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ABSTRACT: Characterizing and identifying cells in multicellular in vitro models
remain a substantial challenge. Here, we utilize hyperspectral confocal Raman
microscopy and principal component analysis coupled with linear discriminant
analysis to form a label-free, noninvasive approach for classifying bone cells and
osteosarcoma cells. Through the development of a library of hyperspectral Raman
images of the K7M2-wt osteosarcoma cell lines, 7F2 osteoblast cell lines, RAW
264.7 macrophage cell line, and osteoclasts induced from RAW 264.7 macrophages,
we built a linear discriminant model capable of correctly identifying each of these
cell types. The model was cross-validated using a k-fold cross validation scheme. The
results show a minimum of 72% accuracy in predicting cell type. We also utilize the
model to reconstruct the spectra of K7M2 and 7F2 to determine whether
osteosarcoma cancer cells and normal osteoblasts have any prominent differences
that can be captured by Raman. We find that the main differences between these
two cell types are the prominence of the β-sheet protein secondary structure in K7M2 versus the α-helix protein secondary structure
in 7F2. Additionally, differences in the CH2 deformation Raman feature highlight that the membrane lipid structure is different
between these cells, which may affect the overall signaling and functional contrasts. Overall, we show that hyperspectral confocal
Raman microscopy can serve as an effective tool for label-free, nondestructive cellular classification and that the spectral
reconstructions can be used to gain deeper insight into the differences that drive different functional outcomes of different cells.
KEYWORDS: Spectral Imaging, Raman, Osteoblast, Osteoclast, PCA, LDA, Bone

■ INTRODUCTION
Multicellular in vitro model systems are growing in both
complexity and popularity as tools to better understand the
complex nature of disease. The ability to identify the cell type
of individual living cells within these multicellular systems in
real time has the potential to provide key information about
cell-to-cell interactions necessary to understand disease states.
Optical microscopy methods are attractive for this task because
they are nondestructive, provide spatial resolution, and are
amenable to in vitro and in vivo applications. However, cells
themselves absorb little light, can have similar morphological
features, and can be tightly intertwined in tissue and tissue
models, making native cells hard to visualize and distinguish
from other cell types without enhancement. The most
widespread solution to this problem is the use of fluorescent
dyes and labels. While these tools can provide detailed
structural and molecular information, these labels often involve
procedures such as fixation and cell permeabilization that are
incompatible with living cells. Even with labels compatible with
living cells, issues can arise in the cellular response to the label,
including concentration dependent phototoxicity, perturba-
tions in cellular or protein function, and limitations in labeling
duration.1 Methods such as expression of green fluorescent

protein (GFP), which allows visualization of cells without an
exogenous fluorophore, require modification of the cell to
express the fluorescent protein, which can also alter cell
behavior. Additionally, the need to label multiple cell types can
be time-consuming. In contrast, label-free imaging utilizes
native signatures within cells and tissues. A wide range of label-
free techniques have been developed including photoacoustic,2

fluorescence lifetime,3 surface enhanced Raman spectroscopy
(SERS),4 and Raman microscopy.5 Hyperspectral confocal
Raman microscopy is gaining popularity as an analytical tool
for biological and biomedical specimens as the Raman spectra
of cells and tissues provides a detailed molecular fingerprint
containing both qualitative and quantitative biochemical
information overlaid with morphological information.6 Due
to the comprehensive information available, hyperspectral
confocal Raman microscopy is being evaluated for use in
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diagnostics of biological fluids and histology specimens as well
as drug pharmacokinetics and cell-based therapies.6 It should
be noted that Raman spectroscopy has also been used
extensively to assess the chemical composition of bone.7−10

However, our focus in this work is on cell lines of bone.
Hyperspectral confocal Raman microscopy has been demon-
strated to differentiate between normal and tumor cells,
different cell stages, and different cell types.4,11−13 One
advantage of hyperspectral confocal Raman spectroscopy
over, e.g., SERS, for the identification of normal versus
tumor bone cells4,13 is that hyperspectral imaging provides a
Raman signal across the entirety of the cell. Different features
of the cell, e.g., nuclei versus lipid membrane, will elicit
different Raman responses. These varied responses can be
exploited to determine the basis for differentiation of the cell
type. For example, if cells can be classified as different, is it
because the responses from their nuclei are different? Or does
it occur because the lipid membrane response is different? This
information provides key insights into the biochemical markers
that permit differentiation within a multicellular model. The
ability to differentiate between similar cells without the use of
exogenous fluorescent or other labels or substrates has
implications in diagnostics but also presents unique oppor-
tunities for monitoring cellular interactions in multicellular
model systems and facilitates studies of cancer cell interactions
with normal cells in their environment, such as multicell
models of bone cancer.
The cellular components of bone are highly dynamic and

