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Relative model selection of evolutionary 
substitution models can be sensitive to multiple 
sequence alignment uncertainty
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Abstract 

Background:  Multiple sequence alignments (MSAs) represent the fundamental unit of data inputted to most 
comparative sequence analyses. In phylogenetic analyses in particular, errors in MSA construction have the potential 
to induce further errors in downstream analyses such as phylogenetic reconstruction itself, ancestral state recon-
struction, and divergence time estimation. In addition to providing phylogenetic methods with an MSA to analyze, 
researchers must also specify a suitable evolutionary model for the given analysis. Most commonly, researchers apply 
relative model selection to select a model from candidate set and then provide both the MSA and the selected model 
as input to subsequent analyses. While the influence of MSA errors has been explored for most stages of phylogenet-
ics pipelines, the potential effects of MSA uncertainty on the relative model selection procedure itself have not been 
explored.

Results:  We assessed the consistency of relative model selection when presented with multiple perturbed versions 
of a given MSA. We find that while relative model selection is mostly robust to MSA uncertainty, in a substantial pro-
portion of circumstances, relative model selection identifies distinct best-fitting models from different MSAs created 
from the same set of sequences. We find that this issue is more pervasive for nucleotide data compared to amino-acid 
data. However, we also find that it is challenging to predict whether relative model selection will be robust or sensitive 
to uncertainty in a given MSA.

Conclusions:  We find that that MSA uncertainty can affect virtually all steps of phylogenetic analysis pipelines to a 
greater extent than has previously been recognized, including relative model selection.
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Background
One of the first steps in a phylogenetic analysis, and 
indeed any comparative sequence analysis, is to construct 
a multiple sequence alignment (MSA) from homologous 
sequences of interest. In spite of decades of advances in 
MSA construction algorithms, it remains difficult to con-
fidently generate a reliable and accurate MSA that fully 

considers the evolutionary process, and different soft-
ware platforms and/or algorithm parameterizations are 
known yield different MSAs of varying quality [24, 29, 36, 
39]. A substantial body of research has shown that errors 
in the MSA itself can influence, with the potential to pro-
duce spurious results, downstream analyses such as phy-
logenetic reconstruction [5, 39], phylogenetic topology 
tests [18], ancestral state reconstruction [5], divergence 
time estimation [10], and identification of positive selec-
tion [15, 20, 27].

While the effects of MSA uncertainty in phylogenetic 
pipelines have been heavily studied, the MSA is not the 

Open Access

BMC Ecology and Evolution

*Correspondence:  spielman@rowan.edu
1 Department of Biological Sciences, Rowan University, Glassboro, NJ 
08028, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12862-021-01931-5&domain=pdf


Page 2 of 11Spielman and Miraglia ﻿BMC Ecology and Evolution          (2021) 21:214 

only piece of information that is inputted to phyloge-
netic reconstruction and other evolutionary-informed 
analyses. A suitable model of sequence evolution for 
the data at hand must also be provided [4]. Most mod-
els of sequence evolution consider a continuous-time 
reversible Markov process, and there are dozens, if not 
hundreds, of available parameterizations for nucleotide 
and amino-acid models [40]. One of the most common 
approaches used to identify a suitable model for phy-
logenetic inference is relative model selection, wherein 
a set of candidate models are ranked according to a 
given goodness-of-fit measurement, and the best-fitting 
model is then used in the phylogenetic reconstruction 
[34]. Although recent studies have suggested that rela-
tive model selection may not be a critical step in phy-
logenetic studies [2, 31, 33], it remains an enduring 
staple of most analysis pipelines. Henceforth, we use 
the phrase “model selection” to refer specifically to rel-
ative model selection, unless otherwise stated.

When performing model selection, the MSA of inter-
est is generally fixed, yet there is rarely a guarantee that 
the MSA has precisely identified site homology and/
or insertion/deletion (indel) events. Indeed, there are 
many MSAs which could be in theory derived from a 
given set of homologous sequences, but how relative 
model selection would perform on a different MSA 
version is unclear. In other words, if there were N dif-
ferent MSAs which could be generated from the same 
set of orthologs, it is unknown whether relative model 
selection will consistently identify the same best-
fitting model for all N MSAs. Previously, Abdo et  al. 
[3] showed that relative model selection is robust to 
the guide tree used to assess model fit, but it remains 
unknown to what extent uncertainty in the MSA will 
influence the procedure. This dearth of understanding 
is a notable omission from both the model selection 

literature and from the literature investigating effects of 
MSA uncertainty on phylogenetic applications.

