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Abstract

Purpose

Oct4 was reported to be one of the most important pluripotency transcription factors in the

biology of stem cells including cancer stem cells, and progressed malignant cells. Here we

report the investigation of gene expression control of Oct4 by selected human microRNAs

and the physiological effect of Oct4 silencing in invasive cancer cells.

Methods and results

High throughput luciferase activity assay revealed the microRNA-299-3p to be the most

effective in reducing gene expression of Oct4, which was confirmed by Western blot

analysis and Oct4 promoter activity in a target luciferase assay. Furthermore, it could be

demonstrated that downregulation of Oct4 by microRNAs-299-3p in breast cancer and fibro-

sarcoma cells lead to a decreased invasiveness in a microfluidic chip assay. Additionally,

microRNA-299-3p causes apoptosis in cancer cells. Comparison with Oct4 specific siRNA

transfection confirmed that this effect is primary due to the blockade of Oct4 expression.

Conclusion

The results suggest that microRNA-299-3p is an interesting target for potential clinical use.

It may be able to decrease invasive behaviour of carcinoma cells; or even kill these cells by

causing apoptosis.

Introduction

Stem cell genes like Oct4 (Octamer-binding factor) are known for maintaining the pluripotency

state of embryonic and induced stem cells [1] as well as cancer cells [2], [3]. Understanding the
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genetic regulation of stem cell genes thus might lead to novel technologies for stem cell and

cancer therapy.

MicroRNAs are important for the regulation of gene expression and were discovered in

1993 [4]. They are evolutionarily highly conserved; and are usually processed into 21–23

bases long short non-coding nucleotide sequences and occur in both invertebrates and verte-

brates [5]. They regulate target gene expression by hybridization to partially complementary

sequences in the 3’ untranslated region (3’UTR) of mRNA [6] and block translation [7] or lead

to degradation of the mRNA [8]

Based on bioinformatic predictions, up to 30% of all human genes could be regulated by

microRNAs [9]. The genes encoding microRNAs are located either within protein-encoding

genes or in separate loci of the genome [5], [10]. Since microRNAs are implicated in the speci-

fication of many cell types showing cell type specific expression, microRNAs represent an

important research topic in the cell differentiation and stem cell research. For example, the

miRNA clusters 290–295 [11], [12], 302 and 17–92 [13] were identified as stem cell character-

sustaining microRNAs. Therefore, they are interesting for the production of induced pluripo-

tent stem cells (iPS). Human microRNA-145 and the miRNA-290 cluster were described to

repress expression of Oct4, Sox2, and Klf4 genes and consequently had been described as dif-

ferentiation-promoting [14]. Apart from stem cell biology, “stemness” characteristics also have

been found in mammalian cancer cells, and it is assumed that every malignant tumour entity

contains stem cell-like cells [15]. These cancer stem cells can mediate resistance to chemother-

apeutic agents, e.g. in prostate carcinomas [16]. Therefore, microRNAs, which selectively tar-

get and repress the factors required to maintain cancer stem cells, could serve as therapeutic

agents in the future [17]. In this study, a systematic high throughput assay was performed to

identify human microRNAs, which target the 3’UTRs (untranslated region) of Oct4 transcripts,

using a commercially available library of 477 mature human microRNAs (Ambion, life tech-

nologies). Sequences of selected top hits were mapped to potential target sites in the 3’UTR of

Oct4. Furthermore, we examined physiological effects of the most effective microRNAs in can-

cer cells.

Materials and methods

Cloning of Oct4–3’ UTR vector

The 3 ’UTR sequence of Oct4 was synthesized by PCR from a human genomic template. This

sequence was cloned into a fusion plasmid with the reporter genes for Firefly and Renilla lucif-

erase controlled by CMV promoter. The fusion plasmid called “pc5/Psi” was cloned previously

by using parts of pcDNA5/FRT (Invitrogen) and psiCHECK-2 (Promega, catalog-no. C8021).

Renilla luciferase was coupled with the 3’UTR serving as reporter gene, and Firefly luciferase

served as cell number control.