can change to facilitate bone homeostasis, growth, and
remodeling.14,15 Within the bone, the mature osteoclasts and
osteoblasts signal to each other as well as to potential precursor
cells to initiate the development of new osteoclasts or
osteoblasts, as well as bone growth and remodeling. This
signaling encompasses both released soluble factors as well as
membrane bound factors,15 making the ability to differentiate
cells in complex multicellular model systems important for
mechanistic and therapeutic studies. This multicellular system
becomes even more complex when osteosarcoma tumor cells
are present. Osteosarcoma is the most common bone cancer
and can be either osteoblastic or osteolytic in behavior, which
is mitigated through signaling to osteoclasts and osteoblasts.16

Due to the low native contrast of mammalian cells, including
osteosarcoma, osteoblasts, and osteoclasts, multicellular
models often rely on staining of fixed and permeabilized
systems with cells differentiated by morphological features or
binding of specific antibodies.17−19 While morphological
features, such as the number of nuclei and cell shape, can
readily differentiate osteoclasts, osteoblasts, and osteoclast
precursor cells using nuclear and actin staining, this task
becomes more difficult if the model system also incorporates
any cell types that are morphologically similar. Here,
hyperspectral confocal Raman microscopy may be able to
provide a distinct advantage as it has previously demonstrated
the ability to differentiate normal from cancerous cells in both
primary cells and cell lines.11 Hyperspectral confocal Raman
microscopy has previously been limitedly applied to bone cells
and has shown the capacity to follow osteoblast differentiation
and osteosarcoma response to therapeutics in living cells in real
time.20,21 To extend these previous studies, we employ
hyperspectral confocal Raman microscopy to identify common
mouse bone and osteosarcoma model cells based on their
unique spectral signatures. In this work, the K7M2
osteosarcoma cell line was selected as it is a common

syngeneic mouse model of osteolytic osteosarcoma capable
of forming lytic tumors in the tibia and jaw, as well as having a
high metastatic potential.22−24 Mouse macrophages (RAW
264.7), osteoclasts differentiated from the mouse macrophages,
and the mouse osteoblast cell line 7F2 were selected, as they
form a likely set of cells for an osteosarcoma model.
In the following, we present hyperspectral confocal Raman

imaging of each of the aforementioned cell lines. We show that
the characteristic features of each of these cell line spectra can
be captured by a principal component analysis (PCA)
dimensionality reduction. The characteristic principal compo-
nents (PCs) are then used to train a linear discriminant
analysis (LDA) model, which through cross-validation, is
shown to accurately classify each of the cell types. Through
reconstruction of the spectra from the PCA-LDA model, we
are able to extract the characteristic features of each cell line,
which lends them to accurate classification. These character-
istics are analyzed in detail for the K7M2 osteosarcoma cell
line and the 7F2 osteoblast cell line, which extracts the
biochemical markers that distinguish the cancerous osteosar-
coma from the normal osteoblast. Finally, implications for
diagnostic, in vitro, and in vivo application of this label-free
classification technique are discussed.

■ METHODS

Cell Culture
Mouse macrophage cell line RAW 264.7, osteosarcoma cell line
K7M2-wt, and osteoblast cell line 7F2 were purchased from ATCC.
RAW 264.7 and K7M2-wt were maintained in Dulbecco’s Modified
Eagle’s Medium (DMEM, GIBCO) supplemented with 10% (v/v)
fetal bovine serum (FBS, Hyclone) and 100 units/mL Penicillin and
100 μg/mL Streptomycin (Pen-Strep, Gibco). 7F2 cells were
maintained in alpha minimal essential media (alpha MEM, GIBCO)
containing 2 mM L-glutamine and 1 mM sodium pyruvate and
without ribonucleosides and deoxyribonucleosides. The alpha MEM
media was supplemented with 10% (v/v) FBS and 100 units/mL
Penicillin and 100 μg/mL Streptomycin. Cells were cultured at 37 C
and 5% CO2.
To prepare the RAW 264.7, K7M2-wt, and 7F2 cells for imaging,

ethanol sterilized fused quartz coverslips (Technical Glass Products)
were placed in a 100 mm dish. To the 100 mm dish were added the
cells of interest, and they were allowed to adhere overnight. Imaging
was performed in a HEPES-based imaging medium. Imaging medium
was prepared at 2.5× and contained 375 mM NaCl, 50 mM HEPES,
2.5 mM CaCl2, 12.5 mM KCl, and 2.5 mM MgCl2, pH 7.4.