Here, we aimed to bridge this gap through a system-
atic analysis of whether MSA uncertainty can affect the 
results of model selection. We examined whether model 
selection is robust to MSA uncertainty across thou-
sands of sets of natural orthologous sequences, at both 
the amino-acid and nucleotide levels, by interrogating 
whether model selections identifies different optimal 
models for different versions of MSAs created from the 
same underlying set of orthologs. We broadly found that 
there is potential for model selection, in particular on 
nucleotide data, to identify different best-fitting evolu-
tionary models for different MSA versions created from 
the same ortholog set. Moreover, we find that it is chal-
lenging to predict whether model selection will be robust 
or sensitive to uncertainty for a given MSA. Our results 
demonstrate that MSA uncertainty may be even more of 
a pervasive influence in phylogenetic analysis pipelines 
than has previously been recognized.

Results
We obtained sets of unaligned orthologs (“datasets”; 
Table  1) from databases Selectome [21], including both 
Euteleostomi and Drosophila sequences, and PANDIT 
[37]. For each dataset, we generated 50 unique MSA 
variants using a GUIDANCE2-based approach [29, 32], 
with one MSA designated as the reference MSA and the 
remaining 49 designated as perturbed MSAs. The GUID-
ANCE2 algorithm generates alternative MSAs by varying 
the guide tree and gap opening penalties used by pro-
gressive alignment algorithms during MSA reconstruc-
tion. For each resulting MSA, we used ModelFinder 
[16, 23] to determine the best-fitting model with each of 
the three information theoretic criteria AIC, AICc, and 
BIC. For all steps, we analyzed both the nucleotide (NT) 

Table 1  Terminology used throughout text

Term Meaning

MSA Acronym for multiple sequence alignment

Dataset A set of unaligned orthologous sequences

Datatype Either nucleotide (NT) or amino-acid (AA)

Dataset source Either Drosophila, Euteleostomi, or PANDIT

Reference MSA The initial MSA created from a given dataset using default MAFFT settings

Perturbed MSA A perturbed MSA generated from a given dataset using a GUIDANCE2-based 
approach

Variant MSA One of any 50 unique MSAs (either reference or variant MSA) built from a given dataset

Stable dataset A dataset with the same selected model for all variant MSAs

Unstable dataset A dataset with at least two distinct selected models among all variant MSAs

M0 The most frequently identified best-fitting model for a given dataset

Mref The best-fitting model identified for a given dataset’s reference MSA
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and amino-acid (AA) versions (“datatypes”; Table  1) of 
each dataset. In total, for each datatype, we processed 
1000 Drosophila and Euteleostomi datasets each from 
Selectome and 236 datasets from PANDIT, more details 
for which are available in “Methods” secion. Associated 
acronyms and terms are defined in Table 1.

Distinct models are often associated with variant MSAs
We first investigated model selection’s consistency by 
tabulating how many distinct best-fitting models were 
identified across a given dataset’s 50 variant MSAs. If 
model selection were robust to MSA uncertainty, we 
would observe the same best-fitting model for all vari-
ant MSAs. Alternatively, if model selection were sensitive 
to MSA uncertainty, we would observe multiple distinct 
best-fitting models identified across a given dataset’s var-
iant MSAs. We refer to datasets adhering to the former 
scenario (one model for all variant MSAs) as a “stable” 
and datasets adhering to the latter scenario as “unstable” 
(Table 1).

Overall, we observed distinct stability patterns across 
datatypes and dataset source (Fig. 1). Drosophila datsets 
tended to be more unstable, with a pronounced instabil-
ity increase for nucleotide datasets compared to amino-
acid datasets. By contrast, Euteleostomi datasets tended 
to be more stable, with a pronounced stability increase 
for amino-acid datasets compared to nucleotide data-
sets. Finally, PANDIT amino-acid datasets tended to be 
more stable compared to their nucleotide counterparts. 
Stability was broadly consistent across the theoretic 
information criterion used, suggesting that all criteria are 
similarly influenced by MSA uncertainty.