Stable transfection of HEK293-FRT cells by homologous recombination

Using the Flp-In system (Invitrogen), HEK293-Flp-In cells were transfected with the 3’UTR

dual luciferase vectors. The cells were bought directly from the company. Both the cells and

the plasmids possessed a Flippase Recognition Target site (FRT). The Flippase gene was pro-

vided by an additional vector called pOG44 (Invitrogen). The enzyme recognizes the FRTs,

cuts the DNA and ligates the 3’UTR vectors with the genomic site. The resulting transgenic

HEK293 cells were thus isogenic and could be selected by hygromycin due to the resistance

gene of the vector. The cellular genomic transgene was proved by PCR.For the preparation of

the transfection solution 100 μl of Opti-MEM (Gibco), 2 μg of the pc5/Psi vector and 18 μg of

pOG44 were mixed. Further 100 μl of Opti-MEM were mixed with 10 μl Roti-Fect (Roth).
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Both solutions were united and incubated for at least 15 min. at ambient temperature. After 24

hours, the transfection medium was replaced by fresh complete medium (DMEM based,

Gibco) and the cells were cultured for another day. This was followed by a cell splitting 1: 5.

After growth of the cells, 10 ml of complete medium with 300 μg / ml hygromycin B were then

added to the cells. After 24 h, the medium was replaced by 10 ml complete medium supple-

mented with 100 μg / ml hygromycin. The cells were further cultured for at least a week.

microRNA and Oct4 interaction 3’UTR and validation

The microRNA library contained 477 individual human microRNAs distributed on six

96-well plates (Ambion, Pre-miR microRNA Precursor library-human V3, Cat.4385830).

Hint: The manufacturer’s term pre-microRNA (double stranded DNA w/o stem-loop struc-

ture) must not be confused with the scientific concept (stem loop DNA). The absolute amount

per miRNA species was 250 pmol. Using a multichannel pipette, the nucleotides were dis-

solved in 50 μl RNAse-free water to achieve a concentration of 5 pmol/ μl. The plates were

then cryopreserved (-20˚C). In preparation for the transfection, the miRNA solutions were

dispensed into luminometer plates (Greiner; 3 pmol/ 5 μl) using a cell culture robot (CyBio

Selma) under sterile conditions. For the transfection, the plates were thawed and centrifuged

briefly to collect all the liquid in the ground. Using the luminometer (Labsystems), 15 μl of

transfection solution (14.8 μl of Opti-MEM, 0.2 μl Lipofectamine RNAiMAX) were injected

into each well. The plates were incubated for at least 15 min at 20˚C in the dark in order to

achieve a complete complexation of liposomes and nucleic acids. Then 100 μl of cell suspen-

sion containing 12,500 cells were injected into each well with the luminometer after previous

sterilization of the injector hoses. After incubation of the plates for 24 h at 37˚C and 5% CO2

the cells were lysed with 20 μl of 1:5 diluted passive lysis buffer (Promega) and shaken well. In

order to perform the luciferase assay later, the plates were frozen at -20˚C. Not later than three

days after cryopreservation, the luciferase activity in the cell lysates was determined using

100 μl ambiently temperated Firefly and Renilla buffer each. The luminometer was pro-

grammed to measure with a delay of six seconds after injection and a duration of ten seconds.

The obtained luminescence values were standardized using a z-transformation to make the

signals of all the samples comparable. This standardization relates the mean and standard devi-

ation of the entire 96-well luminometer plate values. The z-value triplicates were arithmetically

averaged and compared by ranking.

Interaction analyses of the miRNA interaction and Oct4

To investigate what area of the Oct4 3 ’UTR is bound by effective microRNAs (miR299-3p),

the putative binding sites were determined using the bioinformatical service TargetScan

(www.targetscan.org).The potentially hybridizing nucleotides for both microRNAs were par-

tially replaced in silico (Fig 1a). The two mutated 3’UTR sequences with additional restriction

sites were synthesized by a service provider and afterwards cloned into the pc5/Psi dual lucifer-

ase vector. The two plasmids with both mutated 3’UTRs of Oct4 and a pc5/Psi vector with an

unaltered 3’UTR sequence serving as control were transiently transfected into HEK293 cells as

described above (individually ordered microRNA -299-3p; Ambion PM10063 and PM10448).