25 On the
day of use, imaging medium was diluted to 1× and 95 mg of glucose
and 95 mg of bovine serum albumin were added per 50 mL of
imaging medium. To mount the quartz coverslips, an in situ
incubation chamber (Frame-Seal, Bio-Rad) was adhered to a quartz
slide and filled with the freshly prepared imaging medium. The quartz
coverslips with adhered cells were then gently rinsed in imaging buffer
and inverted onto the filled incubation chamber. Prepared slides were
imaged immediately. Osteoclasts were induced from RAW 264.7 cells
based on published methods and described briefly here.26 To create
osteoclasts for imaging, ethanol sterilized quartz coverslips were
placed in a 100 mm dish. To the quartz coverslip in a 100 mm dish,
RAW 264.7 cells below passage 8 were plated at 5.0 × 104 cells per
quartz coverslip in DMEM + 10% FBS and allowed to adhere
overnight (day 0). The following day (day 1), the media was replaced
with DMEM + 10% FBS supplemented with 25 ng/mL recombinant
mouse RANKL (R&D systems). Media was replaced again with
RANKL supplemented media on days 3 and 5. Induced osteoclasts
were imaged on days 6 and 7 by mounting in imaging media following
the same method described above.
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Hyperspectral Confocal Raman Microscopy
Raman images were collected by using a WITec Alpha 300R confocal
Raman microscope. A 785 nm laser was used as the excitation source.
The laser was fiber-coupled through a single-mode fiber to a
holographic beam splitter that directed the beam to the entrance
pupil of an objective. A 50×, 0.55 NA objective (Zeiss) was used for
all measurements. The back plane of the coverslip, onto which the
cells were adhered, was chosen as the focal plane for imaging.
Scattered light was collected back through the objective in a
backscattering geometry and directed to a 50 μm diameter,
multimode fiber. The collection fiber was coupled to a single grating
spectrometer equipped with a 600 g/mm grating blazed at 750 nm.
The grating position was chosen to provide a Raman spectral window
ranging from 134 to 1912 cm−1. The spectral resolution under these
conditions was between ≈1.5 and ≈1.8 cm−1/pixel. Images were
collected with a 0.5 μm step size using an integration time between
0.5 and 2 s per step. Maps of each cell type were collected and added
to the total data set for analysis. The data set comprised maps of
K7M2 (62400 pixels), 7F2 (20664 pixels), RAW (68100 pixels), and
osteoclast (26808 pixels). The pixel counts represent the total number
of pixels spanning the imaged area for each respective cell type over
multiple images. For our chosen window of spectral analysis, there are
511 spectral channels for each spatial pixel, resulting in a
hyperspectral volume of up to ≈35 million pixels per cell. The
number of images collected was chosen to balance the total number of
pixels representing each cell, thus ensuring the net analyte signal for
each of the cell lines was similar.

Spectral Processing and PCA-LDA Analysis
Postprocessing of the data included cosmic ray removal, median filter
spectral smoothing, and background subtraction. Each of these was
performed using WITec Project FIVE, version 5.2 software. Cosmic
ray removal was performed using the built-in algorithm with a filter
size of 4 and a dynamic factor of 4. Median filter smoothing was
performed with a filter size of 1. Background subtraction was
performed using a rounded shape background with a “shape size” of
150. Here, the background is subtracted using a rounded shape, which
is approached to the spectrum from below, pixel-by-pixel. The “shape
size” of 150 is large and enforces the use of a large rounded shape,
which preserves sharp spectral features but removes background
fluorescence and broad quartz signal. After processing, spectra were
trimmed to the range of 900 to 1740 cm−1. Spectra were then
normalized and the mean centered. Raman maps of all cells were
flattened and combined into a single matrix with the Raman shift axis
along the rows and pixel along the columns. For simplicity, and to
more closely approximate what would be expected in multicellular in
vitro model systems where intracellular space would contain excreted
compounds, we have included both the cell and the cell surroundings
in the data set. Improvements to the model may be made by
segmenting the cell from its surroundings so that the surrounding
pixels are not artificially classified as cell types. We find, however, that
the trade-off for simplicity results in sufficient accuracy for the scope
of this work.
Principal component analysis (PCA) was performed using the pca