We next counted the total number of selected models 
identified for unstable datasets (Fig.  2a for AIC results 
and Additional file  1: Fig. S1a, c for BIC and AICc 
results, respectively). Results were again broadly consist-
ent among information theoretic criteria. Across both 
amino-acid and nucleotide datatypes, the vast majority 
of unstable datasets only had two associated best-fitting 
models; for example, as shown in Fig.  2a, that roughly 
65% of all Drosophila amino-acid datasets were associ-
ated with two distinct best-fitting models with model 
selection by AIC. Across all amino-acid datasets, roughly 
17–34% of ortholog datasets were associated with three 
or more models, and across all nucleotide datasets, 
roughly 32–52% of ortholog datasets were associated 
with three or more models, demonstrating that model 
selection is indeed influenced by MSA uncertainty in 
a substantial proportion of cases. Most notably, model 
selection was most sensitive to MSA uncertainty on 
Drosophila NT datasets, of which nearly 10% of datasets 
selected five or more best-fitting models.

We next assessed, for each unstable dataset, the per-
centage of MSA variants whose selected model matched 
the dataset’s most frequently identified best-fitting 
model, M0 (Table  1). We observed substantial variation 
across datasets in how commonly the M0 model was 
selected (Fig. 2B for AIC and Additional file 1: Fig. S1b, 
d for BIC and AICc, respectively). Taken together, these 
results suggest that there is strong potential for MSA 
uncertainty to affect model selection, and there is no 
guarantee that model selection will consistently identify 
the same best-fitting model for different MSA versions, 
amino-acid or nucleotide alike, derived from the same 
underlying data.

Fig. 1  Percent of stable and unstable (defined in Table 1) datasets within each of the three data sources, Selectome Euteleostomi [1000 amino-acid 
(AA) and nucleotide (NT) datasets each], Selectome Drosophila (1000 AA and NT datasets each), and PANDIT (236 AA and NT datasets each). Bars are 
colored based on the information theoretic criterion used for model selection
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We next looked more closely at the differences among 
selected models for unstable datasets. Specifically, 
assuming the same datatype (amino-acid or nucleotide), 
evolutionary models can differ in two primary ways. First, 
models may have entirely different Q matrices, reflect-
ing fundamentally different evolutionary patterns (e.g. 
WAG​ [38] vs. JTT [14] for amino-acid data). Alternatively, 
models can have the same underlying Q matrix, reflect-
ing a shared evolutionary process, but differ in their addi-
tional parameterizations including the specification of 
stationary frequencies (F), presence of among-site rate 
variation (ASRV, represented here by a four-category dis-
crete Gamma distribution and denoted +G), or propor-
tion of invariant sites (+I). For example, the two models 
WAG+G and WAG+G+I would have the same Q matrix 
but different additional parameterizations.

We therefore asked, specifically among unstable data-
sets, whether best-fitting models across MSA variants 
shared the same Q matrix (Fig. 3 for AIC and Additional 
file  1: Fig. S2 for BIC and AICc). To this end, we com-
pared the Q matrix selected for each variant MSA to 
the respective M0 model’s Q matrix, identifying each as 
either the same or different Q matrix.

As with previous analyses, we observed distinct trends 
between amino-acid and nucleotide datasets, but overall 
similar trends among information theoretic criteria and 
dataset sources examined. For Drosophila and PANDIT 
amino-acid datasets, roughly half of the selected mod-
els shared the M0 model’s Q matrix, but for over 60% of 
Euteleostomi amino-acid datasets, the selected model’s Q 
matrix matched the M0 matrix (Fig.  3). By contrast, for 
unstable nucleotide datasets from all data sources, the 

vast majority of selected Q matrices differed from the M0 
model’s Q matrix.

One reason why uncertainty in nucleotide MSAs may 
show increased model selection instability may be the rela-
tive model selection procedure itself. The ModelFinder 
algorithm used here for model selection [16] 88 candidate 
model parameterizations for nucleotide MSAs, and 168 
model parameterizations for amino acid MSAs. More spe-
cifically, nucleotide model selection evaluates 21 different 
Q matrices each with four different combinations of +F 
(use observed stationary frequencies), +I (proportion of 
invariant sites), and +G (four-category discrete gamma 