The transfection medium was added to 500,000 cells in a 6-well plate with 2 ml medium per

well. After 24 h at 37˚C and 5% CO2, the cells were trypsinized and seeded in a microtiter plate

luminometer (96w) with a concentration of 25,000 cells per well. The cells were transfected

with miR-299-3p and negative control. After additional incubation for 24 h, the cells were

lysed and the luciferase activity was determined using the luminometer.
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Long-term measurement of miRNA action with lentiviral reporter system

In order to investigate the indirect effect of miR-299-3p on Oct4 targets, a NCC-IT based cell

line (DMSZ, Brunswick, Germany, ATCC CRL-2073) with a genomically integrated HIV-

derived lentiviral Oct4-reporter construct (Cignal, Qiagen) was transfected with this two

microRNAs, and miR-negative control, respectively. The Oct4-reporter construct consists of

an Oct4-responsive promoter sequence and the gene for the Firefly luciferase. The gene for

Oct4 is expressed natively in the selected cell line [18]. 12,500 cells per well were transfected

with 3 pmol miRNA incl. negative control (see above) in 100 μl medium (DMEM w/o phenol

red, 10% FCS, 1% HEPES, 250 μM Luciferin D) in a 96-well luminometer plate. The response

of NCC-IT-Oct4 cells to miRNA stimulation was recorded over a period of 24h in a tempera-

ture-controlled luminometer at 37˚C (Top Count, Packard). For comparison, the same

Fig 1. Binding sites of microRNA-299-3p in 3’UTR of Oct4. a: Wild type and mutated sequence of

Oct4 3‘UTR. Mutation was used for verification and mapping of putative microRNA target sequence in a

luciferase reporter assay. Mutated nucleotides are in italics. b: Evolutionary conservation of microRNA-

299-3pbinding sites in human Oct4 gene on chromosome 6. Site for 299-3p is poorly conserved. (1)

Degree of conservation based on alignment of human sequence with those of 17 other vertebrates obtained

from UCSC server (http://genome.ucsc.edu/; hg18 algorithm) (2) Illustration of alignment results by

ClustalW2 algorithm of human sequence with eleven other mammals. Size of colored base symbols refer to

degree of conservation. Image was created by weblogo server (http://weblogo.berkeley.edu/). c: Mutation

of putative binding site of Oct4 3´UTR inhibits down-regulating effect of microRNA-299-3p in

comparison to wild type sequence. Scramble: non-human miRNA sequence (negative control). Error

bars indicated as SEM. Non-parametric ANOVA (SRH-test): p < 0.01. Single p-values of interaction

significance tests are indicated in the graph. Effects of 3’UTR: p = 0.0006 and effect of microRNA: p = 0.095

and the UTR specific miRNA influence (statistical interaction): p = 0.0017. Pair-wise comparisons and their

p-values are indicated in the figure.

https://doi.org/10.1371/journal.pone.0174912.g001

MicroRNA against invasion

PLOS ONE | https://doi.org/10.1371/journal.pone.0174912 April 20, 2017 4 / 15

http://genome.ucsc.edu/
http://weblogo.berkeley.edu/
https://doi.org/10.1371/journal.pone.0174912.g001
https://doi.org/10.1371/journal.pone.0174912


experimental procedure was used with siRNA against Oct4, and against AGTR1 as control

(ThermoFisher Scientific, Silencer Select, s10871 (Oct4) and s1180 (AGTR1)).

Invasion assays

The invasion assays were performed in hydrophilized thermoplastic microfluidic chips (made

of Cyclo-olefin polymer/Zeonor, Fluidik 221, microfluidic ChipShop). The chamber of a chip

was filled half with 50μl Matrigel (BD) containing the fluorescent dye DY-630-OH (c = 100

pg/ μl, Dyomics). After thermosetting of the Matrigel an additional air outlet was created with

a glowing felting needle in the middle of the chamber. The day before highly invasive breast

carcinoma cells (MDA-MB-231, ACC-732 by DMSZ, via lab JHC and clinic for women’s

health, Jena) were transfected with microRNA-299-3p, miR-negative control, siRNA against

Oct4 and AGTR1 (150 pmol and 400,000 cells per well in a 6-well cell culture plate, siRNA as

above). Then, a cell suspension with a concentration of 1,000 cells /μl was injected into the

other half of the chip chambers. After 48 h, the contact area of cell suspension and Matrigel

was photographed with a fluorescence microscope (Zeiss Axiocam Observer Z1 with camera

Axiocam MRM; software ZENblue).

Cell line HT1080 (ACC-315 by DMSZ, via lab JHC): Because these cells formed an invasion

front less accessible for optical analyzis, the cell number was enlarged (3.000 cells/μl), and the

contact area of cells and matrigel was already photographed after 24 h.