function in Matlab. PCA was used to extract the principal component
(PC) coefficients or loadings as well as the PC scores. The PC score
matrix was used to build a linear discriminant (LD) model according
to the known cell assignment for each pixel. PC1, PC2, PC4, and PC5
were used to build this model, as PC3 was found to represent the
HEPES-based imaging medium spectrum, with a sharp peak at ≈1040
cm−1,27 which could not be consistently removed prior to PCA by
other means. PC1−5 accounted for 74% of the total variance and
produced good reconstructions of the spectra. Higher PCs were found
to add noise back into the reconstructions. Linear discriminant
analysis (LDA) was performed by treating the output PC scores as
input predictors for the model. Class labels are given by the known
cell assignment for each pixel index in the score matrix. LDA was
performed using the Matlab function f itdiscr with a pseudolinear
discriminant type, where all classes are assumed to have the same
covariance matrix and the covariance matrix is inverted using the

pseudo inverse. To obtain scores projected onto the LD eigenvectors,
the eigenvalue problem is solved for the within-class covariance, σw,
and between-class covariance, σb, according to

W Ww b= (1)

where W is the matrix of eigenvectors and λ is the corresponding
eigenvalue. W is then sorted according to descending eigenvalues
(Wsort) and used to project the PC scores into the LD space

Y S W1,2,4,5 sort= { } (2)

where S{1,2,4,5} is the PCA score matrix containing only PC1, PC2,
PC4, and PC5, and Y is the reduced PC score matrix in the LD basis.
Finally, the LDA model is tested for accuracy using k-fold cross-
validation with k = 10.

■ RESULTS AND DISCUSSION

Average Raman Spectra and Peak Assignments
Figure 1 shows the average spectra for each of the cell types.
Identifiable peak positions are labeled and the accompanying

Figure 1. Average Raman spectra of each cell type. (a) K7M2, (b)
7F2, (c) Osteoclast, and (d) RAW. The * indicates the peak
associated with the HEPES-based imaging medium.
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assignments are given in Table 1.28−42 In cases where there is a
peak label but no assignment is given, an unambiguous
assignment from the existing literature could not be made. In
these cases, we refrain from attempting to make an assignment.
The primary features of the spectra resemble those typical of
osteoblasts and general living cell Raman spectra. Specifically,
primary marker peaks of phenylalanine (≈1004 cm−1), amide
III (1240−1400 cm−1), CH2 deformation (1440−1450 cm−1),
and amide I (≈1660 cm−1) are observed. One notable
difference between the cells is the occurrence of α-helix
features in osteoclasts and 7F2 osteoblast cell lines (1657 and
1266 cm−1), which are absent in K7M2 osteosarcoma and
RAW cell lines. Rather, K7M2 osteosarcoma and RAW
macrophage cell lines exhibit β-sheet features (1246 and
1663 cm−1 and 1248 and 1660 cm−1, respectively) which are
absent in 7F2 osteoblasts and osteoclasts. An alternative
assignment to the ≈1660 cm−1 feature is lipid C�C stretch.
Thus, the signal from the lipid body likely overlaps the amide I
signal and should be considered when evaluating differences
between cell types. However, the distinct 1266 and 1246 cm−1

peaks strongly suggest that differences in protein structure are
observed. Since the shift in the amide I peak is also consistent
with a change in protein secondary structure,30,35 we center
our discussion on this interpretation of the results. Overall,
from the average spectra, we are beginning to see differences
that can serve as markers for cellular classification. Due to the
complex nature of the spectra, however, we turn to PCA-LDA
to extract the full spectrum of distinguishing features of these

cells, which elude the human eye, and use these features for
classification.
PCA-LDA Cell Classification
PCA was performed on the combined data set of Raman
images from K7M2, 7F2, osteoclast, and RAW cell lines. While
separation of classes along principal component axes is a
general possibility, we find that there is little to no class
separation between these cell types. This is likely because PCA
is unsupervised and sets out to capture directions of only
maximized variance. LDA, on the other hand, is supervised and
captures the directions along class boundaries. Thus, rather
than using PCA for classification, we utilize the first five
principal components, which account for 74% of the variance
(see Figure S1), to reduce the dimensionality of the problem
space and remove background spectral and noise contribu-
tions. Among the first five principal components, PC3 was
found to align primarily with the known spectrum of the
HEPES-based imaging medium (Figure S2). Thus, only PC1,
PC2, PC4, and PC5 were used to build the linear discriminant
model. This removes the need to subtract the background and
eliminates artificial class separation by slight differences in the
background between cell imaging scans.
The linear discriminant model is built on the PCA scores of

