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Engulfed by the grave consequences of the coronavirus disease 2019 (COVID-19) 
pandemic, a better understanding of the unique pattern of viral invasion and virulence is 
of utmost importance. Angiotensin (Ang)-converting enzyme (ACE) 2 is a key component 
in COVID-19 infection. Expressed on cell membranes in target pulmonary and intestinal 
host cells, ACE2 serves as an anchor for initial viral homing, binding to COVID-19 spike-
protein domains to enable viral entry into cells and subsequent replication. Viral attachment 
is facilitated by a multiplicity of membranal and circulating proteases that further uncover 
attachment loci. Inherent or acquired enhancement of membrane ACE2 expression, likely 
leads to a higher degree of infection and may explain the predisposition to severe disease 
among males, diabetics, or patients with respiratory or cardiac diseases. Additionally, once 
attached, viral intracellular translocation and replication leads to depletion of membranal 
ACE2 through degradation and shedding. ACE2 generates Ang 1-7, which serves a critical 
role in counterbalancing the vasoconstrictive, pro-inflammatory, and pro-coagulant effects 
of ACE-induced Ang II. Therefore, Ang 1-7 may decline in tissues infected by COVID-19, 
leading to unopposed deleterious outcomes of Ang II. This likely leads to microcirculatory 
derangement with endothelial damage, profound inflammation, and coagulopathy that 
characterize the more severe clinical manifestations of COVID-19 infection. Our 
understanding of COVID-ACE2 associations is incomplete, and some conceptual 
formulations are currently speculative, leading to controversies over issues such as the 
usage of ACE inhibitors or Ang-receptor blockers (ARBs). This highlights the importance 
of focusing on ACE2 physiology in the evaluation and management of COVID-19 disease.

Keywords: COVID-19 pandemic, angiotensin converting enzyme 2, SARS-CoV-2, RAS inhibition, inflammation, 
coagulopathy

BACKGROUND

Coronavirus disease 2019 (COVID-19), caused by the highly contagious coronavirus 2 (SARS-CoV-
2), is initiated by invasion into host cells through viral attachment to angiotensin (Ang)-converting 
enzyme (ACE) 2. ACE2, expressed in numerous different tissues, serves as an anchor for specific 
domains on the viral spikes (Hamming et  al., 2004; Hoffmann et  al., 2020; Zou et  al., 2020). 
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Additionally, ACE2, through the modulation of the renin-
Ang-aldosterone system (RAS), plays an important physiologic 
role in the homeostasis of tissue microcirculation and 
inflammation (Crackower et  al., 2002; Hamming et  al., 2007; 
Santos et  al., 2008; Clarke and Turner, 2012; Datta et  al., 
2020). This minireview will address the role of ACE2 within 
the RAS, and the inter-association of ACE2 and SARS-CoV-2, 
with their plausible combined impact on the clinical 
manifestations of COVID-19 disease. We  shall further address 
knowledge gaps that require elucidation in order to better 
understand the pathophysiology and clinical features of 
COVID-19  in order to develop effective means for disease 
prevention and management.

ACE2: AN IMPORTANT COMPONENT 
OF RAS

Figure 1A illustrates our current understanding of the complexity 
of the RAS. Until recently, most clinicians were familiar with 
only one axis, namely renin-mediated proteolysis and conversion 
of angiotensinogen to the 10-amino-acid peptide Ang I, followed 
by a further cleavage by ACE, principally present in the lungs 
to form the bioactive 8-amino-acid compound Ang II (Crackower 
et  al., 2002; Hamming et  al., 2007; Santos et  al., 2008; Clarke 
and Turner, 2012). The COVID-19 pandemic shifted our attention 
to another component of RAS, namely ACE2, which plays a 
role in SARS-CoV-2 virulence. Ang II could be  further cleaved 
by ACE2 to form the bioactive 7-amino-acid peptide Ang 1-7. 
In addition, ACE2 converts Ang I  into Ang (1-9), which can 
be  further converted to Ang 1-7 by ACE. A third pathway of 
Ang 1-7 generation involves neprilysin (neural endopeptidase-NEP), 
which converts Ang I  directly into Ang 1-7 (Tipnis et  al., 2000; 
Crackower et al., 2002; Vickers et al., 2002; Hamming et al., 2007; 

Santos et  al., 2008; Clarke and Turner, 2012). An alternative 
degradation pathway with conversion of Ang I  to Ang II  
takes place by the proteolytic enzyme, chymase, explaining  
ongoing generation of Ang II in patients on ACE inhibitors 
(Miyazaki and Takai, 2006).