Cytotoxicity and apoptosis assays

To analyze microRNA-effects on invasive behavior, we used two highly invasive human cell

lines: MDA-MB-231 (breast cancer, see above) and HT-1080 cells (fibrosarcoma, s.a.). To dis-

tinguish between cancer specific and general effects of miRNA-299-p, we stimulated an addi-

tional non-cancer human cell line, KG-1 (ACC-14, DMSZ, via lab Anita Voigt, University

Children’s hospital, Jena; myeloid hematopoietic-like cell line [19]) MDA-MB-231, HT-1080

and KG-1 cells, respectively, were pre-stained with Hoechst 33342 (bisBenzimide, as cell num-

ber control) with a concentration of 1 μg/ml dye in full RPMI 1640 medium or DMEM incl.

10% FCS and 1% Pen/Strep (DMEM for KG-1). 24h later the Hoechst 33342 medium was

removed and the cells were transfected with 3 pmol miRNA -299-3p, and siRNA against Oct4,

respectively, in 96-well luminometer plates as described above. Simultaneously, the cells were

stained with CellTox Green dye (Promega) following the manufacturer´s recommendations

for endpoint express protocol. After additional 48 h, the fluorescence of CellTox Green (CTG)

and Hoechst 33342 (H) was measured in a standard plate reader. The CTG and H fluorescence

values of each replicate were used to create a ratio.

Similarly, pre-stained MDA-MB-231, HT-1080 and KG-1 cells, respectively, were trans-

fected, and 24h later Caspase-Glo 3/7 assay (Promega) was used to measure caspase activity

according to the manufacturer´s protocol. The Caspase and H fluorescence values of each rep-

licate were used to create a ratio.

Protein detection

In order to investigate the effect of microRNA-299-3p on the protein level of Oct4, 62,500

NCC-IT-Oct4 cells (see above) were seeded into a 24-well-cell culture plate and were trans-

fected with 0.75 μl Lipofectamine RNAiMAX and 15 pmol microRNA-299-3p and the negative

control in Opti-MEM (ad 500 μl).This procedure was repeated every 24 h twice. A degenera-

tive miRNA effect could be observed after 3 days by visual inspection. The cells were lysed in

40 μl urea buffer (6 M). The cell debris was removed by centrifugation. The protein content of

the solution was determined using a spectrophotometer. For the detection of the two Oct4
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protein isoforms (33–45 kDa), a concentration of 10% was chosen for the polyacrylamide gel

separation. Vinculin was used as a loading control. For electrophoresis, 40 μl protein solution

(c = 50 μg / ml) were applied. After protein transfer, the blot membrane (PVDF) was cut by

using scissors and the two parts were incubated with one of the two primary antibody solu-

tions (against Oct4, isoform A and B, sc-5279, 1:500, Santa Cruz; each with antibody against

vinculin, 4650, 1:1000 Cell signaling technology [20]). The blot membrane parts were washed,

put together again and incubated with a secondary antibody solution (infrared chromophore,

35568, Thermo Fisher). The infrared signals of the hybridizing secondary antibodies were

detected with the Licor Odyssey 3.0 device and digitized. The signal bands in the files were

obtained by densitometry measured with an Image Analyser program (Aida).

Results and discussion

We used a comprehensive human miRNA library screen in order to analyze the action on the

Oct4 3’UTR. For the top candidates further validation experiments were performed and possi-

ble microRNA binding sites were predicted and confirmed. The two top candidates were fur-

ther analyzed with respect to invasion behavior and induction of cell death.

Action of microRNA on Oct4 3’UTR in a High Throughput Screening

assay (HTS) and protein detection

Isogenic HEK 293 cells containing a dual luciferase reporter with the 3’UTR of Oct4 were stim-

ulated with 477 microRNA species (triplicate each). According to the luciferase signals, the

microRNAs-299-3p was the two most effective molecule for repression of Oct4 (see Fig 2a).

In Western blots the Oct4 protein (isoform A) was quantified in NCC-IT-Oct4 cells which

were transfected with microRNA-299-3p (and negative control, respectively, see Fig 2b and

2c).

Downregulation of promoter activity of Oct4 target by microRNAs

To confirm the results of the HTS, microRNA-299-3p was applied in an additional physiologi-

cal luciferase assay. To analyze possible Oct4 independent effects of microRNA, the experi-

ment was repeated using Anti-Oct4-siRNA instead of microRNA.

Cells transfected with microRNA-299-3p showed a decrease of Firefly luciferase signal in

comparison to controls (see Fig 2d). A similar effect could be observed in cells transfected with

Anti-Oct4-siRNA (see S1 Fig). The luciferase activity in living cells was measured over a period

of 24 h in a temperated luminometer.

Mapping of the microRNA interaction site in the Oct4 3’UTR

The predicted hybridization site of microRNA-299-3p was located at base position 200–206 of

the Oct4 3’UTR.

