
entropy

Article

A Hybrid Genetic-Hierarchical Algorithm for the Quadratic
Assignment Problem

Alfonsas Misevičius * and Dovilė Verenė

����������
�������

Citation: Misevičius, A.; Verenė, D.

A Hybrid Genetic-Hierarchical

Algorithm for the Quadratic

Assignment Problem. Entropy 2021,

23, 108. https://doi.org/10.3390/

e23010108

Received: 11 December 2020

Accepted: 11 January 2021

Published: 14 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Multimedia Engineering, Kaunas University of Technology, Studentu st. 50-400/416a,
LT-51368 Kaunas, Lithuania; dovile.kuznecovaite@ktu.lt
* Correspondence: alfonsas.misevicius@ktu.lt

Abstract: In this paper, we present a hybrid genetic-hierarchical algorithm for the solution of the
quadratic assignment problem. The main distinguishing aspect of the proposed algorithm is that this
is an innovative hybrid genetic algorithm with the original, hierarchical architecture. In particular,
the genetic algorithm is combined with the so-called hierarchical (self-similar) iterated tabu search
algorithm, which serves as a powerful local optimizer (local improvement algorithm) of the offspring
solutions produced by the crossover operator of the genetic algorithm. The results of the conducted
computational experiments demonstrate the promising performance and competitiveness of the
proposed algorithm.

Keywords: combinatorial optimization; hybrid heuristic algorithms; hierarchical heuristic algorithms;
genetic algorithms; tabu search; quadratic assignment problem

1. Introduction

The quadratic assignment problem (QAP) [1–6] is mathematically formulated as
follows: Given two non-negative integer matrices A = (aij)n×n, B = (bkl)n×n, and the
set Πn of all possible permutations of the integers from 1 to n, find a permutation p =
(p(1), p(2), . . . , p(n)) ∈ Πn that minimizes the following objective function:

z(p) =
n

∑
i=1

n

∑
j=1

aijbp(i)p(j) (1)

One of the examples of the applications of the quadratic assignment problem is
the placement of electronic components on printed circuit boards [7,8]. In this context,
the entries of the matrix A are associated with the numbers of the electrical connections
between the pairs of components. The entries of the matrix B correspond to the distances
between the fixed positions on the board. The permutation p = (p(1), p(2), . . . , p(n))
can be interpreted as a separate configuration for the arrangement of components in the
positions. The element p(i) in this case indicates the number of the position to which the
i-th component is assigned. In this way, z (or more precisely, z/2) can be understood as the
total (weighted) length of the connections between the components, when all n components
are placed into the corresponding n positions.

The other important areas of applications of the QAP are as follows: assigning run-
ners in relay teams [9], clustering [10], computer/telephone keyboard design [11–13],
planning of airport terminals [14], facility location [15], formation of chemical molecular
compounds [16], formation of grey patterns [17], index assignment [18], microarray lay-
out [19], numerical analysis [20], office assignment and planning of buildings [21,22], seed
orchard design [23], turbine balancing [24], website structure design [25]. More examples
of the practical applications of the QAP can be found in [4,26].

The quadratic assignment problem is also a complicated theoretical-mathematical
problem. It is proved that the QAP belongs to the class of the NP-hard optimization

Entropy 2021, 23, 108. https://doi.org/10.3390/e23010108 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e23010108
https://doi.org/10.3390/e23010108
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23010108
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/23/1/108?type=check_update&version=2

Entropy 2021, 23, 108 2 of 33

problems [27]. The QAP can be solved exactly if the problem size (n) is quite small
(n < 30) [28–35]; although some special case QAP examples of larger sizes (n = 36 [36],
n = 64 [10]) have also been exactly solved. For this reason, heuristic optimization algo-
rithms are widely used. Although these algorithms do not guarantee the optimality of
the obtained solutions, they allow for a sufficiently high quality (near-optimal) solutions
within a reasonable computation time [37].

Classical single-solution local search (LS) and related algorithms were intensively used
for the QAP in the early period of application of heuristic algorithms (1960–1980) [38–41].
Later, improved local search algorithms have been employed [42–45]. The so-called break-
out local search has been empirically proven to be quite efficient [46,47].