Importantly, Ang derivatives differ by their downstream 
physiologic properties and are mediated by diverse signal 
transduction mechanisms (Figure  1A). Ang II acts principally 
as a potent vasoconstrictor, pro-inflammatory, pro-fibrotic, and 
anti-diuretic agent. These actions are mediated by Ang II 
binding to Ang T1 receptors (AT1R) on affected cell membranes. 
Opposing activities may be  initiated via attachment of Ang 
II to Ang T2 receptors (AT2R; Li et  al., 2017). Indeed, Ang 
II-mediated vasoconstriction or vasodilation at the renal cortex 
and medulla, respectively, reflects diverse receptor distribution 
and activity, predominantly AT1R in the cortex and AT2R in 
the medulla (Duke et  al., 2003). As also shown in Figure  1A, 
unlike Ang II, Ang 1-7 exerts unequivocal vasodilatory, anti-
inflammatory, anti-fibrotic, and natriuretic actions by binding 
to a G-protein-coupled Mas receptor (MasR; Li et  al., 2003; 
Santos et  al., 2008).

Thus, a tight physiologic balance exists by the opposing 
effects of Ang derivatives whenever this system undergoes 
perturbations, with the aim of preventing extreme vasoactive 
deviations or uncontrolled inflammation and remodeling, with 
Ang 1-7 serving to counterbalance the undesired adverse effects 
of unbridled Ang II action.

ACE2 AND SARS-CoV-2 ASSOCIATION

Angiotensin-converting enzyme is expressed on the plasma 
membranes of various cell types, including alveolar and intestinal 
epithelia, vascular endothelial cells in the heart, kidney, and 

A B C

FIGURE 1 | Angiotensin derivatives, their targets and downstream action: (A) Balanced impact of angiotensin (Ang) II and Ang 1-7 on vascular tone and control of 
inflammation. (B) SARS-CoV2 infection generates Ang 1-7 depletion, likely leading to unopposed vasoconstriction and inflammation. (C) Concomitant renin-Ang-
aldosterone system (RAAS) inhibition with Ang-converting enzyme (ACE) inhibitors or Ang-receptor blockers (ARBs) may restore the balance, with parallel 
suppression of signals mediated by Ang T1 receptors (AT1R) and Mas receptor (MasR).
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testis, and on macrophages, where it catalyzes the production 
of Ang 1-7 and its likely paracrine activity (Crackower et  al., 
2002; Hamming et  al., 2007; Santos et  al., 2008; Clarke and 
Turner, 2012; Abassi et al., 2020c). Unfortunately, cell-membrane-
bound ACE2 also serves as a binding site for the viral spike 
proteins of SARS-CoV-1 and SARS-CoV-2 (Li et  al., 2003; 
Hamming et  al., 2004; Hoffmann et  al., 2020; Walls et  al., 
2020; Wan et  al., 2020; Wu et  al., 2020; Zou et  al., 2020). 
The viral attachment to ACE2 with subsequent internalization 
is facilitated by additional modifications and cleavage of the 
S1/S2 spike proteins by convertases, such as transmembrane 
protease serine (TMPRSS 2) and related proteases (Furin and 
Corin; Heald-Sargent and Gallagher, 2012; Coutard et al., 2020; 
Hoffmann et  al., 2020; Shang et  al., 2020; Walls et  al., 2020), 
and probably by activated factor X (Xa), which was shown 
to cleave recombinant and pseudoviral S protein into S1 and 
S2 subunits (Du et  al., 2007), all exposing the fusion sites in 
the viral spike protein (Figure  2).