PC1, PC2, PC4, and PC5 along with the known class
assignments for each pixel. The resulting LD model is then
validated in a k-fold cross-validation scheme with k = 10. The
result of the cross-validation is expressed in Figure 2 as a
confusion matrix. Figure 2 shows excellent class prediction
accuracy across each of the cell types. 7F2 has a >99% success

Table 1. Raman Peak Assignments for Each Cell Typea

K7M2 7F2 osteoclast RAW assignment

923 924 926 924 O−P−O backbone, C−C stretch proline
937 937 939 939 C−C residue α-helix, skeletal modes in polysaccharides
949 958 955 O−P−O symmetric stretch in adenosine-monophosphate, CH3 deformation (lipid, protein)
967 C−C and C−N stretch PO32− stretching DNA
1002 1001 1004 1004 phenylalanine
1072 1062 1065 1065 O−P−O DNA, C−O stretch DNA RNA
1084 1076 1081 1083 O−P−O DNA, C−O stretch DNA RNA
1095 1093 1093 PO2− symmetric stretch DNA RNA
1126 1126 1128 1128 Cytochrome C, C−C asymmetric stretch in fatty acids
1157 1153 1158 C−C and C−N stretch in proteins
1172 1174 1174 1175 G-ring stretch, C−C−H bending in phenol ring DNA
1206 1206 1209 1209 C−C stretch, C−H bending, C−C stretch in phenol ring of tyrosine

1234 1234 1234 antisymmetric phosphate stretching
1246 1248 NH2 bending in amide III β-sheet
1256 1255 1258 1258 cytosine, adenine

1266 1266 amide III α-helix
1301 1301 1303 1301 lipids CH2 twist, protein amide III band, adenine, cytosine
1314 1313 1318 1314 C−H deformation (saturated lipids)
1342 1338 1339 1339 adenine, phenylalanine, C−H deformation, DNA purine bases (CH3CH2 wagging mode of polynucleotide chain)
1372 1374 1369 CH3 symmetric stretching
1395 1398 1398 CH3 bending due to methyl bond in the membrane
1448 1442 1450 1448 CH2 stretch deformation of methylene group lipids, CH2 scissoring in lipids
1504 1506 C�C stretch (aromatics)
1542 1551 amide II N−H bending coupled to C−N stretch
1562 1561 phenylalanine, tryptophan (phenyl, aromatics)

1606 1608 1608 tyrosine (aromatics)
1642 amide I (protein), C�O stretching of amide coupled to NH2 in-plane bending

1657 1657 C�C stretch (lipids), amide I (α-helix, protein)
1663 1660 C�O stretching of amide coupled to NH2 in-plane bending, amide I (β-sheet, protein)

aPeak positions are given in wavenumbers (cm−1). Data from refs 28−42.

Chemical & Biomedical Imaging pubs.acs.org/ChemBioImaging Article

https://doi.org/10.1021/cbmi.3c00106
Chem. Biomed. Imaging 2024, 2, 147−155

150

https://pubs.acs.org/doi/suppl/10.1021/cbmi.3c00106/suppl_file/im3c00106_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/cbmi.3c00106/suppl_file/im3c00106_si_001.pdf
pubs.acs.org/ChemBioImaging?ref=pdf
https://doi.org/10.1021/cbmi.3c00106?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


rate, while on the lower end, osteoclasts are predicted correctly
at a rate of 72%. Interestingly, the K7M2 osteosarcoma line
and the induced osteoclasts are the cell types most often
erroneously classed as one another. Practically, osteoclasts are
much larger in size than osteoblasts making their accurate
identification somewhat trivial and independent of their
spectral response. Importantly, however, the two morpholog-
ically similar 7F2 osteoblast and K7M2 osteosarcoma cell lines
are distinguished with a high success rate. The origin of this
distinction can be explored by evaluating the LD coefficients
and the PCA scores projected onto the LD space.
Figure 3a shows the score distribution projected along linear