Simulated annealing (SA)-based algorithms usually provide better quality results,
compared to pure, deterministic local search algorithms. This applies to both the early
variants of SA algorithms [48–50] and improved SA algorithm modifications [51–53].

Even more performance was achieved by adopting the tabu search (TS) methodology-
based algorithms. The fast-running tabu search algorithm developed by Taillard [54]
in the early 1990s is still considered as one of the most successful single-solution-based
heuristic algorithms for the QAP. Since then, a number of improved variations of TS
algorithms have been proposed: reactive tabu search [55], concentric tabu search [56],
enhanced tabu search [57], tabu search with hardware acceleration [58], self-controlling
tabu search [59], repeated iterated tabu search [60,61], parallel tabu search [62], and other
variants [58,63]. The performance of LS and TS algorithms can be increased by extending
these algorithms to their ameliorated “siblings”, namely, the iterated LS (ILS) [64,65] and
iterated TS (ITS) algorithms [66]. Iterated search algorithms have some similarities with
multistart methods [63,67–69] as well as greedy adaptive search procedures (GRASPs) [70].

Population-based/evolutionary algorithms constitute another important class of effi-
cient heuristic algorithms for the QAP. The advantage of this class of algorithms is that these
algorithms operate with the sets of solutions instead of single solutions and this property
is of prime importance when it comes to the solution of the QAP and related problems.
In particular, it is found that, namely, the genetic algorithms (GA) seem to be very likely
among the most powerful heuristic algorithms for solving the QAP, among them: greedy
genetic algorithm [71], genetic-local search algorithm [72–74], genetic algorithm using
cohesive crossover [75], improved genetic algorithm [76], parallel genetic algorithm [77],
memetic algorithm [78], genetic algorithm on graphics processing units [79], quantum
genetic algorithm [80], and other GA modifications [81–89]. Note that the population-based
algorithms are usually hybridized with the single-solution-based algorithms (local search,
tabu search, iterated local/tabu search, GRASP). Overall, a significant part of the algo-
rithms for the QAP are, in essence, hybrid algorithms [71,73,75,76,78,79,82,83,88,90–104]. It
is the hybrid genetic-iterated tabu and genetic-breakout local search algorithms [76,78] that
allowed to achieve the most promising results.

Swarm intelligence algorithms simulate collective intelligent behaviour of
physical/biological entities (agents) (like particles (particle swarm optimization algo-
rithms [105,106]), ants (ant colony optimization algorithms [107]), bees (artificial bee colony
algorithms [108,109]). Finally, the algorithms inspired from real-world phenomena (includ-
ing those using metaphors) are also applicable to the QAP [90,96,98,110–118]. For more
extensive surveys and literature reviews on the QAP, the reader is referred to [4,119].

The main contribution of this article is that it presents an innovative hierarchicity-
based genetic algorithm which is hybridized with a multi-level hierarchical iterated tabu
search (HITS) algorithm serving as a powerful optimizer of the offspring solutions. The
basic idea of HITS is, in turn, based on the multiple (re)use of the iterated tabu search (ITS)
and, simultaneously, moving through many different locally optimal solutions. The other
important novelty is that the original crossover and mutation operators are introduced.
The crossover operator distinguishes for its universality and, at the same time, versatility
and flexibility; while the mutation operation is integrated within the HITS algorithm and
is based on combined deterministic and probabilistic (controlled random) moves between

Entropy 2021, 23, 108 3 of 33

solutions during the tabu search process. Also, we have employed the modified population
replacement rule. Finally, we have incorporated the population restart mechanism to avoid
search stagnation. All these new features have led to the development of high-performance
genetic algorithm with excellent results.

The remainder of the paper is structured as follows: In Section 2, some basic defi-
nitions are given. Then, in Section 3, the detailed description of the genetic-hierarchical
algorithm and its constituent parts is provided. In Section 4, the results of the computa-
tional experiments with the proposed algorithm are presented. The paper is completed
with concluding remarks.