Fig. 2  RMS with AIC on unstable datasets. Corresponding figures for model selection with BIC and AICc are in Additional file 1: Fig. S1). a Barplot 
of the total number of unique selected models across the 50 variant MSAs generated for each dataset. Percentages of unstable datasets are shown 
separately for each dataset source (Drosophila, Euteleostomi, PANDIT) and datatype (AA and NT). b Histogram of the percentage of MSA variants 
whose selected model matched M0 (as determined by the respective information theoretic criterion), the most commonly selected model among 
all 50 MSA variants (Table 1)

Fig. 3  Consistency of Q matrices of selected models across MSA 
variants. “Different Q matrices” implies the selected model’s matrix 
differs from the respective M0 model’s Q matrix, and “Same Q 
matrices” implies the selected model’s matrix matches the respective 
M0 model’s Q matrix
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distribution to model among-site rate variation, ASRV) 
parameterizations, and amino-acid model selection evalu-
ates 22 different Q matrices each with six different com-
binations of +F, +I, and +G parameterizations. As such, 
there are more model parameterizations per Q matrix 
being evaluated for amino-acid model selection compared 
to nucleotide model selection. It is therefore possible that 
this analysis is somewhat biased in favor of amino-acids 
datasets showing increased Q matrix consistency com-
pared to nucleotide datasets simply because there are more 
models per Q matrix. In addition, exchangeability param-
eters in amino-acid models are not optimized by maximum 
likelihood, but rather are fixed to a priori determined val-
ues. By contrast, nucleotide model parameters are all opti-
mized by maximum likelihood and none are a priori fixed. 
This distinction in the source of model parameters may 
also explain the differences observed between nucleotide 
and amino-acid datasets.

Unstable datasets are challenging to distinguish 
from stable datasets
We next asked whether there are any overall differences 
between stable and unstable datasets. To this end, we con-
structed logistic regressions to explore whether MSA sta-
bility could be explained by underlying properties of each 
dataset. We built models for each combination of infor-
mation theoretic criterion and for each datatype, each 
considering these four predictors to capture dataset-level 
information: (1) number of MSA sequences, (2) the mean 
number of sites among the given dataset’s de-gapped 
sequences, (3) the mean edit (Hamming) distance between 
all pairwise comparisons of dataset sequences, and (4) the 
mean GUIDANCE residue pair scores calculated based 
on each dataset’s reference MSA [24]. Smaller mean edit 
scores indicate overall more similar sequences, and higher 
mean edit scores indicate more diverged sequences. Simi-
larly, GUIDANCE scores which range between [0, 1] reflect 
dataset robustness to MSA uncertainty as a whole. Smaller 
mean GUIDANCE scores indicate that the dataset is chal-
lenging to align with high expected uncertainty, and higher 
mean GUIDANCE scores indicate that the dataset can be 
more reliably aligned with less expected uncertainty. We 
calculated edit distances from all-to-all pairwise alignments 
[constructed with default settings in MAFFT v7 [17]], and 
we averaged resulting edit distances to derive a single mean 
edit distance score for each dataset. GUIDANCE residue 
pair scores were calculated for the reference MSA against 

all 49 associated perturbed MSAs, and we averaged all resi-
due pair scores to derive a single mean GUIDANCE score 
for each dataset.

For all logistic regressions, the mean number of sites 
and mean number of sequences were significant (all 
P < 10−5 ) predictors of dataset stability but with effect 
sizes barely different from zero (Fig.  4a). By contrast, 
higher mean GUIDANCE scores were consistently 
associated with increased log-odds of dataset stability, 
demonstrating that datasets whose variant MSAs are 
more similar to another are more likely to be stable, as 
expected. Surprisingly, the mean edit distance predictor 
showed opposite trends between amino-acid and nucle-
otide datasets. For amino-acid data, higher mean edit 
distance was associated with higher log-odds of dataset 
stability, except for BIC model selection where this pre-
dictor was not significant. For nucleotide data, on the 
other hand, lower mean edit distances were associated 
with increased log-odds of dataset stability. Regardless, 
consistent across information theoretic criteria and data-
types, the mean GUIDANCE score had the largest abso-
lute effect on explaining dataset stability. ROC (receiver 
operating characteristic) analyses for these logistic 
regressions revealed an AUC (area under the curve) of 
at most 0.71 (Fig.  4). While better than random chance 
(AUC = 0.5), AUC values ranging from 0.68 to 0.71 do 
not suggest a high predictive ability for assessing whether 
model selection will be sensitive to MSA uncertainty for 
any given dataset in a real-world analysis. That said, that 
the predictive ability of these logistic regressions, and 
similarly AUC scores, may be influenced by having only 
N = 50 perturbed MSAs for each dataset, and exploring 
more variant MSAs may influence these overall findings. 
We further note that large ranges of predictor variables 
(Fig.  4b) may also have an impact on resulting AUC 
values.

