Yu and
Pan, 2020), HOXB3 (Miller et al., 2018), HOXB4 (Li et al.,
2018), HOXB7 (Chen et al., 2020), and HOXB8 (Stavnes et al.,
2013). Moreover, ATAC-seq and H3K27ac ChIP results from
various EOC cell lines revealed that rs9303542 located in
open chromatin and the H3K27ac marked enhancer region
(Figure 2A). To validate the long-range regulation between the
rs9303542-containing enhancer and HOXB genes, we deleted
an approximate 2 kb H3K27ac marked enhancer region around
rs9303542 in OVCA432 and SKOV3 cells (Figure 2B) and
measured the expression changes of HOXB genes after rs9303542
deletion. Because rs9303542 is located in the intron of SKAP1, the
expression of SKAP1 was also checked. As expected, HOXB7 and
HOXB8 showed a significant decrease after rs9303542 deletion
in both cells while SKAP1 (Supplementary Figures 4A,B)
and many other HOXB genes showed a moderate decrease in
expression after rs9303542 deletion (Figures 2C,D). To further
confirm whether rs9303542 was located in the enhancer region
and directly regulated the expression of HOXB7 and HOXB8, we
designed two sgRNAs (sgRNA1: 38 bp upstream of rs9303542,
sgRNA2: 25 bp downstream of rs9303542) around the rs9303542
and expressed the sgRNAs in dCas9-VP64 stable expression cells
(Figure 2B). The results revealed that the expression of HOXB7
and HOXB8 were significantly increased in sgRNAs expressed
dCas9-VP64 cells (Figures 2E,F), but no changes were observed
in SKAP1 expression (Supplementary Figure 4C). These results
indicated that the rs9303542-containing enhancer region had a
direct role in regulating HOXB gene expression, especially for
HOXB7 and HOXB8.

Moreover, expression analysis between normal and tumor
ovarian samples from three GEO datasets (GSES18520,
GSE27651, and GSE54388) showed that HOXB7 expression was
significantly increased in EOC tumors as two out of three GSE
datasets showed significantly upregulated HOXB7 expression
in EOC tumor samples (Figure 3A). At the same time, HOXB8
also showed upregulation in EOC tumor samples in two GSE
datasets with one dataset reached a marginal significant p-value
(Figure 3B). Overall survival analysis revealed that increased
expression of HOXB8 was associated with a short survival time
(Figure 3C). The expression of HOXB7 is also associated with
the overall survival of EOC patients with a marginal significant
p value (Figure 3D). These results indicated that HOXB7 and
HOXB8 may play a role in the tumorigenesis of EOC and that
rs9303542 was a likely causal variant at the 17q21.32 loci through
regulating HOXB7 and HOXB8 expression to affect the tumor
development of EOC.

DISCUSSION

Three-dimension chromosome architecture can bring distal
regulatory elements like enhancers into close contact with
target genes to cis regulate gene expression through binding
transcription factors. Recent studies have found that some GWAS
SNPs in distal regulatory elements can affect the binding affinity
of transcription factors due to the different genotypes present in

the binding motifs of transcription factors (Miller et al., 2018;
Yu and Pan, 2020). Understanding the regulatory landscape of
non-coding variants at GWAS identified risk loci is the main
obstacle for current post-GWAS studies. In the present study,
we generated a high-resolution contact map from two H3K27ac-
HiChIP libraries in EOC cells. With the high-resolution
interaction map, we identified 162 target genes for non-coding
variants at 14 EOC risk loci. Most of the HiChIP targets
are distal genes. Many HiChIP gene targets show differential
expression between normal ovarian and tumor ovarian samples.
The HiChIP targets were enriched in some cancer related
pathways as well. These results indicated that HiChIP identified
targets could be disease causal genes that are involved in the
tumorigenesis of EOC. Lots of HiChIP targets were first identified
as compared with eQTL and proximal targets. Stratified linkage
disequilibrium score regression (SLDSC) enrichment analysis
revealed that GWAS variants of EOC showed higher enrichment
in HiChIP loops than random genomic variants, indicating the
heritable relevance of HiChIP data from the two EOC cell
lines and high enrichment of GWAS variants in regulatory
elements in the genome.