2. Basic Definitions

At the beginning, we provide some preliminary (basic) formal definitions.
Suppose that p(u) (u = 1, . . . , n) and p(v) (v = 1, . . . , n, u 6= v) are two elements of

the permutation p. Then pu,v is defined in the following way:

pu,v(i) =

p(i), i 6= u, v
p(u), i = v
p(v), i = u

; i = 1, . . . , n. (2)

This means that the permutation pu,v is obtained from the permutation p by inter-
changing exactly the elements p(u) and p(v) in the permutation p. The formal operator
(move, or transition operator) φ(p, u, v): Πn × N × N → Πn swaps the uth and vth el-
ements in the given permutation such that pu,v = φ(p, u, v). Note that the following
equations hold: pu,u = p, pu,v = pv,u, (pu,v)u,v = p.

The difference in the objective function (z) values when the permutation elements
p(u) and p(v) are interchanged is calculated according to the following formula:

∆(pu,v, p) = z(pu,v)− z(p) = (auu − avv)(bp(v)p(v) − bp(u)p(u))+

(auv − avu)(bp(v)p(u) − bp(u)p(v))+
n
∑

k=1,k 6=u,v
[(auk − avk)(bp(v)p(k) − bp(u)p(k)) + (aku − akv)(bp(k)p(v) − bp(k)p(u))]

(3)

The difference in the objective function values can be calculated more faster—under
condition that the previously calculated differences (∆(pi,j, p) (i, j = 1, . . . , n)) are memo-
rized (stored in a matrix Ξ). The difference value is calculated using O(1) operations [54,120]:

∆(pu,v, p) = z(pu,v)− z(p) = z(p) + Ξ(u, v). (4)

After the interchange of the elements p(u) and p(v) has been performed, new dif-
ferences Ξ′(i, j) (i, j = 1, . . . , n, i 6= u, i 6= v, j 6= u, j 6= v) are calculated according
this equation:

Ξ′(i, j) = Ξ(i, j)+
(aiu − aiv + ajv − aju)(bp(i)p(u) − bp(i)p(v) + bp(j)p(v) − bp(j)p(u))+

(aui − avi + avj − auj)(bp(u)p(i) − bp(v)p(i) + bp(v)p(j) − bp(u)p(j)).
(5)

If i = u or i = v or j = u or j = v, then the Formula (3) should be applied. So, all
the differences are calculated using only O(n2) operations. Still, the initial calculation of
the values of the matrix Ξ requires O(n3) operations (but only once before starting the
optimization algorithm).

Entropy 2021, 23, 108 4 of 33

If the matrix A and/or matrix B are symmetric, then Formula (3) becomes simpler. As-
sume that the matrix B is symmetric. Then, the (asymmetric) matrix A can be transformed
to symmetric matrix A′. Thus, we get the following formula:

∆(pu,v, p) =
n

∑
k=1, k 6=u,v

(a′uk − a′vk)(bp(v)p(k) − bp(u)p(k)); (6)

here, a′uk = auk + aku, u = 1, . . . , n, v = 1, . . . , n, u 6= v. Analogously, Formula (5) turns to
the formula:

Ξ′(i, j) = Ξ(i, j) + (a′ iu − a′ iv + a′ jv − a′ ju)(bp(i)p(u) − bp(i)p(v) + bp(j)p(v) − bp(j)p(u)). (7)

If i = u(v) or j = u(v), Equation (6) must be applied.
In addition to this, suppose that we dispose of 3-dimensional matrices A′′ = (a′′ uvk)n×n×n

and B′′ = (b′′ lrt)n×n×n. Also, let a′′ uvk = a′uk − a′vk, b′′ lrt = blt − brt, l = p(j), r = p(i),
t = p(k). Then, we can apply the following formulas for calculation of the differences in
the objective function values:

∆(pu,v, p) =
n

∑
k=1,k 6=u,v

a′′ uvkb′′ p(v)k(u)p(k); (8)

Ξ′(i, j) = Ξ(i, j) + (a′′ iju − a′′ ijv)(b′′ p(j)p(i)p(v) − b′′ p(j)p(i)p(u)). (9)

Using the matrices A′′ and B′′ allows to save up to 20% of computation (CPU) time [66].
The distance (Hamming distance) between two permutations p and p′ is defined as:

δ(p, p′) =
∣∣{i : p(i) 6= p′(i)}

∣∣. (10)