We next examined MSA-level properties to ascertain 
whether more similar variant MSAs were more likely to 
have the same best-fitting model, and conversely whether 
more dissimilar variant MSAs are more likely to have dif-
ferent best-fitting models. For this analysis, we consid-
ered two common MSA scores, total columns (TC) and 
sum-of-pairs (SP) scores, to quantify similarity between 
each dataset’s perturbed MSA and the given reference 
MSA, using a procedure outlined in Fig.  5. For all sta-
ble datasets, all perturbed MSA selected models are by-
definition the same as the reference MSA’s model ( Mref ; 

(See figure on next page.)
Fig. 4  Logistic regression coefficients to explain dataset stability. a Filled circles represent logistic model coefficients that are significant at P ≤ 0.01 , 
and error bars represent the 99% confidence intervals. Values in the top left of each panel represent the AUC from an associated ROC (receiver 
operating characteristic) analysis. Note that effect sizes for “mean number of sites” and “number of sequences” are significant but extremely close to 
zero. Dataset sizes in each logistic regressions are equivalent to the number of datasets explored: 236 PANDIT datasets, 1000 Drosophila datasets, 
and 1000 Euteleostomi datasets, for each of AA and NT datatypes. b Distributions of predictor variables used in each logistic regression



Page 6 of 11Spielman and Miraglia ﻿BMC Ecology and Evolution          (2021) 21:214 

Fig. 4  (See legend on previous page.)
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Table  1). For each stable dataset, we calculated the SP 
and TC score between each of the 49 perturbed MSA and 
the reference MSA (49 total comparisons), finally aver-
aging these scores to derive an overall mean SP and TC 
score for the dataset. For all unstable datasets, we clas-
sified each perturbed MSA either as having the same or 
different selected model as Mref , resulting in two groups 
of MSAs: differs Mref and matches Mref . We calculated 
mean TC and SP scores for each of the two groups. Any 
unstable dataset with fewer than three perturbed MSAs 
per group was fully excluded from this analysis. In total, 
these calculations led to three distributions of mean data-
set SP and TC scores for each of the stable, differs, and 
matches groups (Fig. 6 for AIC and Additional file 1: Fig. 
S3a, b for BIC and AICc, respectively).

For each datatype (NT and AA) and MSA score (SP 
and TC), we built an ANOVA to assess the mean score 
differences among the three groupings, applying a post-
hoc Tukey test to compare differences among groupings 
(Table 2 for AIC, and Additional file 1: Tables S1, S2 for 
BIC and AICc, respectively). Overall, we observed no sig-
nificant differences the differs and matches groupings for 
all information theoretic criteria (differs-matches com-
parisons in Table 2 and Additional file 1: Tables S1, S2). 

By contrast, all stable-differs and all except one stable-
matches comparison were significant at P ≤ 0.01 , with 
one exception: The stable-matches comparison of TC 
scores on amino-acid datasets with AIC model selec-
tion was significant only at the level P ≤ 0.05 (Table 2). 
Moreover, all effect sizes were fairly small, except for 
significant nucleotide TC score comparisons. In total, 
these results support findings shown in Fig. 4 that MSAs 
are overall more similar for stable datasets compared to 
unstable datasets, but specifically predicting whether 
two given variant MSAs will select the same evolutionary 
model may not be possible.

Discussion and conclusions
We have conducted a large-scale empirical data analysis 
to ascertain the extent to which the results of relative 
model selection may be influenced by MSA uncertainty. 
We assessed the consistency of model selection, for 
three different commonly-used information theoretic 
criteria (AIC, BIC, AICc), across variant MSAs cre-
ated from the same dataset, finding that model selec-
tion is often sensitive to MSA uncertainty. As has been 
often observed in previous studies, we observed very 
few practical differences among results from different 

Fig. 5  Flowchart showing procedure for grouping MSAs to analyze SP and TC scores. Endpoints in the flowchart are colored according to the same 
groupings shown in Fig. 6
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information theoretic criteria used in model selection 
[2, 28]. Furthermore, we have shown that it is challeng-
ing, if at all possible, to predict the specific circum-
stances under which MSA uncertainty influences model 
selection, although we do observe that model selection 
is, as expected, more consistent when the MSA itself 
is more reliable (Fig.  4). In total, these results build 
on previous findings that MSA uncertainty has the 

potential to influence even more stages of phylogenetic 
analyses than has been previously recognized.