The current available relevant chromatin contact data for
EOC is generated with HiC from ovary tissues (Schmitt et al.,
2016), since HiC was designed to explore all chromatin contact
and thus needed very high sequencing depth to reach a high
resolution, this HiC data was usually applied to detect the higher
chromosome structure like TAD in EOC but not to explore the
target genes for GWAS variants due to a low resolution. Recently,
O’Mara et al. (2019) analyzed the H23K27ac-HiChIP identified
target genes at shared GWAS risk loci of endometrial cancer
and ovarian cancer with HiChIP data from a normal ovarian
cell line (Glubb et al., 2020), normal and tumor endometrial
cell lines (O’Mara et al., 2019). We compared the HiChIP
identified target genes in endometrial cells and EOC at 1p34.3,
8q24, and 17q21.32, which were risk loci for both cancers.
Lots of targets were the same between the two cancer types,
like GNL2 at 1p34.3, PVT1 at 8q24, and HOXB genes at
17q21.32, indicating some common genetics shared between
these two gynecologic tumors. However, different target genes
were observed as well, like CASC8, CASC11, and LINC01137
were only detected in EOC cells, indicating the different roles
of these genes in tumorigenesis between endometrial cancer and
EOC. The chromosome conformation is always changed with
the epigenetic changes during tumorigenesis which resulted in
the dysregulated gene regulation in tumor development (Taberlay
et al., 2016; Li et al., 2019). Thus, long-range interactions might be
different between normal and tumor ovarian cells. We compared
the target genes identified from normal ovarian cells by the
O’Mara group and ovarian tumor cells from our study and found
some common targets like ABO at 9q34.2, MYC at 8q24.21,
and METTL10 at 10p12.31. We also found different HiChIP
target genes identified between normal tumor ovarian cell lines,
like CASC10, MIR1915, and SKIDA1 were only identified for
GWAS variants in normal ovarian cell lines while NEBL-AS1 and
NEBL were identified in tumor cell lines, indicating that different
long-range regulation patterns existed between normal ovarian
and EOC tumor cells.
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FIGURE 2 | Validation of regulatory relations between rs9303542 enhancer region and HOXB genes. (A) Interaction profiles of rs9303542 and HOXB genes at
17q21.32 and ATAC-seq and H3K27ac-ChIP signal enrichment at the rs9303542 region. (B) A schematic representation elucidating the design for CRISPR-Cas9
deletion and dCas9-VP64 activation experiments. sgRNA-U and sgRNA-D were cloned in px459v2 respectively and then cotransfected into the indicated cells to
delete the 2000bp rs9303542 enhancer region. The sgRNA1/2 were separately cloned into MS2-gRNA-hU6 expression vector and then transfected into
dCas9-VP64 stable expression SKOV3 and OVCA432 cells. (C,D) qPCR was used to detect the expression of HOXB genes between rs9303542 deleted (DEL) and
vector control (EV) cells in SKOV3 (C) and OVCA432 (D). The expression of HOXB1, HOXB-AS2, and HOXB-AS4 was too low to detect in both cell lines. (E,F) qPCR
was used to compare the expression of HOXB7 (E) and HOXB8 (F) after sgRNA1/2 transfected (sgRNA1, sgRNA2) and empty vector transfected (EV) cells with
dCas9-VP64 stable expression. Error bars, SD. ns: not significant, *p < 0.05, **p < 0.01, ***p < 0.001 as determined by an unpaired, two-tailed Student’s t-test.

HOXB genes are important housekeeping genes and many
HOXB cluster members have been revealed to play important
roles in tumorigenesis (Bhatlekar et al., 2014). A previous
study used HiC and found that rs9303542 is located in the
same TAD domain as HOXB genes (Phelan et al., 2017).
Our HiChIP results, as well as the HiChIP results from
endometrial cells, revealed direct links between rs9303542 and
HOXB genes. We found rs9303542 located in an enhancer
region with the ATAC-seq and H3K27ac signals. Moreover,
manipulating the rs9303542 region could change the expression
of HOXB genes especially for HOXB7 and HOXB8. We also
observed upregulated expression of HOXB7 and HOXB8 in
EOC tumor samples as well as the association between HOXB7
and HOXB8 expression and overall survival for EOC patients,
the results are consistent with previous findings for HOXB7