The following equations hold: δ(p, p) = 0, δ(p, p′) 6= 1, 0 ≤ δ(p, p′) ≤ n, δ(p, p′) =
δ(p′, p), δ(p, pu,v) = 2 for any u, v (u 6= v). In the case of disposing of k different numbers
u1, u2, . . . , uk, this equation holds: δ(p, (((pu1, u2)u2, u3)

...
)

uk−1, uk) = k.
The neighbourhood function Θ: Πn → 2Πn assigns for each p ∈ Πn its neighbourhood

(the set of neighbouring solutions) Θ(p) ⊆ Πn. The 2-exchange neighbourhood function
Θ2 is defined in the following way:

Θ2(p) = {p′ : p′ ∈ Πn, δ(p, p′) = 2}; (11)

where δ(p, p′) is the Hamming distance between solutions p and p′. The neighbouring
solution p′ ∈ Θ2(p) can be obtained from the current solution p by using the opera-
tor φ(p, ·, ·). The computational complexity of exploration of the neighbourhood Θ2 is
proportional to O(n2).

Solution ploc_opt ∈ Πn is said to be locally optimal with respect to the neighbourhood
Θ if for every solution p′ from the neighbourhood Θ(ploc_opt) the following inequality
holds: z(ploc_opt) ≤ z(p′).

3. Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem

Our proposed genetic algorithm (for more thorough information on the genetic algo-
rithms, we refer the reader to [121]) is based on the hybrid genetic algorithm framework,
where explorative (global) search is in tandem with the exploitative (local) search. The
most important feature of our genetic algorithm is that it is hybridized with the so-called
hierarchical (self-similar) iterated tabu search (HITS) algorithm (see Section 3.4).

The permutation elements p(1), p(2), . . . , p(n) are directly linked to the individuals’
chromosomes—such that the chromosomes’ genes correspond to the single elements
p(1), p(2), . . . , p(n) of the solution p. No encoding is needed. The fitness of the individual
is associated with the corresponding objective function value of the given solution, z(p).

Entropy 2021, 23, 108 5 of 33

The following are the main essential components (parts) of our genetic-hierarchical
algorithm: (1) initial population construction; (2) selection of parents for crossover pro-
cedure; (3) crossover procedure; (4) local improvement of the offspring; (5) population
replacement; (6) population restart. The top-level pseudo-code of the genetic-hierarchical
algorithm is presented in Algorithm 1 (Notes: (1) The subroutine GetBestMember returns
the best solution of the given population. (2) The mutation process is integrated within the
k-level hierarchical iterated tabu search algorithm. The mutation process depends on the
mutation variant parameter MutVar.).

Algorithm 1. High-level pseudo-code of the genetic-hierarchical algorithm.

Genetic_Hierarchical_Algorithm Procedure;
/ input: n—problem size, A, B—data matrices,
/ PS—population size, Ngen—total number of generations,
/ InitPopVar—initial population variant, SelectVar—parents selection variant,
CrossVar—crossover variant,
/ MutVar—mutation variant, RepVar—population replacement variant,
/ σ—selection factor, DT—distance threshold, Lidle_gen—idle generations limit

/ output: pI—the best found solution (final solution)

begin
/ create a starting population P of size PS, depending on the initial population variant

InitPopVar
switch (InitPopVar)

1: create the initial population P by applying the algorithm
k-Level_Hierarchical_Iterated_Tabu_Search;

2: create the initial population P by applying a copy of
Genetic_Hierarchical_Algorithm using InitPopVar = 1

endswitch;
pI = GetBestMember(P); / initialization of the best so far solution
for i := 1 to Ngen do begin / main loop

sort the members of the population P in the ascending order of the values of the
objective function;

select parents p′, p” ∈ P for reproduction (crossover), depending on the selection
variant SelectVar and the selection factor σ;

perform the crossover operator on the solution-parents p′, p”
and get the offspring p”′, taking into account the crossover variant CrossVar;

apply improvement procedure k-Level_Hierarchical_Iterated_Tabu_Search
to the offspring p”′, get the (improved) offspring p9;

get new population P from the union of the existing parents’
population and the offspring P ∪ {p9} (such that |P| = PS)
(the minimum distance criterion and population replacement variant RepVar
are taken into account);

if z(p9) < z(pI) then pI = p9; / the best found solution is memorized
if number of idle generations exceeds the predefined limit Lidle_gen then begin

perform the population restart process;
if z(GetBestMember(P)) < z(pI) then pI = GetBestMember(P)

endif
endfor;
return pI

end.