discriminant axes LD1, LD3, and LD4, according to eq 2.
Similar results were obtained replacing LD3 and/or LD4 with
LD2. The primary separation occurs along LD1. Figure 3b
shows the four LD coefficients. Each of the LD coefficients
resembles the original spectra, showing contributions from the
four primary marker peaks of phenylalanine, amide III, CH2
deformation, and amide I. However, intensity contributions
vary. While direct interpretation of each of the LD coefficients
is difficult, the separation between groups along these axes is

apparent, with good separation shown between 7F2, RAW, and
osteoclast/K7M2 cell types. The greatest degree of overlap is
observed between induced osteoclasts and K7M2 osteosarco-
ma cells, which reflects the results of the cross-validation where
these two cell types were misclassified as each other at the
highest rate.
The cell types have been shown to separate well according

to the LD model. To evaluate the spectral differences between
each cell and identify their differentiating characteristics, we
reconstruct the spectra using the LD scores, Y, and PC
coefficients, according to

R YCT
1,2,4,5

2= | |{ } (3)

where C{1,2,4,5} is the matrix of PC loadings for PC1, PC2, PC4,
and PC5. The reconstructed spectra for each cell type are
shown in Figure 4a, with the color channels used to generate
the images indicated. The red channel was chosen to represent
amide III and DNA, the green channel was chosen to represent
the CH2 deformation, and the blue channel was chosen to
represent amide I. These channel positions are somewhat
arbitrary but were chosen to maximize the contrast of features
within the cells. Reconstructions are mapped onto cell images
in Figure 4b−e. In Figure 4b−e, nuclei are labeled with a white
“N” and are characterized by a magenta color in all the cell
types due to the predominance of both amide I and amide III
signatures as well as strong contributions from nucleic acids
that occur in the 1338 cm−1 peak overlapping amide III. Two
cells in the process of mitosis are indicated with yellow arrows
and are characterized by their elongated nuclei (likely
metaphase or anaphase, Figure 4e) and attachment (telophase,
Figure 4c). Regions outside the cell in Figure 4c,e are
characterized by a moderately intense red color and are
indicated with an “E”. This phenomenon is believed to be a
result of the cell secretions or growth media as both 7F2
osteoblasts and RAW 264.7 macrophages are known to secrete
components into the media and have high levels of
extracellular matrix. In general, the cell cytoplasm appears
blue-green in these images due to the prevalence of lipid-rich
organelles, which have a signal in the 1300−1450 cm−1 region.
Lastly, lipids are key components of cellular membranes as well

Figure 2. Confusion chart. Shows the predicted class versus the true
class for each cell type. Given in percentage of total pixels for each cell
type.

Figure 3. LDA scores and loadings. (a) The PC scores projected onto the LD space along LD1, LD3, and LD4. (b) LD loadings for the four LDs.
Loadings are offset for clarity with a solid black y-line indicating the zero-line for each spectrum.
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as many cellular organelles including trafficking vesicles,
endosomes, and lysosomes. A few, but not all, of the lipid
rich bodies are highlighted with a white “L”.
The PCA-LDA reconstructions of the spectra highlight the

strongest characteristic features of each cell type. We have
shown via cross-validation that the discriminant model that
comprises these reconstructions accurately classifies each cell
type. The reconstructions faithfully reproduce the expected
spectral features, determined by a comparison to the original
average spectra. To determine why cell lines can be
distinguished, we compare their LD reconstructed spectra.
The RAW macrophage cell line and the osteoclasts induced
from them are distinguished by their spectral reconstruction in
several regions. First, the phosphate backbone region takes on
a different intensity distribution between the two cell lines.
Additionally, a notably higher intensity in the cytochrome C
band at 1126 cm−1 is observed in the RAW macrophages,
compared to the induced osteoclasts. While there does appear
to be distinguishing spectral features between these two cell
types, classification is trivial due to their size difference. The
RAW macrophage cell line has cells with a diameter of ≈10 μm
while the induced osteoclast cell line has cells up to 5 times
larger. While classification of each cell type is an important goal
of this work, our primary objective is to determine whether
two cell lines that are visually indistinguishable can be
classified. We have shown that PCA-LDA cross-validation
could separate 7F2 osteoblasts from K7M2 osteosarcomas. To
establish what biochemical differences exist between these two
cell types that allow accurate classification, we consider the
differences between their reconstructed spectra. Figure 5 shows
the resulting difference spectrum between these two cells. The
difference was scaled to drive the phenylalanine peak intensity
to zero.
The difference spectrum in Figure 5 shows several notable

