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Although methodologies and software packages for bulked segregant analysis (BSA) are well established,
it is difficult to detect extremely over-dominant and small-effect genes for quantitative traits in F2 pop-
ulation. To address this issue, we proposed a combinatorial strategy to identify all types of quantitative
trait loci (QTLs) using extreme phenotype individuals in F2. To popularize this strategy, we developed an
R software package dQTG.seq v1.0.1. It has some features not found in other BSA software packages: 1)
new (dQTG-seq1 and dQTG-seq2) and existing (G’, deltaSNP, Euclidean distance (ED), and SmoothLOD)
methods are available to identify all types of QTLs in bi-parental segregation populations, one data file
with two BSA and three QTL-mapping data formats was inputted, and two *.csv files and one figure were
outputted; 2) main smoothing methods (AIC, Window size, and Block) have been incorporated into each
of the above-mentioned methods; 3) the threshold value of LOD score for significant QTLs is determined
by permutation experiments. To save running time, vroom function was used to read the dataset, and
parallel operation was used to estimate parameters. In real data analyses, users should select a suitable
initial value of window size, depending on the species, and appropriate smoothing methods to obtain the
best result. dQTG-seq2 detects more known loci and genes for rice grain number per panicle than com-
posite interval mapping (CIM) and inclusive CIM, especially extremely over-dominant and small-effect
genes. A handbook for our software package (https://cran.r-project.org/web/packages/dQTG.seq/index.
html) has been provided in the supplemental materials for the users’ convenience.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since the establishment of bulked segregant analysis (BSA) by
Giovannoni et al. [1] and Michelmore et al. [2] in the early
1990s, it has been widely used to associate molecular markers with
a trait of interest at a relatively low cost. More importantly, BSA
has been integrated with whole-genome resequencing (BSA-seq)
of two extreme pools of F2 plants from the cross between a mutant
and its wild type to identify recessive/dominant mutant genes via
software package SHOREmap [3]. With the advancement of
sequencing technology and reduction of sequencing costs, BSA
methods are more and more widely used [4]. However, it is diffi-
cult to detect extremely over-dominant and small-effect genes
using existing BSA software packages [5].

Many BSA software packages are available at present. In these
software packages, several main statistical indicators have been
used to identify loci for objective traits (Table A.1). First, SNP index
in one extreme pool [3] and deltaSNP index between two extreme
pools [6,7] are available to detect the loci using some BSA software
packages, such as NGM [8], QTL-BSA [9], BSAseq [10], and block
regression mapping (BRM) [11]. Then, G’ [12] is used to detect
the loci via the software package BSA4yeast [13]. We also noted
that deltaSNP index and G’ are simultaneously included in software
packages QTLseqr [14] and PyBSASeq [15]. Next, Euclidean dis-
tance (ED) [16] is used to detect the loci via the BSA software pack-
age SIMM [17]. Finally, SmoothLOD score is adopted to identify the
loci using the software package QTG-seq [18]. It should be noted
that almost all the statistics in the above-mentioned BSA software
packages are based on marker allelic frequencies in extreme pools.
This results in the difficulty of detecting extremely over-dominant
and small-effect genes. To address this issue, the numbers of mar-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.05.009&domain=pdf
https://cran.r-project.org/web/packages/dQTG.seq/index.html
https://cran.r-project.org/web/packages/dQTG.seq/index.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2022.05.009
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:soyzhang@mail.hzau.edu.cn
https://doi.org/10.1016/j.csbj.2022.05.009
http://www.elsevier.com/locate/csbj


P. Li, Liu-Qiong Wei, Yi-Fan Pan et al. Computational and Structural Biotechnology Journal 20 (2022) 2332–2337
ker alleles and genotypes in extreme pools have been used to con-
struct a new statistic Gw, and a new combinatorial strategy has
been proposed to detect all types of quantitative trait loci (QTLs)
using extreme phenotype individuals in F2 [5].

To popularize the above combinatorial strategy, here we devel-
oped a new R software package dQTG.seq to identify all types of
QTLs for quantitative traits using extreme phenotype individuals
in backcross (BC), recombinant inbred line (RIL), doubled haploid
(DH) and F2 populations. In this software package, new (dQTG-
seq1 and dQTG-seq2) and existing (SmoothLOD, ED, G’, and del-
taSNP) BSA methods are available, whereas dQTG-seq2 is used to
detect extremely over-dominant and small-effect QTLs in F2 [5],
and main smoothing methods (AIC [16], Window size [12] and
Block [19]) are integrated with each of the above-mentioned BSA
methods to optimize BSA results. In addition, we discussed the fac-
tors that affect the BSA results.