3.1. Creation of Initial Population

There are two main population construction phases. In the first one, the pre-initial
population is constructed and improved; in the second one, the culling of the improved
population is performed. So, firstly, PS′ = PS× C1 members of the pre-initial population
P are created using the version of the GRASP algorithm [70] implemented by the authors.

Entropy 2021, 23, 108 6 of 33

PS denotes the population size, and C1 (C1 ≥ 1) is the user-defined parameter and is to
regulate the size of the pre-initial population.

There are several options of the population construction in the first phase controlled by
the parameter InitPopVar. If InitPopVar = 1, then every generated solution is improved
by the hierarchical iterated tabu search algorithm. There are few conditions. If the improved
solution (p9) is better than the best so far found solution in the population P, then the
improved solution replaces the best found solution. Otherwise, it is tested if the minimum
mutual distance between the improved solution (p9) and the existing population members
(min

p∈P
{δ(p9, p)}) is greater than or equal to the predefined distance threshold, DT. If this

is the case, the improved solution is added to the population P. Otherwise, the improved
solution is disregarded and simply a random solution is added instead. (Remind that the
distance between solutions is calculated using Equation (10)). The distance threshold is
obtained from the following equation: DT = max{2, bεnc}, where ε denotes the distance
threshold factor (0 < ε ≤ 1). This presented scheme is to ensure the high level of diversity
of the population members and, at the same time, to enhance the searching ability of
the genetic algorithm. To obtain better initial population, the HITS algorithm with the
increased number of iterations is used during the initial population formation. This is
similar to a compounded approach proposed in [122].

The second option (InitPopVar = 2) is almost identical to the first one, except that
the genetic algorithm itself (a de facto copy of the hybrid genetic-hierarchical algorithm)
(instead of the HITS algorithm) is employed for the creation of the initial population. As
an alternative option (InitPopVar = 3) of the population improvement, two-level genetic-
hierarchical algorithm (master-slave genetic algorithm) can be employed for the initial
population improvement.

In the second phase—which is very simple—(C1 − 1)PS worst members of the pre-initial
population are truncated and only PS best members survive for the subsequent generations.

3.2. Selection of Parents

The selection of parents is performed by using the parametrized rank-based selection
rule [123]. In this case, the positions (κ1, κ2) of the parents within the sorted population
are determined according to the following formulas: κ1 =

⌊
(ς1)

σ⌋, κ2 =
⌊
(ς2)

σ⌋, κ1 6= κ2,

where ς1, ς2 are uniform (pseudo-)random numbers in the interval [1, PS
1
σ], here PS de-

notes the population size, and σ is a real number from the interval [1, 2] (it is referred to as a
selection factor). It is clear that the better the individual, the larger the selection probability.

3.3. Crossover Operators

Two-parent crossover is formally defined by using operator Ψ : Πn ×Πn → Πn
such that:

p◦ = Ψ(p′, p′′) 6= p′ ∨ p◦ = ψ(p′, p′′) 6= p′′ , p′ 6= p′′ ; (12)

where p′, p′′ , p◦ denote parental solutions, and p◦ is the offspring solution. (The child can
coincide with one of the parents if, for example, the parents are very similar.) The crossover
operator must ensure that the chromosome of the offspring necessarily inherits those genes
that are common in both parent chromosomes, i.e., (also see Figure 1):

p′(i) = p′′ (i)⇒ p◦(i) = p′(i) ∧ p◦(i) = p′′ (i), i = 1, 2, . . . , n; (13)

here, p′, p′′ , p◦ refer to the parents and the offspring, respectively.
In our work, the crossover procedure takes place at every generation of the genetic-

hierarchical algorithm, i.e., the crossover probability is equal to 1. Several crossover
operators were implemented and examined. Short descriptions of the crossover procedures
are provided below (see also [124,125]).

Entropy 2021, 23, 108 7 of 33

Entropy 2021, 23, x FOR PEER REVIEW 7 of 32

 In our work, the crossover procedure takes place at every generation of the genetic-

hierarchical algorithm, i.e., the crossover probability is equal to 1. Several crossover

operators were implemented and examined. Short descriptions of the crossover

procedures are provided below (see also [124,125]).