Two principal sites of SARS-CoV-2 invasion include the 
gastrointestinal and respiratory tracts, which express abundant 
ACE2. While intestinal homing is clinically more pronounced 
in children, manifested by gastrointestinal symptoms, the lungs 
conceivably serve as the principal port of entry, with viral 
attachment to type II alveolar cells (AT2), and to alveolar 
macrophages coated by membranal ACE2 (Abassi et al., 2020c,d). 
Interestingly, conditions identified as predisposing to severe 
COVID-19 disease are characterized by enhanced pulmonary 
expression of ACE2. First, chronic airway disease, smoking, 
and pollution are associated with expansion of the population 
of alveolar macrophages expressing ACE2 (Abassi et al., 2020d). 

Furthermore, ACE2 expression is increased in males 
(La Vignera et  al., 2020; Papadopoulos et  al., 2020). Indeed, 
bioinformatics analyses revealed higher abundance of ACE2-
expressing AT2 cells in men than women (Wei et  al., 2020), 
potentially enhancing viral susceptibility among men. In this 
context, testosterone has been described to induce ACE2 
expression, the receptor entry of the SARS-CoV-2 infection, 
but also exerts protective effect against lung injury (Kuba 
et  al., 2005). Enhanced ACE2 is also found in diabetes 
(Muniyappa and Gubbi, 2020) and heart failure (Zisman et al., 
2003; Goulter et  al., 2004; Chen et  al., 2020), and possibly 
with the administration of RAS inhibitors (Li et  al., 2017). 
Diabetes is also associated with increased expression of furin 
(Fernandez et al., 2018). Thus, while testosterone levels decline 
with aging among men (Harman et  al., 2001; Feldman et  al., 
2002), the presence of comorbidities like obesity, diabetes 
mellitus, and cardiovascular diseases, possibly counterbalance 
the decline in viral homing capacity related to age-dependent 
testosterone drop (Camacho et al., 2013; Rastrelli et al., 2015). 
In addition, testosterone enhances AT1R expression in male, 
whereas estrogen preferentially upregulates AT2R expression 
in females (Chanana et  al., 2020). Finally, hypogonadal males 
are characterized by low T cell count which may provide 
unrestrained environment for severe responses to SARS-CoV-2 
infection (Papadopoulos et  al., 2020). In sum, it is tempting 
to assume that enhanced expression of ACE2  in target organs 
and also of other molecules permissive to viral binding to 
ACE2 facilitate viral invasion and augment viral load (Figure 3), 
although the details of this formulation require validation in 
further studies.

FIGURE 2 | Physiology of coronavirus disease 2019 (COVID 19) homing to target host cells expressing ACE2: viral spike-domains enable attachment to cell-
membrane-bound ACE2. Attachment is further enabled by furin, corin, TMPRSS2, and Factor Xa. Following attachment the virus undergoes internalization and 
replication in host cells, a process associated with degradation of internalized ACE2. Ang 1-7 synthesis consequently declines. Unopposed Ang II action triggers 
inflammation which activates ADAM 17, leading to shedding of membranal ACE2, further depleting cell-bound ACE2 and local Ang 1-7 synthesis. Viral attachment 
to target host cells may be attenuated by its competitive binding with rising titers of circulating ACE2.
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UNBALANCED RAS IN SARS-CoV 19 
DISEASE