features that can be assigned to physical traits within each cell.
Starting from a high wavenumber and working to a low

wavenumber, we first consider the amide I peak. In this region,
the difference spectrum shows a differential feature, suggesting
a peak shift between the 7F2 osteoblast cell line and the K7M2
osteosarcoma cell line. Specifically, the K7M2 cell type appears
to be upshifted with respect to the 7F2 osteoblast cell line. An
upshift in the amide I peak position indicates a difference in
protein secondary structure. Higher peak positions of amide I,
around 1660−1670 cm−1, are assigned to β-sheet secondary
structures. Lower peak positions of amide I, around 1650−
1660 cm−1, align with α-helix secondary structures.30,35 Thus,
the difference in amide I peak positions suggests that the
K7M2 osteosarcoma cell line may have dominating protein
secondary structures of β-sheets while the 7F2 osteoblast cell
line dominates in α-helices. This difference was also reflected
in the simple average spectra (Figure 1).
The CH2 deformation peak shows a similar differential

character in the difference spectrum, namely, that the peak
position for the K7M2 cell type is upshifted from the 7F2 cell
type by about 6 cm−1. This is also reflected in the average

Figure 4. Reconstruction of spectra and images (a) shows the reconstructed spectra, vertically offset for clarity. The vertical lines labeled R, G, and
B indicate Raman peaks selected to pseudocolor the image maps in (b)−(e). The red corresponds to the 1338 cm−1 vibration and represents DNA
and amide III. Green corresponds to the 1445 cm−1 vibration and represents CH2 deformation in lipids, and blue corresponds to the 1657 cm−1

vibration and represents amide I. (b−e) Image reconstructions using the LDs for (b) K7M2 osteosarcoma cells, (c) 7F2 osteoblast cells, (d)
osteoclast cells, and (e) RAW 264.7 macrophages. Key cellular features in the images are indicated: N = nucleus, L = lipid rich body, and E =
extracellular region. Yellow arrows indicate cells in mitosis.

Figure 5. Difference spectra: 7F2 vs K7M2. Shows the reconstructed
spectra for 7F2 osteoblast cell line (red) and K7M2 osteosarcoma cell
line (gray) as well as the difference spectrum, 7F2 − K7M2, in blue.
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spectra, albeit with much more noise. Since the CH2
deformation primarily captures scissoring and stretch deforma-
tions in the methylene groups of lipids, the shift in peak
position between the K7M2 osteosarcoma and the 7F2
osteoblast cell types highlights that there are likely differences
in composition of the lipid membranes between these two cell
types. Since lipids play a role in signaling at the membrane,
small differences in lipid composition can affect larger
differences in function.43 Recently, altered lipid metabolism
in cancer has been identified as an important metabolic change
in cancer and associated with cancer progression.44,45 A
difference in the lipid composition between these two cell
types is captured by the spectra and may reflect an altered lipid
metabolism between the metastatic osteosarcoma cell line,
K7M2, and the normal osteoblast cell line, 7F2.
The amide III region shows an overall decrease in intensity

in 7F2 cells with respect to that of K7M2 cells. The absolute
intensities within this region, however, are difficult to pinpoint.
The overall negative feature in the amide III region of the
difference spectrum likely captures multiple shifts and intensity
differences between the two cells. We can turn to analysis of
the average spectra to assist in interpreting the differences in
this region. The most notable difference in the average spectra
in this region are the features at 1266 cm−1 for 7F2 cells and
1246 cm−1 for K7M2 cells. These regions are assigned to the
amide III α-helix and amide III β-sheet, respectively. This does
appear to show through as a possible differential feature in the
difference spectrum in Figure 5; however, the multitude of
intensity changes make it difficult to discern. However,
considering that the amide I feature supports this interpreta-
tion and that the average spectra show a clear difference in this
region, we assign the primary change in amide III to be
associated with a difference in protein secondary structure.
The final region to consider in the difference spectrum is

that between 1050 and 1100 cm−1. This region is mostly
associated with the phosphate backbone of DNA. While we do
observe an increase in the intensity of 7F2 cells versus K7M2
cells, it is not clear how this should be interpreted, with respect
to differences between the cells. As the difference between the
spectra was scaled to minimize the phenylaline peak, this may
be an intensity artifact.
Implications for Differences in Cell Function and
Detection