The hybridizing nucleotides were compared using a database to their similarity with the

sequences of 17 vertebrate species including mammals, birds and fishes (http://genome.ucsc.

edu/). It was found that the binding sequence of miR-299-3p is located in an only moderately

conserved region (see Fig 1b). On the contrary, the miR-299-3p seems to have evolved its func-

tion as a repressor of Oct4 much later at the level of primates. This finding is congruent with

the view, that microRNAs are extremely important factors for a divergent development of pri-

mate species [21].
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In order to validate the bioinformatically predicted hybridization sites of the microRNAs-

299-3p, two additional dual luciferase reporter gene vectors with a mutated 3’UTR were gener-

ated (see Fig 1a).

In transiently transfected HEK293 cells containing the mutated 3’UTR vector the miRNA-

299-3pcould not downregulate the Renilla luciferase anymore.

In contrast, reporter luciferase signal was significantly reduced in the cells with the unal-

tered sequence of the 3’UTR of Oct4 (see Fig 1c). The bioinformatically predicted hybridiza-

tion site of miRNA-299-3p could thus be confirmed.

Invasion assays and cytotoxicity/apoptosis assays

Oct4 has been described as a factor involved in cell invasion [22]. Due to stemness properties

of malignant tumor cells, it could be useful to target Oct4 (and other stem cell typic genes

Fig 2. microRNA-299-3p downregulates Oct4 expression. a: The 20 most effective microRNAs down-

regulating Oct4 expression. The micro RNA originated from a library. Values were measured by dual

luciferase reporter high throughput assay. Bars indicate individual z-values (negative values refer to high

regulative effect of microRNA). Error bars indicate standard error of the mean (SEM). The most negative z values

correspond to the strongest downregulation effect. b and c: Oct4 protein production is decreased by microRNA-

299-3p in NCC-IT cells. Scramble: non-human miRNA sequence (negative control). b) Oct4 transcription factor,

isoform A, infrared signal detected in differentially transfected NCC-IT-Oct4 cells (vinculin as loading control). c)

Densitometric detection of Oct4, isoform A, in NCC-IT-Oct4 cells transfected with microRNA-scramble, -299-3p.

miR-299-3p significantly downregulates Oct4 synthesis. Error bars indicated as SEM. Non-parametric Kruskal-

Wallis-test: p < 0.01. Post-hoc test results (Tukey) indicated in the graph. d: microRNA-299-3p downregulates

promoter activity of Oct4 target. Luciferase reporter assay measures activity of an Oct4 consensus promoter.

Data were obtained over 24h. The mean of values of first and last ten minutes were taken to calculate the ratio.

Scramble: non-human microRNA sequence (negative control). Error bars indicate SEM. Non-parametric Kruskal-

Wallis-test: p < 0.05. Post-hoc test results (Tukey) indicated in the graph.

https://doi.org/10.1371/journal.pone.0174912.g002
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like Sox2 or Nanog) in order to down-regulate their invasive behavior. Therefore, we ana-

lyzed the human anti-Oct4 microRNA-299-3p and in invasion experiments. For this pur-

pose, a novel microfluidic invasion assay system was established. It is based on the use of cell

culture chips combined with a non-toxic fluorescent dye and Matrigel (see Fig 3a). Micro-

fluidic chips are an application of the lab-on-a-chip (LOC) technology that allow the culture

of cells in a small volume and represent a recent technology for advanced assays in chemistry

[23] and life sciences [24]. The microfluidic LOC technology facilitates automatization of

cell culture tasks at considerably lower costs [25]. Some microfluidic devices offer the com-

bination of special chips and hydrogels as invasion matrix [26]. Such culture chips provide

an environment for cells which mimmicks the situation in vivo [27]. In this article we intro-

duced a microfluidic approach using cell chips, hydrogel (Matrigel) and a fluorescent dye

for living cells.

Fig 3. MicroRNAs suppress invasion of mammacarcinoma cells (part I). a: Schematic setup for evaluation of

invasion process in in-house modified microfluidic cell culture chips. Chips have microscope slide standard size (76 x

26 mm) and consist of Cyclo-olefin-polymer (COP aka Zeonor). Total volume of culture chambers is 100 μl. b: Decreased

invasive behavior of mammacarcinoma cells caused by transfection with microRNA-299-3p(fluorescence sample

images). MDA-MB-231-cells, transfected with pre-microRNA-scramble (negative control) (1, magnified detail 3), -299-3p (2).