As illustrated in Figures  1, 2, SARS-CoV-2 invasion unbalances 
the RAS. Viral cellular internalization is coupled with degradation 
of membranal ACE2. Furthermore, circulating Ang II, combined 
with internalized ACE2 activates a sheddase named ADAM 
metallppeptidase domain 17 (ADAM 17) also called tumor necrosis 
factor-α-converting enzyme (TACE; Lambert et  al., 2005), which 
in turn triggers shedding of membranal ACE2 into the circulation 
with the formation of soluble ACE2 (sACE2), further depleting 
membranal ACE2 along enhanced TNF-α production (Figure 2). 
Thus, viral cellular invasion and replication, initially facilitated 
by ACE2 and in particular under conditions characterized by 
enhanced ACE2 expression, later lead to diminution of cell 
membrane-attached ACE2, and likely increase circulating sACE2 
(Figures  2, 3). At the microcirculatory and tissue level, this is 
expected to result in unbalanced paracrine action of Ang compounds, 
with a local depletion of Ang 1-7 leaving Ang II activity unopposed 
(Figure 1B). Likely, this has a role in microcirculatory dysfunction, 
intense inflammation, hypercoagulability, tissue damage, and fibrosis 
(Figure 3). Lung inflammation in SARS CoV-19 disease exemplifies 
the outcome of Ang II/Ang 1-7 imbalance: Ang II enhances 
vascular permeability along infiltration of neutrophils into alveolae 
and indirectly via induction of interleukin 8 (IL-8; Diamond, 
2020). Accumulation of neutrophils and their accompanied 
prooxidative role lead to loss of alveolar epithelial cells and the 
development of ARDS. Nevertheless, this Ang II-derived lung 
injury is prevented by Ang 1-7 as was evident in ACE2 deficient 
mice (Zou et  al., 2014).

Additional adverse aspect of unrestricted Ang II action 
during SARS-CoV-2 infection is the increased tendency of 

thrombosis documented in large number of hospitalized 
COVID-19 patients (Bikdeli et  al., 2020; Klok et  al., 2020). 
Although this phenomenon is multifactorial, as outlined below, 
AT1R activation plays an important role where it leads to 
enhancement of tissue factor (TF) expression on endothelial 
cells and sequentially initiation of clotting cascade along increased 
permeability and neutrophils mobilization (Dielis et  al., 2005).

KNOWLEDGE GAPS: THE MISSING 
PIECES IN THE PUZZLE

Many sections in the preceding paragraphs are based on in 
vitro and animal studies, some with inconsistent and even 
conflicting interpretations. Furthermore, some fundamental 
concepts are currently being re-evaluated. For instance, previously 
reported ACE2 expression on vascular endothelial cells (Hamming 
et  al., 2004) has recently been questioned, based on the 
measurement of single-cell RNA (Batlle et  al., 2020). Human 
data based on patients infected by SARS-CoV-2 are sparse 
and are now being intensively studied as we  write these lines. 
It is evident that the foregoing statements should be  further 
examined in the human clinical scenario of COVID-19 disease.

Second, the role of altered ACE2 physiology detailed above 
in subsequent clinical features of the disease requires in-depth 
evaluation (Essig et  al., 2020). There are several hypothetical 
mechanisms, outlined in Figure  3, that warrant consideration. 
Possibly, unopposed Ang II due to depletion of cell membrane-
bound ACE2 results in altered regional microcirculation and 
hypoxia, with the generation of reactive oxygen species and 
endothelial damage, glycocalyx degradation, and disseminated 
coagulopathy (Abassi et al., 2020a). This may further compromise 