2. Materials and methods

2.1. Genetic mapping population

In F2, if mixed DNA/RNA samples of each extreme pool are dee-
ply sequenced (75–100-fold coverage) [18], the numbers of marker
alleles are observed, and dQTG-seq1, SmoothLOD, G’, deltaSNP, and
ED are available. If users want to detect extremely over-dominant
and small-effect genes, another reserved DNA/RNA sample of each
F2 plant with extreme phenotype is deeply sequenced, the num-
bers of marker alleles and genotypes are observed, and dQTG-
seq2, G’, SmoothLOD, deltaSNP, and ED are available. In BC, DH,
and RIL populations, SmoothLOD, G’, ED, and deltaSNP are avail-
able. The work flow diagram of this software package is shown
in Fig. 1.

2.2. Rice real dataset for grain number per panicle

Real dataset for rice grain number per panicle in immortalized
F2 (IMF2) in 1998 [20] was downloaded from https://www.pnas.
org/doi/full/10.1073/pnas.1214141109 and re-analyzed using CIM
[21] and ICIM [22], implemented by win QTL Cartographer v2.5
and QTL IciMapping v4.1, respectively. In the IMF2, there were
278 individuals and 1619 bin markers available. All the IMF2 indi-
Fig. 1. A combinatorial strategy of mapping all types of QTLs for quantitative traits in
sequencing.
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viduals were sorted according to their phenotypic values, and 20%
of extremely high and low individuals were selected to form high
and low pools, respectively. These extreme individuals were ana-
lyzed using dQTG.seq, while all the IMF2 individuals were analyzed
using CIM and ICIM.

2.3. Development of the dQTG.seq software package

R software package dQTG.seq contains three modules: dataset
inputting, parameter settings and plot drawing. Once the dataset
inputting and parameter settings are finished, users may run the
program and all the results will be saved in the directory set by
the user. To reduce the running time, parallel calculation is
adopted for parameter estimation, and function vroom is used to
read the dataset; Parallel is used to detect the number of CPU cores
on the current host and create a set of copies of R running in par-
allel and communicating over sockets; doParallel is used to register
the parallel backend with the foreach package. Once the software
package is successfully installed in R environment, users can write
R script to analyze the datasets.

2.4. Preparation of input file

The software package has five types of input data formats: BSA,
Extreme individual, ICIM, CIM, and genome-wide CIM (GCIM). If
marker genotypes of each individual in each extreme pool are
unknown, use the ‘‘BSA” format. If they are known, use the
‘‘Extreme individual” format. If marker genotypes of all the individ-
uals in bi-parental segregation populations are known, use one of
the ‘‘ICIM, CIM, and GCIM” data formats.

BSA format of dataset file. The input dataset file with BSA data
format is shown in Fig. 2A and includes three sections of informa-
tion. First, parameter information with a 10 � 2 matrix is located
on the first ten lines. Then, physical map information with a
(m + 1) � 3 matrix is under the block of parameter information
and composed of marker name, chromosome number and marker
physical position (bp) on genome, where m is the number of mark-
ers. Finally, the numbers of marker alleles with a (m + 1)� 4 matrix
are located to the right of physical map information, where the
numbers of marker alleles (A and a) in extremely low and high
pools are indicated by AL and aL, and AH and aH, respectively,
bi-parental segregation populations via combination of BSA and whole-genome
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Fig. 2. BSA (A) and Extreme individual (B) formats for input file.
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and the alleles of parent P1 or reference genome are viewed as
allele A.

Extreme individual format for dataset file. The input dataset
file with Extreme individual data format is shown in Fig. 2B and
includes three sections of information. The first two sections of
information are the same as those in the BSA data format, except
for ‘‘Data-file-format” that should be ‘‘Extreme individuals”. The
last one is marker genotypic information with a (m + 1) � 2n
matrix, in which marker genotypes AA, Aa, and aa of each extreme
individual are indicated, respectively, by 2, 1, and 0 in a column,
‘‘Low” and ‘‘High” respectively indicate extremely low and high
individuals, and n is the number of individuals in each pool.

The input dataset file with CIM, ICIM and GCIM formats is
shown in Fig. A.1 and can also be found in the users’ instructions
for software packages QTL Cartographer (*.csv), QTL IciMapping
(*.xlsx) and QTL.gCIMapping (*.csv) [23], respectively.