Cells with microRNA-299-3pshow an extremely decreased invasive behavior in relation to negative control. False colors

image. Object lense: 10x /1,2,; 40x/ 3. c: microRNA-299-3p decreases invasion distance of MDA-MB-231 breast cancer

cells. Invasion assay, sum of invasion distance in μm. Scramble: non-human miRNA sequence (negative control). Error

bars indicated as SEM. Non-parametric Wilcoxon test: p < 0.01. Post-hoc test results (Tukey) indicated in the graph. d:

microRNA-299-3p decreases number of invasion events of MDA-MB-231 breast cancer cells. Invasion assay, sum of

invasion events. Scramble: non-human miRNA sequence (negative control). Statistics: Error bars indicated as SEM. Non-

parametric Wilcoxon test: p < 0.01. Post-hoc test results (Tukey) indicated in the graph.

https://doi.org/10.1371/journal.pone.0174912.g003
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Breast cancer cells (MDA-MB-231) and fibrosarcoma cells (HT-1080) transfected with

microRNA-299-3p (and unstimulated as negative control, respectively) were seeded in cell cul-

ture chips, which were already filled with dyed Matrigel.

Unstimulated breast cancer and fibrosarcoma cells (MDA-MB-231 and HT-1080) show an

invasive behavior very similar to native metastases taken from biopsies [28]. Interestingly,

like in vivo, the cancer cells in vitro are not exactly the same, but they show a hierarchical orga-

nization. A small number of cells become “leader” or “tip cells” and start to migrate into the

digested matrix. Other “follower” cells, presumably attracted by chemokines from their sib-

lings, use the migration channel created by the leaders to move into the matrix.

The MDA-MB-231 and HT-1080 cells were photographed in the border area between cells

and gel by fluorescence microscopy after 48 or 24 hours, respectively, (see Figs 3b and 4a). In

Fig 4. MicroRNA-299-3p suppresses invasion of fibrosarcoma cancer cells (part I). a: Decreased invasive behavior of HT-

1080 cells caused by transfection with microRNA-299-3p (fluorescence sample images). HT-1080-cells transfected with pre-

microRNA-scramble (negative control, 1) and -299-3p (2), Cells with microRNA-299-3p show a decreased invasive behavior in

relation to negative control, False colors images. Object lense: 10x. b: MicroRNA-299-3p decreases invasion distance of HT-

1080 fibrosarcoma cells. Invasion assay, sum of invasion distance in μm. Scramble: non-human miRNA sequence (negative

control). Error bars indicated as SEM. Non-parametric Kruskal-Wallis-test: p < 0.05. Post-hoc test results (Tukey) indicated in the

graph. Error bars indicated as SEM, c: MicroRNA-299-3p decreases number of invasion events of HT-1080 fibrosarcoma cells.

Invasion assay, sum of invasion events. Scramble: non-human miRNA sequence (negative control). Statistics: Error bars indicated

as SEM. Non-parametric Kruskal-Wallis-test: p < 0.05. Post-hoc test results (Tukey) indicated in the graph. d: microRNA-299-3p

completely avoids branching of of HT-1080 fibrosarcoma cells. Invasion assay: branches of invasion events. Mean of branching

index, calculated by number of branched invasion events multiplicated with number of single branches in every event. Scramble: non-

human miRNA sequence (negative control). Statistics: Non-parametric Wilcoxon test: p < 0.05. Post-hoc test results (Tukey)

indicated in the graph.

https://doi.org/10.1371/journal.pone.0174912.g004
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MDA-MB-231 cells, the microRNA-299-3p transfected cells lost their invasiveness almost

completely (Figs 3c and 3d, 5a and 4b to 4d).

In HT-1080 cells, the microRNA-299-3p nearly completely blocked invasion as seen above.

Some microRNAs already have been reported to have an anti-invasive effect. For instance,

the microRNA-145 has been described as inhibiting proliferation and invasion of endometri-

osis cells. Among other genes, expression of Oct4 is down-regulated [29]. As mentioned, the

constitutive blocking of Oct4 expression can reduce the invasiveness of colon cancer and blad-

der cancer cells [30].