We note that one limitation of this study is that we 
only explore the influence of MSA uncertainty on relative 
model selection and not other approaches to identifying 
best-fitting models, including tests of model adequacy 
[11–13], Bayesian assessments of absolute model fit [7, 
19], or more recently-developed machine-learning meth-
ods for model selection [1]. Indeed, it may be possible 
that other approaches to model selection are more robust 
to MSA uncertainty, but the computational demands of 
these methods prohibit similar large-scale benchmark-
ing. As the computational efficiency of these methods 
improves, it will be possible to thoroughly examine the 
potential effects of MSA uncertainty on model adequacy 
approaches.

How can the effects of MSA uncertainty be mitigated 
for relative model selection? In other scenarios in phy-
logenetic methods where MSA uncertainty is a known 
confounding factor, researchers will sometimes filter 
and/or mask MSAs to remove columns and/or resi-
dues that are suspected to have been poorly aligned. 
However, there have been mixed results on whether 
such actions will improve analyses. For example, in the 
context of positive selection, Privman et al. [27] found 
that masking poorly aligned residues may reduce false 
positives, but Spielman et al. [32] found that there was 
limited practical utility to masking residues. Similarly, 
in the context of phylogenetic reconstruction, Sela 
et al. [29] found that MSA filtering may improve infer-
ences, but Tan et al. [35] found that MSA filtering more 

Fig. 6  Mean SP and TC scores across variant MSA groups for model selection with AIC. Values in each boxplot represent mean dataset SP and TC 
scores across MSA variant groupings. Corresponding figures for model selection with BIC and AICc are in Additional file 1: Fig. S3

Table 2  SP and TC score comparisons among variant MSA 
groups for model selection with AIC

The “Comparison” column indicates the difference in effect sizes between the 
given groupings, which were compared in a post-hoc Tukey test with corrected 
P-values. Rows with adjusted P ≤ 0.01 are shown in bold. Corresponding results 
for model selection with BIC and AICc are in Additional file 1: Tables S1 and S2, 
respectively

Datatype Score type Comparison Estimate (99% CI)

AA SP Differs-matches − 0.002 (− 0.011, 0.007)

AA SP Stable-matches 0.014 (0.006, 0.022)
AA SP Stable-differs 0.016 (0.008, 0.024)
AA TC Differs-matches − 0.007 (− 0.033, 0.018)

AA TC Stable-matches 0.022 (− 0.001, 0.045)

AA TC Stable-differs 0.029 (0.006, 0.052)
NT SP Differs-matches − 0.003 (− 0.015, 0.01)

NT SP Stable-matches 0.043 (0.031, 0.055)
NT SP Stable-differs 0.046 (0.034, 0.058)
NT TC Differs-matches − 0.006 (− 0.032, 0.021)

NT TC Stable-matches 0.093 (0.066, 0.119)
NT TC Stable-differs 0.098 (0.071, 0.125)
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frequently worsens inferences. Overall, these studies 
point to the conclusion that MSA filtering can reduce 
spurious inferences, but may also reduce power to the 
detriment of overall performance. In spite of the lack-
luster promise shown by other applications of MSA fil-
tering, examining the effect of MSA filtering on model 
selection itself may begin to reveal the source of its 
uncertainty. Another potential option for mitigating 
the effects of MSA uncertainty more generally may be 
to pursue a model averaging and/or mixture modeling 
strategy [6, 25, 30], for example by jointly consider-
ing candidate models identified across variant MSAs, 
during phylogenetic reconstruction. Alternatively, it 
may be possible to address MSA uncertainty by aver-
aging across a candidate set of MSAs, which has been 
previously shown to improve accuracy in phylogenetic 
reconstruction [29], and selecting a model for subse-
quent analyses based on the averaged MSA rather than 
from a single variant MSA.