2.5. Threshold values of various statistics via permutation experiments

The threshold values of various statistics for significant QTLs at
the 0.05 probability level were determined by s permutation
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experiments [24], and the significant probability level was sug-
gested as 0.10 for dQTGseq1 and 0.05 for other methods in Li
et al. [5], where users may set the value of s, such as 1000, and
change the probability level. In the permutation experiments, real
mapping population may be simulated by the R package ‘‘qtl”, and
sample size and sampling fractions in low and high pools are the
same as those in the real mapping population.
2.6. Installation of the software package

This software package can be installed in two ways: online
installation and offline installation. For online installation, users
can install directly using the command below:

install.packages (‘‘dQTG.seq”)
All the add-on software packages and dQTG.seq will be installed

automatically.
For offline installation, users first open R GUI, select ‘‘Packages”

— ‘‘Install package(s) from local files. . .”, and then find and install
the add-on software packages, which include the software pack-
ages: ‘‘data.table”, ‘‘BB”, ‘‘doParallel”, ‘‘openxlsx”, ‘‘qtl”, ‘‘stringr”,
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‘‘vroom”, and ‘‘writexl”. Finally, users install the dQTG.seq software
package, which was downloaded on the computer.

2.7. Implementation of the software package

Once the software package is installed, users can run the soft-
ware package using two commands:

library (dQTG.seq)
dQTG.seq(dir=‘‘D:/users”,filegen=‘‘D:/users/BSA.csv”,chr=‘‘all”,colo

r = c(‘‘blue”,‘‘red”), CLO = NULL)
If users want to restart this software package, the above two

commands can be used as well. In the function dQTG.seq(), five
parameters must be set up: 1) the path of output files, such as
dir=‘‘D:/users”; 2) input file and its path, such as filegen=‘‘D:/user
s/BSA.csv”; 3) chromosome, such as chr=‘‘all” for all chromosomes
and chr=‘‘c(n1,n2,n3)” for chromosomes n1, n2, and n3; 4) colors of
smoothing lines in adjacent chromosomes, such as color = c(‘‘blu
e”,‘‘red”); 5) parallel, for which CLO = NULL is the default setup (File
A.1).
3. Results

3.1. The description for the result files

After running is finished, two result files (all_result.csv and sig-
nificant_result.csv) and one plot file with the ‘‘png”, ‘‘jpeg”, ‘‘pdf”,
and ‘‘tiff” formats will be outputted in the output path.

In the ‘‘all_result.csv” file, there are thirteen columns for F2 pop-
ulation and eleven columns for BC, DH, and RIL populations. In F2
Fig. 3. Previously reported genes for rice grain number per panicle in immortalized F2
interval mapping (CIM, F) and inclusive CIM (ICIM, G) methods. Horizontal dotted lines
using new and existing methods are indicated by black curves. The genes with absolute do
red colors, respectively. If |d/a| � 2.0 and its size is small, the gene name is in pink color a
color in this figure legend, the reader is referred to the web version of this article.)
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population, the first three columns ‘‘Marker”, ‘‘Chromosome”, and
‘‘Position” show marker name, chromosome on which the marker
resides, and marker position (bp) on genome, respectively; col-
umns 4 to 8 show the estimates of statistics Gw, LOD, G, deltaSNP,
and ED, respectively; columns 9 to 13 show smoothing estimates
of five statistics Smooth_Gw, Smooth_LOD, G’, Smooth_deltaSNP,
and Smooth_ED, respectively. In BC, DH, and RIL populations, ele-
ven columns, except for the Gw and Smooth_Gw columns, are con-
sistent with those in F2 population.

In the ‘‘significant_result.csv” file, there are five sheets; each
sheet shows all the significant QTNs identified by one method. In
each sheet, the first six columns show ‘‘Marker”, ‘‘Chromosome”,
‘‘Position (bp)”, estimate of statistic, smooth estimate of statistic,
and critical value of the statistic for significant QTN, respectively.