Recently, altered lipid metabolism has been identified as a
common phenomenon in cancer cells. These alterations in
metabolism can result in increased lipid synthesis, storage, and
uptake leading to increased biogenesis for cell membrane
production, alterations in cell signaling, and energy produc-
tion.44 Alterations in lipid metabolism are also associated with
oncogenic signaling and crosstalk with the tumor micro-
environment resulting in increased tumor cell survival in the
tumor microenvironment, therapeutic resistance, and meta-
static potential.44,45 In osteosarcoma, altered lipid composition
has been noted between metastatic and nonmetastatic human
osteosarcoma cell lines and normal osteoblasts.46 Lipid
composition and lipid metabolism have not previously been
studied in mouse osteosarcoma models; however, the research
presented here demonstrates differences in lipid composition
in mouse osteosarcoma versus osteoblast cell lines as well.
Alterations in lipid metabolism are also known to occur in
osteosarcoma patients, and recent work has shown that specific
alterations may also have prognostic implications.47,48 While

the metabolic changes in lipid metabolism have not been
studied in the K7M2 osteosarcoma cell line, the observed
differences in lipid composition suggest that there are likely
changes in lipid metabolism. As changes in lipid metabolism
are being considered targets for therapeutic intervention,
further studies of the exact alterations in lipid metabolism and
lipid composition present in the K7M2 osteosarcoma model
system could further validate this model for testing therapeutic
development.
Also observed was a shift in the K7M2 osteosarcoma cell line

toward the β-sheet secondary protein structure versus the α-
helix secondary structure present in the 7F2 osteoblast cell line.
To our knowledge, this is the first time this alteration has been
found in a comparison of osteosarcoma and osteoblasts.
However, previous studies have demonstrated increased β-
sheet content compared to α-helix in extracellular vesicles
derived from patients with prostate cancer, pancreatic cancer
cell lines, and associated extracellular vesicles and extracellular
vesicles derived from pancreatic cancer patients.49,50 Measure-
ments of this richness in β-sheet secondary structure combined
with spectral signatures of DNA methylation using hyper-
spectral confocal Raman microscopy have also been utilized to
differentiate different types of prostate cancer.51 While most of
these types of studies are focused on diagnostics, the ability to
differentiate cell type demonstrated in these studies as well as
the current study highlights the potential to follow cellular
interactions between cancer cells and normal cells within the
tumor environment, label-free, in multicellular models.

■ CONCLUSION
We have shown that cell types in a multicellular model can be
distinguished and classified using noninvasive, label-free
hyperspectral confocal Raman microscopy. This was done by
building a library of reference cell spectra from images of
normal occurring bone cell types, 7F2 osteoblast cell line,
induced osteoclasts, and osteoclast precursor, macrophage cell
line RAW 264.7, and the K7M2 osteosarcoma bone cancer cell
line. These spectra were used to build a linear discriminant
model using a combination of PCA and LDA. The PCA-LDA
model was tested using cross-validation, which showed good
prediction accuracy. Spectra were reconstructed from the PCA-
LDA model and analyzed. Specifically, spectral features of 7F2
osteoblast and K7M2 osteosarcoma cell lines were compared
to determine the confounding physical features distinguishing
osteoblasts from osteosarcomas. We found that the osteo-
sarcoma cancer cell line, K7M2, had a dominant signal
originating from the β-sheet protein secondary structure while
the normal osteoblast cell line 7F2 showed primarily α-helix
secondary structure. Additionally, the lipid composition
between the K7M2 osteosarcoma cell line and the 7F2
osteoblast cell line was differentiated by the CH2 deformation
peak, which indicates potential differences in signaling and,
thus, overall function. While the details of how these
differences manifest in differences in cell function between
osteosarcoma and osteoblast cell types remain to be explored,
the observations are consistent with the recent growing
literature highlighting alterations in protein structure and
lipid composition as indicative of cancer cell malignancy. We
showed that hyperspectral confocal Raman microscopy can
serve as an effective tool for extracting feature differences
between these cell types and, importantly, for distinguishing
them in in vitro models and in vivo in a nondestructive, label-
free manner.
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