FIGURE 3 | A summarizing scheme of suggested COVID-17/RAS interactions: see text for details. Highlighted are factors enhancing ACE2 expression and viral 
binding to target host-cells, as are mechanisms leading to declining membranal ACE2 and Ang 1-7 synthesis. The impact of shedded sACE2 on tissue Ang 1-4 
production and on inhibiting viral homing to target cells expressing ACE2 by means of competition require further elucidation. RAS inhibitors potentially can enhance 
viral invasion by enhancing ACE2 expression, yet they may attenuate the unfavorable outcome of Ang 1-7 depletion by a parallel inactivation of functionally opposing 
Ang II activity. Potential hazardous feed-forward loops are AT1R-mediated enhanced ACE2 shedding and intensification of viral attachment via proteases activated 
by vasoconstriction and ischemia, inflammation, and coagulopathy.
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the regional microcirculation with a feed forward loop, leading 
to organ failure including the heart (Abassi et  al., 2020b), lungs 
(Abassi et al., 2020d), and kidneys (Batlle et al., 2020). Furthermore, 
intense inflammation and coagulopathy may result from unopposed 
Ang II and by ADAM 17–mediated activation of TNF-α/IL-6/
STAT-3 pathways (Hirano and Murakami, 2020) as well as 
uncontrolled heparanase activity (Li and Vlodavsky, 2009) together 
with the induction of defensins (Abu-Fanne et al., 2019). Concerning 
the latter, preliminary findings from our group indicate that 
alpha-defensin-1, released from polymorphonuclear cells as a part 
of the inflammatory response, plays a pivotal role in the 
hypercoagulopathy associated with COVID-19 disease, as its rising 
titers parallel increasing plasma levels of D-dimers (Higazi AAR, 
submitted manuscript). Regarding the interplay between Ang II 
and ADAM 17/TNF-α/IL-6/STAT-3 pathways, it was found that 
Ang II activates NF-κB and release of proinflammatory cytokines 
(Dandona et al., 2007; Benigni et al., 2010). Specifically, induction 
of ADAM17 by Ang II initiates the conversion of interleukin-6 
(IL-6Rα) to the soluble form (sIL-6Rα) along activation of signal 
transducer and activator of transcription 3 (STAT3) via the 
sIL-6Rα-IL-6 complex in various nonimmune cells including 
fibroblasts, endothelial cells, and epithelial cells (Hirano and 
Murakami, 2020). Moreover, STAT3, essential for the NF-κB 
pathway, is principally stimulated by IL-6 during inflammation 
(Murakami et  al., 2019). Since IL-6 plays a key role in the 
recruitment of lymphoid cells and myeloid cells, including activated 
T cells and macrophages (Murakami et  al., 2019), and likely 
enhances defensin release (Higazi AAR, unpublished data), its 
elevated levels during senescence may contribute to the enhanced 
COVID-19 mortality in aged people and to coagulopathy. 
Interestingly, AT1R density is increased, while AT2R abundance 
declines under inflammatory conditions (Diamond, 2020). 
Collectively, these results may explain proinflammatory cytokine 
release and hypercoagulopathy during SARS-CoV-2 infection via 
the associated Ang II pathway and a possible therapeutic target 
via the IL-6-STAT3 axis (Diamond, 2020).

Reduced inherent expression of ACE2  in the lungs with 
aging, as demonstrated in rats (Xie et  al., 2006; Alghatrif et  al., 
2020) may reduce the risk for SARS-CoV-2 infection on the 
one hand, whereas its further suppression to very low levels 
during viral infection, on the other hand, could amplify Ang 
II/Ang 1-7 imbalance, leading to more profound deleterious 
pulmonary consequences. Conversely, younger individuals with 
higher inherent ACE2 expression may have a higher incidence, 
yet less severe SARS-CoV-2 infection, since ACE2 depletion 
would not be  as severe as in aged patients, with Ang 1-7 
generation sufficient to counteract Ang II (Alghatrif et al., 2020). 
Deranged vascular reactivity will likely be  affected by other 
mediators, such as iNOS‐ activation and intense nitric oxide 
production (plausibly with abundant formation of the toxic-free 
radical peroxynitrite), and by altered endothelial production of 
endothelin and prostaglandins. Notably, there are additional 
plausible inherent feed-forward loops in the scheme of SARS-
CoV-2 infection and inflammation,  including hypoxia-driven 
perpetuation of endothelial damage and tissue damage. 
Furthermore, as illustrated in Figures  2, 3, Ang II suppresses 
Ang 1-7 generation secondary to downregulation of membranal 

ACE2 via ADAM 17 activation. Moreover, Factor Xa, generated 
during disseminated coagulation, is expected to expose attachment 
sites on viral spikes and enhance viral attachment to target 
cells expressing ACE2 (Du et  al., 2007). Interestingly, in vitro 
studies illustrate that heparin interferes with ACE2 binding to 
the S1 viral spike protein, reducing viral internalization (Mycroft-
West et al., 2020). Thus, enhanced heparanase activity in infected 
patients might damage endothelial cover by heparin-like 
proteoglycans and further facilitate viral endothelial invasion.