In the output plot, there are five sub-plots in png, jpeg, pdf and
tiff formats (File A.1). In each sub-plot from one method, users may
modify some parameters, such as colors.
3.2. Real data analysis for rice grain number per panicle

The dataset of rice grain number per panicle from Zhou et al.
[20] was re-analyzed using the BSA (dQTG-seq2, SmoothLOD, G’,
deltaSNP, and ED) and QTL mapping (CIM and ICIM) methods.
The BSA methods were implemented using the new software pack-
age in this study. The results are listed in Tables A.2-A.3. As a result,
42, 12, 8, 26, 25, 13, and 7 significant QTLs were identified by the
dQTG-seq2, SmoothLOD, G’, deltaSNP, ED, CIM, and ICIM methods,
respectively (Fig. 3; Table A.2). Among these QTLs, 21, 5, 5, 12, 12,
5, and 4 known genes were detected by the above-mentioned
using the dQTG-seq2 (A), SmoothLOD (B), G’ (C), deltaSNP (D), ED (E), composite
indicate thresholds of significant QTLs. Various statistics of genome-wide scanning
minant ratio |d/a| < 2.0, small-effects, and |d/a|� 2.0 are indicated by blue, pink, and
nd its corresponding solid line is in red color. (For interpretation of the references to
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methods, respectively (Table A.3). Among these known genes,
dQTG-seq2 identified 7 known genes with absolute dominance
ratio |d/a| > 2.0 and 6 known genes with allelic frequency differ-
ence |AFD| < 0.15, QTL mapping (CIM and ICIM) methods identified
one known gene Ghd7 with large |d/a| and small |AFD|, and other
BSA methods identified no known genes with large |d/a| and small
|AFD| (Table A.3). These results indicate that dQTG-seq2 identifies
more significant QTLs and known genes for grain number per pan-
icle than existing BSA and QTL mapping methods, especially the
QTLs and known genes with large |d/a| and small |AFD|. The conclu-
sion is consistent with that of Li et al. [5].
4. Discussion

Significant progress has been made in BSA software package
development in this study. First, the new R software package
dQTG.seq using the dQTG-seq2 method had higher power in
detecting extremely over-dominant and small-effect QTLs and
genes for quantitative traits in F2 than existing BSA software pack-
ages [5] (Table A.1). This is mainly due to the utilization of the
numbers of marker alleles and genotypes in two extreme pools
in the dQTG-seq2 method and the utilization of the numbers of
marker alleles in existing BSA software packages. Meanwhile, there
are more bi-parental segregation populations (F2, BC, DH, and RIL)
and more BSA methodologies (dQTG-seq1, dQTG-seq2, Smooth-
LOD, G’, deltaSNP, and ED) available in this new software package
as compared with existing BSA software packages frequently used
for one method in one segregation population. Then, three main
BSA smoothing methods, AIC [16], Window size [12], and Block
[19], have been incorporated into each BSA method in order to
optimize the results. In previous BSA software packages, each
approach has its own specific smoothing method. Finally, permuta-
tion experiments are used to determine threshold values of various
BSA statistics. This overcomes the subjectivity in the determination
of significant QTLs. Thus, the new software package has broad
application prospects.

In BSA, it is common for no significant QTLs and genes to be
identified. As we know, many factors affect BSA results, such as
population type, sample and QTL size, sampling fraction, and
sequencing depth. Related discussions can be found in several arti-
cles [4,5,25,26], from which suitable sampling plans have been
summarized in Table A.4. For example, F2 is better than BC, DH,
and RIL. This is owing to its simple construction and good mapping
results [4,25]. However, there are frequently large experimental
errors for phenotypic observations of quantitative traits in F2
plants, especially in maize and cotton. To address this issue, the
DNA / RNA samples of F2 plants are used to obtain their genotypes,
and the average of F2:3 families is used to measure the phenotype
of F2 plant [27]. Meanwhile, F2 population is a temporary segrega-
tion population. To overcome this issue, immortalized F2 (IMF2)
population is recommended [28,29]. More importantly, a new
statistic Gw has been proposed in F2 to identify all types of QTLs
and genes, especially for extremely over-dominant and small-
effect genes [5].

In smoothing methods, parameter of window size for the Win-
dow size method [12] and the number of markers in a block for the
Block method [19] affect the BSA results [30]. In our software pack-
age, window size varies across various species, and the initial value
of window size is set up as the ratio of the genome length (Mb) to
genetic map length (cM) in more than ten species (File A.1), while
the block depends on marker density and the initial value for the
number of markers in a block is set up as 10. In application, users
may adjust these setups based on the dataset in order to obtain the
best result.
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The widely-used probability level of significance is 0.05 in
statistics. Thus, this level should be adopted in the dQTG-seq2
and existing BSA methods. As we know, the numbers of read
counts of marker genotypes in extreme phenotype pools in the
dQTG-seq1 method are predicted from the numbers of read counts
of marker alleles, and the predicted values have residual error.
Thus, the 0.10 level was suggested in Li et al. [5].
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