and HOXB8 in various human cancers including ovarian
cancer (Errico et al., 2016; Monterisi et al., 2018; Chen et al.,
2020; Ying et al., 2020). Even though, with strong evidence
from HiChIP results and validation results, no significant
eQTL associations were found between rs9303542 and the
expression of HOXB7 (Supplementary Figure 5A) or HOXB8
(Supplementary Figure 5B). This is probably due to the small
sample size for rs9303542 minor allele (GG) (n = 18) in
the analysis. These results reveal that rs9303542 might be
a causal variant at 17q21.32 and affected tumorigenesis of
EOC through long-distance regulation of HOXB7 and HOXB8
expression. However, further experiments are needed to prove
the genotype-specific regulation of rs9303542 on HOXB7 and
HOXB8 expression as well as the oncogenic roles of these two
genes on the tumorigenesis of EOC.
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FIGURE 3 | Expression and survival analysis for HOXB7 and HOXB8. (A,B) Expression levels of HOXB7 (A) and HOXB8 (B) in three GEO datasets. (C,D) Overall
survival analysis for EOC patients in the TCGA database was based on the expression of HOXB8 (C) and HOXB7 (D) expression from TCGA data. Median
expression was used to stratify the high and low expression groups. ns: not significant, *p < 0.05, **p < 0.01, ***p < 0.001 as determined by an unpaired, two-tailed
Student’s t-test.

We also found that the rs9303542 region can only slightly
change the expression of HOXB genes, as revealed from the
little fold changes in expression of HOXB genes in rs9303542
deletion and dCas9-VP64 activation experiments. At the same
time, we also observed that rs9303542 linkage variants rs8067953
(LD = 0.99 to rs9303542) at the same risk loci also targeted
HOXB genes, which were also located in an enhancer region
(Supplementary Figure 5C). Therefore, we speculated that
the composite effect might exist for linkage GWAS variants
to regulate the targeted genes corporately to largely affect
tumor development.

In summary, this study has identified candidate gene targets
for GWAS variants of EOC and explored some previously
unknown links between risk variants and distal targets, which

provides some insightful views in exploring the underlying
genetic basis of ovarian cancer development.

MATERIALS AND METHODS

Cell Culture
Human SKOV3 ovarian cancer cells were obtained from
the American Type Culture Collection (ATCC). The human
OVCA432 ovarian cancer cells were gifts from Dr. Wei Zhang
of The University of Texas MD Anderson Cancer Center in
Houston, TX, and preserved in our lab. SKOV3 and OVCA432
were cultured in complete DMEM medium supplemented with
10% FBS, 100 µg/mL penicillin, and 100 µg/mL streptomycin.
All cells were cultivated in a 37◦C humid incubator with 5% CO2.
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H3K27ac-HiChIP Library Generation
H3K27ac-HiChIP was performed mainly following the
procedures of Mumbach et al. (2016) with little modifications.
Briefly, 15 million SKOV3 and OVCA432 cells were harvested
and crosslinked with 1% formaldehyde in PBS at room
temperature for 10 min, then quenched with 125 mM Glycine
on ice for 5 min. Next, crosslinked cells were lysed in Hi-C
lysis buffer and nuclei were extracted and digested with Mbo1
restriction enzyme (NEB, R0147) for 2 h. After digestion, nuclei
were resuspended in NEB buffer supplemented with DNA
polymerase 1, Large (Klenow) fragment (NEB, M0210) to fill
in the restriction fragment overhangs with biotin labeled dATP
for 1 h. Proximal ligation was performed with T4 DNA ligase
for 4 h at 16◦C and nuclei were harvested. Palleted nuclei
were transferred to Covaris S220 sonicator to shear chromatin
with the same procedure as Mumbach et al. (2016) For each
sample, sheared chromatin was incubated overnight with 7.5 µL
of H3K27ac antibody (Abcam, ab4729) and then Protein A
beads were used to capture H3K27Ac-associated chromatin, the
whole H3K27ac-ChIP process was performed with the PierceTM

Magnetic ChIP kit (#26157), the final DNA was eluted with
10 µL water. Eluted DNA was sent for DNA biotin pull-down
with streptavidin beads. Fifty microgram of DNA was used
to PCR amplification and then page purigy was performed to
select a size range of 300–700 bp products. Final purified PCR
products were quantified with qPCR against Illumina primers
and sent for sequencing.