To analyze a potential cytotoxic and apoptotic effect of the microRNA-299-3p, transfected

MDA-MB-231 and HT-1080 cells were tested with CellTox Green dye and Caspase-Glo 3/7

Fig 5. MicroRNA-299-3p suppresses invasion of mammacarcinoma cells (part II). a: microRNA-299-3p completely

avoids branching of invasive MDA-MB-231 breast cancer cells. Invasion assay: branches of invasion events. Mean of

branching index, calculated by number of branched invasion events multiplicated with number of single branches in every

event. Scramble: non-human miRNA sequence (negative control). Statistics: Non-parametric Wilcoxon test: p < 0.05. Post-

hoc test results (Tukey) indicated in the graph. b: siRNA against Oct4 also decreases invasion distance of MDA-MB-231

breast cancer cells. Invasion assay, sum of invasion distance in μm. Scramble: non-human miRNA sequence (negative

control). siRNA against AGTR-1 was used as additional negative control for substance class. Statistics: Error bars indicated

as SEM. Non-parametric Kruskal-Wallis-test: p << 0.01. Post-hoc test results (Tukey) indicated in the graph. c: siRNA

against Oct4 also decreases number of invasion events of MDA-MB-231 breast cancer cells. Invasion assay, sum of

invasion events. Scramble: non-human miRNA sequence (negative control). siRNA against AGTR-1 was used as additional

negative control for substance class. Statistics: Error bars indicated as SEM. Non-parametric Kruskal-Wallis-test: p < 0.05.

Post-hoc test result (Tukey) indicated in the graph. d: Effect of siRNA against Oct4 on branching of invasive MDA-MB-

231 breast cancer cells. Invasion assay: branches of invasion events. Mean of branching index, calculated by number of

branched invasion events multiplicated with number of single branches in every event. Scramble: non-human miRNA

sequence (negative control). siRNA against AGTR-1 was used as additional negative control for substance class. Statistics:

Non-parametric Kruskal-Wallis-test: p = 0.068. Post-hoc test results (Tukey) indicated in the graph.

https://doi.org/10.1371/journal.pone.0174912.g005
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assay. To exclude non-stem cell gene- specific effects of miR-299-3p, we used non cancer cells

(KG-1) in this assay. The miR-299-3p was toxic and clearly induced apoptosis in cancer cells;

so does siRNA against Oct4 (Figs 6a, 6c and 7). This is not true for the non-cancer cells (Fig 6b

and 6d); hence, it is quite probable, that miR-299-3p acts via Oct4 and related genes. However,

in HT1080 cells, the miR-299-3p was not toxic. This might be due to the specific cell biology/

metabolism.

The microRNA-299-3p seems to be effective in inducing cell death, more specifically, apo-

ptosis. Therefore, it can be concluded, that the reduction of invasion is just a secondary effect

due to death of cells.

The comparison of the effect of miR-299-3p and siRNA against Oct4 in invasion and cyto-

toxic/apoptosis assays reveals the main cause of cell death: It seems that the blocked Oct4

expression leads to cell death initiation, because the application of miR-299-3p and anti-Oct4-

siRNA produces similar results.

Fig 6. The microRNA-299-3p causes cell death in breast cancer cells, but not in non-cancer cells. a:

The microRNA-299-3p is toxic to breast cancer cells (MDA-MB-231). CellToxGreen cytotoxicity assay.

Error bars indicated as SEM, Non-parametric Kruskal-Wallis-test: p << 0.01. Post-hoc test result (Tukey)

indicated in the graph. b: Comparison: The microRNA-299-3p is not toxic to non-cancer cells (KG-1)

CellToxGreen cytotoxicity assay. Error bars indicated as SEM, Non-parametric Kruskal-Wallis-test: p << 0.01.

Post-hoc test result (Tukey) indicated in the graph. c: The microRNA-299-3p causes apoptosis in breast

cancer cells (MDA-MB-231). Caspase-Glo 3/7 assay. High Caspase/ Hoechst33342 quotient values

correspond with high content of apoptosis enzymes. SiRNA against Oct4 serves as a control. Error bars

indicated as SEM, non-parametric Kruskal-Wallis test: p < 0.01. Post-hoc test result (Tukey) indicated in the

graph. d: Comparison: The microRNA-299-3p does not cause apoptosis in non-cancer cells (KG-1)

Caspase-Glo 3/7 assay. High Caspase/ Hoechst33342 quotient values correspond with high content of

apoptosis enzymes. Error bars indicated as SEM, Non-parametric Kruskal-Wallis test: p << 0.01. Post-hoc

test result (Tukey) indicated in the graph: not significant.

https://doi.org/10.1371/journal.pone.0174912.g006

MicroRNA against invasion

PLOS ONE | https://doi.org/10.1371/journal.pone.0174912 April 20, 2017 11 / 15

https://doi.org/10.1371/journal.pone.0174912.g006
https://doi.org/10.1371/journal.pone.0174912


The cell death-inducing effect of other microRNAs has been described, for example for

miR-146, which controls apoptosis in breast cancer cells via negative feedback loop together

with NFκB [31], [32].