Third, discussions regarding the potential impact of 
medications affecting RAS are currently based on inconsistent 
observations and educated guesses (Essig et al., 2020). We really 
do not know for sure if blocking steps in the RAS cascade 
indeed results in enhanced ACE2 expression in humans, and 
whether this promotes viral attachment and invasion. On the 
other hand, discontinuation of RAS inhibitors might further 
intensify the uncontrolled action of Ang II, shown in Figure 1B, 
leaving it unopposed once Ang 1-7 generation is hampered. 
Those in favor of uninterrupted administration of RAS inhibitors 
would argue that, as illustrated in Figure  1C, depleting Ang 
II or blocking its action on AT1R [by ACE inhibitors or 
Ang-receptor blockers (ARBs), respectively] would balance the 
exhaustion of Ang 1-7 caused by viral invasion and might 
prevent consequent vasoconstriction (South et  al., 2020). 
Furthermore, it is also likely that the profile of Ang derivatives 
may differ in patients treated by ARBs, by ACE inhibitors or 
by spironolactone (Malha et  al., 2020). That is why blanket 
reassurance regarding continuation of RAS inhibitors during 
the current pandemic (Vaduganathan et  al., 2020) should 
be  regarded with caution. A cautious approach might consider 
the avoidance of ACE inhibitors or ARBs during an active 
epidemic in non-infected and hemodynamically-stable patients 
in order to reduce ACE2 expression, permissive to viral 
attachment, but consideration of ACE inhibitors, or ARBs at 
advanced stages of COVID-19 disease to prevent Ang II 
predominance due to depleted Ang 1-7. Most of the clinical 
trials and data analysis are performed on adults, however 
potential differences between adults and children may exist, 
thus coronavirus-related research should be  undertaken in 
children as well, including the impact of ACE-I and ARBs on 
COVID-19 evolvement among this subpopulation. Hopefully, 
this may provide clues for the question why children are at 
decreased risk of severe COVID-19 disease (South et al., 2020). 
Furthermore, we have no idea about the function or malfunction 
of circulating sACE2 following its shedding from cell membranes. 
Does it exert systemic vasodilation or improve the 
microcirculation? Can it compete with cell-membrane-bound 
ACE2 (Ciaglia et  al., 2020) and reduce viral attachment to 
target cells as suggested in Figure  3? Nor can we  tell if diverse 
inherent expression and activity of circulating or cell-bound 
ACE2 or its capacity to attach to viral spike proteins affects 
infection, infectivity, or susceptibility to severe and complicated 
disease. We  also are not sufficiently knowledgeable of plausible 
changes in ACE2 transcription in various tissues in response 
to SARS-CoV-2 infection. Indeed, Rice et  al. (2006) reported 
that up to 67% of the phenotypic variation in circulating ACE2 
could be  accounted for by genetic factors. These findings may 
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partially explain the different mortality rate among the various 
ethnic groups, and strongly support studies of genetic analysis 
of ACE2 polymorphisms as a reliable approach for precision 
medicine in the prevention, diagnosis, and therapy of COVID-19 
disease. Evidence is currently lacking as to whether levels of 
circulatory sACE2 may have diagnostic and prognostic implication 
when monitoring patients infected by SARS-CoV-2, as it does 
in patients with heart failure (Epelman et al., 2008; Ortiz-Perez 
et  al., 2013). With so many pieces of data missing, the need 
for vigorous clinical studies guided by physiology-based questions 
and hypotheses are most urgent. Such a question includes the 
continuation or even introduction, rather than cessation of RAS 
inhibitors in patients infected by SARS-CoV-2 (Kai and Kai, 
2020), or can we  inhibit binding of SARS spike proteins to 
ACE2, for instance by antibodies, without hampering its catalytic 
capacities to generate Ang 1-7? Is there a role for the application 
of Ang 1-7 or MasR agonists or for the administration of 
intravenous sACE2, with an available proof of concept for such 
postulated approaches (Yang et  al., 2014; Hemnes et  al., 2018)?

It is likely that many of the above options will be considered 
and examined in the near future. Meanwhile, we are challenged 
by epidemiologic aspects, by issues of supportive and critical 
care for very sick individuals, and by minimizing the risk to 
healthcare providers. The ultimate solution probably will 
be  effective vaccination. Yet, until we  reach this goal, studying 

and manipulating ACE2-viral association is a plausible approach, 
along with the development of effective anti-viral agents.
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