HiChIP Data Analysis
HiChIP paired-end reads were aligned to the hg19 human
genome using the HiC-Pro pipeline (Servant et al., 2015) with
default settings to remove duplicate reads, assign reads to MboI
restriction fragments, filter for valid interactions, and generate
binned interaction matrices. Fit-HiChIP pipeline was applied to
HiC-Pro 5k base pair resolution matrices to call the significant
loops (Bhattacharyya et al., 2019). Chromatin interactions were
filtered within a range from a minimum distance of 20 kb to a
maximum of 2 Mb.

Target Gene Identification With HiChiP
Data and eQTL
We fine-mapped the 15 EOC GWAS loci identified from the
largest EOC GEAS study with a standard Bayesian approach.
And then the 99% CVs were defined to cover the 99% estimate
of all functional variants at each risk loci. Then the CVs were
intersected with significant loops called from the Fit-HiChIP
pipeline with bedtools. If the CVs were located at one end
of the loop, the genes annotated at the other end of the
loop were identified as a HiChIP target gene for the CV.
Identification of eQTL targets was undertaken using public eQTL
databases, including ovarian tissues from GTEx (data release v7)1

(Consortium, 2013) and ovarian tumor samples from pancan
QTL2 (Gong et al., 2018).

1http://gtexportal.org
2http://gong_lab.hzau.edu.cn/PancanQTL/

Stratified LD Score Regression Analysis
Stratified LD score regression (Bulik-Sullivan et al., 2015;
Finucane et al., 2015) was used to quantify the enrichment
score of EOC GWAS risk variants in promoter-associated loops
of EOC as O’Mama used before (O’Mara et al., 2019). In
brief, stratified LD score regression compared the enrichment
of genetic heritability associated with EOC risk locating in the
HiChIP loops with total genetic variants falling in the HiChIP
loops. The enrichment scores for the promoter-associated loops
of the two EOC cell lines were calculated separately, conditioned
on a baseline model (Finucane et al., 2015) as background
normalization. The HapMap3 variants and Genome 1000 Project
variant of the European population were used as a reference
in LD calculation.

CRISPR Deletion
To delete enhancer fragment containing rs9303542 (2 kb) in
SKOV3 and OVCA432 cells, the px459v2 vector containing
sgRNA-U and sgRNA-D (1.5 µg each) or px459v2 empty
vector (3 µg) was cotransfected into target cells by using
Lipofectamine3000 transfection reagent (Invitrogen). After
selection with puromycin (2 µg/mL for SKOV3 and 20 ug/ml
for OVCA432) for 3 days, the remaining cells were cultured
for another 3 days. Then RNA was extracted with TRIZOL,
and qPCR was performed to detect the expression of HOXB
genes. All qPCR primers and sgRNA oligos used are listed in
Supplementary Table 7.

CRISPR Activation
To activate the enhancer activity surrounding rs9303542 in
OVCA432 and SKOV3 cells, two gRNAs sgRNA-1/2 around
rs9303542 were designed and cloned into the MS2-gRNA-
hU6 vector. Then, gRNAs were transfected into dCas9-
VP64 stable expression OVCA432 and SKOV3 cells by using
Lipofectamine 3000 transfection reagent (Invitrogen). Forty-
eight hours after transfection, RNAs were extracted and reverse
transcribed. Then qPCR was performed to test the expression for
HOXB7 and HOXB8.

HiChIP Data Visualization
The FitHiChip called significant loops after merging were
visualized with WashU Epigenome Browser3. The ATAC-seq for
SKOV3 and OVCA432 were generated by our own and H3K27ac-
ChIP data of SKOV3, OVCA429, HEYA8, and POE1 EOC cell
lines were obtained from GEO datasets (Chung et al., 2019).

Gene Enrichment Analysis
Single-sample gene-set enrichment analysis (ssGSEA) was
conducted through the GSVA package and its ssGSEA method4,
enrichment score of 162 HiChIP target genes or 39 differentially
expressed HiChIP target genes in each sample from three
GEO datasets were calculated. Boxplot was used to show the
difference in enrichment scores between normal and tumor
ovarian samples.

3https://epigenomegateway.wustl.edu/
4http://www.bioconductor.org
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