The microRNA-299-3p is less mentioned in the literature at present. But it has been

reported to be differentially expressed in malignant mesothelioma cells [33]. Compared to

murine microRNA expression patterns, the microRNA-299-3p is upregulated in human iPS

and native stem cells [34]. Furthermore, it has been described to be an important factor of rep-

licative senescence in HUVECS (human umbilical vein endothelial cells) [35]. These data sup-

port the view, that miR-299-3p is a factor which inhibits the expression of stem cell genes like

Oct4. In human induced and native stem cells, it might initiate the differentiation process.

This assumption is supported by the results of our Western blot assays, which show a

decreased Oct4 protein production in miR-299-3p stimulated cells.

A close context of Oct4 and cell death is not recorded in literature. Hence, it may be con-

cluded, that miR-299-3p may be a strong regulator of other central genes apart from Oct4,

which are important factors for cell death process. This view is supported by the fact, that

miR-299-3p is more toxic to breast cancer cells than anti-Oct4-siRNA.

Additionally, a bioinformatical analysis (http://www.targetscan.org) revealed some genes

controlled by miR-299-3p which are connected to apoptosis. For instance, IGF-1 can promote

apoptosis resistance in melanoma and pituarity cells [36], [37]. Another gene, the gene for

NGFR, blocks the p53 driven anti-oncogenic processes. If these genes are negatively regulated

by miR-299-3p, apoptosis process is facilitated.

In order to exclude Oct4 independent effects of microRNAs-299-3p anti-Oct4-siRNA also

was used in the invasion assay. Thus, it can be concluded, that miR-299-3p not only targets the

Oct4 gene transcript, but also many others. This might lead to the toxic effect we could observe

in MDA-MB-231 and HT-1080 cells transfected with miR-299-3p.

Conclusion

Our results suggest that microRNA-299-3p is an interesting target for potential clinical use. It

may be able to decrease invasive behaviour of carcinoma cells; or even kill these cells by caus-

ing apoptosis.

Fig 7. MicroRNA-299-3p is not toxic to fibrosarcoma cells, but causes apoptosis (part II). a: The

microRNA-299-3p is not toxic to HT-1080 fibrosarcoma cells. CellToxGreen cytotoxicity assay. Error bars

indicated as SEM, Non-parametric Kruskal-Wallis-test: p << 0.01. Post-hoc test result (Tukey) indicated in the

graph. b: The microRNA-299-3p causes apoptosis in HT-1080 fibrosarcoma cells. Caspase-Glo 3/7

assay. High Caspase/ Hoechst33342 quotient values correspond with high content of apoptosis enzymes.

Error bars indicated as SEM, Non-parametric Kruskal-Wallis-test: p < 0.01. Post-hoc test result (Tukey)

indicated in the graph.

https://doi.org/10.1371/journal.pone.0174912.g007
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Supporting information

S1 Fig. Anti-Oct4-siRNA downregulates Oct4 expression comparable to microRNA-299-

3p. Luciferase reporter assay measuring expression of Oct4 target promoter. Data was taken

over 24h. The mean of values of first and last ten minutes were taken to calculate the ratio.

Scramble: non-human microRNA sequence (negative control). Error bars indicate SEM. Non-

parametric Kruskal-Wallis-test: p< 0.01. Post-hoc test results (Tukey) indicated in the graph.

(TIF)

S2 Fig. WebGestalt (http://www.webgestalt.org/) analysis of microRNA-299-3p target

genes using KEGG database (Kyoto Encyclopedia of Genes and Genomes), in process

groups (biological, molecular function, cellular component).

(TIF)

S1 Table. WebGestalt (http://www.webgestalt.org/) analysis. A: of malignant illness-related

genes using KEGG database (Kyoto Encyclopedia of Genes and Genomes) which are puta-

tively regulated by microRNA-299-3p. B: of putatively miR-299-3p influenced pathways using

KEGG database (Kyoto Encyclopedia of Genes and Genomes).

(DOCX)

S2 Table. Bioinformatical analysis of targets of human microRNA-299-3p in relation to

apoptotic processes (http://www.targetscan.org).

(XLSX)

S3 Table. Bioinformatical analysis of microRNA target genes (http://www.targetscan.org).

(XLSX)
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