While it may be possible to ameliorate the influ-
ence of MSA uncertainty on relative model selection, 
we must also ask: Do we need to mitigate this issue in 
the first place? For example, recent studies have shown 
that, for both nucleotide and amino-acid models, the 
model selection procedure itself may not be a criti-
cal step in phylogenetic reconstruction, since different 
models with extreme differences in relative fit may not 
actually result in systematically different results [2, 31, 
33] although how the precise model used may influence 
branch length and/or divergence estimation remains 
an important question [1, 2]. As such, if distinct mod-
els may yield highly similar inferences, optimizing 
the model selection procedure itself has diminishing 
returns. If models themselves are overly similar, there 
may be little practical consequence to the observed 
uncertainty in model selection.

Considering the results of this study in the context 
of literature questioning the utility of model selection 
itself, we suggest that, rather expending additional 
efforts to perfect existing paradigms in phylogentic 
modeling, the time has come to explore novel mod-
eling paradigms. For example, one reason that all mod-
els may yield highly similar inferences is that, while 
they may have somewhat different focal parameters, 
virtually all commonly-used models, and certainly all 
those evaluated by model selection, adhere to the same 
underlying mechanism: A stationary, time-reversible, 
and homogeneous Markov process that assumes sites 
evolve independently (e.g. no epistasis) [22]. We con-
clude that concerted efforts to develop and extend 
these paradigms while facilitating widespread familiar-
ity represent the most promising next steps in advanc-
ing phylogenetic methods.

Methods
Construction of perturbed alignments
We analyzed multiple sequence alignments (MSAs) 
from two databases, Selectome v6 [21] and PANDIT 
[37], specifically considering only those MSAs which 
had fully compatible amino-acid and nucleotide ver-
sions. This approach allowed us to use the same underly-
ing biological data to examine the robustness of relative 
model selection when performed on both nucleotide and 
amino-acid MSAs. From Selectome, we analyzed 1000 
randomly selected Drosophila alignments and 1000 ran-
domly selected Eutelestomi MSAs, ensuring that each 
MSA corresponded to a different gene (i.e., only a single 
transcript for a given gene was analyzed). From PAN-
DIT, we analyzed all MSAs which contained at least 25 
sequences and whose shortest protein sequence con-
tained at least 100 amino-acids, which totalled 254 PAN-
DIT MSAs.

After collecting these datasets, we removed all gaps 
from these MSAs. We refer to each resulting set of una-
ligned orthologs as a “dataset.” For each nucleotide and 
amino-acid version of each dataset, we used a GUID-
ANCE2-based approach to generate 50 distinct MSAs 
[29, 32]. We created perturbed alignments by varying 
the guide tree and gap penalty parameters provided to 
the MAFFT v7.407 aligner [17]. In this procedure, a 
“reference” MSA is first made using default parameters 
in MAFFT. Bootstrapped versions of this reference MSA 
are used to create guide trees for the progressive align-
ment with FastTree2 [26]. Each unique guide tree is 
then supplied to MAFFT as a guide tree to construct a 
perturbed MSA from the underlying data. As in GUID-
ANCE2, the MAFFT gap opening penalty X for specified 
each perturbed MSA was randomly drawn from the uni-
form distribution X ∼ U(1, 3) . We created 49 perturbed 
MSAs for each dataset, leading to a total of 50 distinct 
MSAs (including the reference MSA) for each dataset. 
We ensured that all MSAs for a given dataset were fully 
unique.

Relative model selection
We used ModelFinder [16, 23] to conduct relative 
model selection, using the -m TEST flag to perform a 
standard model selection similar to jModelTest and 
ProtTest [8, 9]. This procedure evaluates 88 candidate 
model parameterizations for nucleotide MSAs, and 168 
model parameterizations for amino acid MSAs. More 
specifically, nucleotide model selection evaluates 21 dif-
ferent Q matrices each with four different combinations 
of +F (use observed stationary frequencies), +I (propor-
tion of invariant sites), and +G (four-category discrete 
gamma distribution to model among-site rate variation, 
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ASRV) parameterizations, and amino-acid model selec-
tion evaluates 22 different Q matrices each with six 
different combinations of +F, +I, and +G parameteri-
zations. For each dataset, we identified the best-fitting 
model under each of the three information theoretic cri-
terion AIC (Akaike Information Criterion), AICc (small-
sample Akaike Information Criterion), and BIC (Bayesian 
Information Criterion).
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