Figure 1. Graphical illustration of a crossover.

3.3.1. One-Point Crossover—1PX

1PX is among the most popular genetic crossover operators. Very briefly, the basic

idea is as follows. A single crossover point (position, or locus) is chosen in one of the two

chromosomes. The position 𝑥 can be determined by generating a uniformly distributed

(pseudo-)random number within the interval [1, 𝑛 − 1] (𝑛 is the chromosome length).

The offspring is obtained by copying 𝑥 genes from one parent, the rest of genes are

copied from the opposite parent. If there are empty loci left, they are filled in randomly;

in addition, the feasibility of the offspring must be preserved.

3.3.2. Two-Point Crossover—2PX

Two-point crossover works similarly to the one-point crossover, except that two

crossover points 𝑥1 and 𝑥2 (1 ≤ 𝑥1 < 𝑥2 < 𝑛) are used.

3.3.3. Uniform Crossover—UX

In this case, the common genes are copied to the offspring’s chromosome. Then, the

unoccupied positions in the offspring’s chromosome are scanned form left to right and

the empty loci are assigned the genes—one at a time—from one of the parents with

probability
1

2
, i.e., 𝑝°(𝑖) = {

𝑝′(𝑖), 𝜍 <
1

2

𝑝′′(𝑖), otherwise
; here, 𝜍 is a (pseudo-)random number from

the interval [0, 1]. The assigned gene must be unique.

3.3.4. Shuffle Crossover—SX

The shuffle crossover is obtained by randomly reordering the parents’ genes before

applying the uniform crossover. The same rearrangement rule must be used for both

parents. After the uniform crossover is finished, the same (initial) rearrangement rule is

again applied.

3.3.5. Partially-mapped Crossover—PMX

Partially-mapped crossover can be seen as a modified variant of the k-point (multi-

point) crossover. The basic principle relies on the so-called mapping sections (the

chromosome segments between mapping points). So, at first, the segments of the

chromosome of one parent are moved to the offspring’s chromosome. The same is done

for the other parent. At last, the empty loci (if any) are filled in in a random way.

3.3.6. Swap-Path Crossover (SPX)

First Parent 8 2 3 9 6 5 1 7 4

Second Parent 3 2 6 9 4 1 8 7 5

Common Genes 2 9 7

Genes from the First Parent 8 3 6

Genes from the Second Parent 1 5

Random Gene 4

Offspring 8 2 3 9 6 1 4 7 5

Figure 1. Graphical illustration of a crossover.

3.3.1. One-Point Crossover—1PX

1PX is among the most popular genetic crossover operators. Very briefly, the basic
idea is as follows. A single crossover point (position, or locus) is chosen in one of the two
chromosomes. The position x can be determined by generating a uniformly distributed
(pseudo-)random number within the interval [1, n− 1] (n is the chromosome length). The
offspring is obtained by copying x genes from one parent, the rest of genes are copied from
the opposite parent. If there are empty loci left, they are filled in randomly; in addition, the
feasibility of the offspring must be preserved.

3.3.2. Two-Point Crossover—2PX

Two-point crossover works similarly to the one-point crossover, except that two
crossover points x1 and x2 (1 ≤ x1 < x2 < n) are used.

3.3.3. Uniform Crossover—UX

In this case, the common genes are copied to the offspring’s chromosome. Then,
the unoccupied positions in the offspring’s chromosome are scanned form left to right
and the empty loci are assigned the genes—one at a time—from one of the parents with

probability 1
2 , i.e., p◦(i) =

{
p′(i), ς < 1

2
p′′ (i), otherwise

; here, ς is a (pseudo-)random number

from the interval [0, 1]. The assigned gene must be unique.

3.3.4. Shuffle Crossover—SX

The shuffle crossover is obtained by randomly reordering the parents’ genes before
applying the uniform crossover. The same rearrangement rule must be used for both
parents. After the uniform crossover is finished, the same (initial) rearrangement rule is
again applied.

3.3.5. Partially-Mapped Crossover—PMX

Partially-mapped crossover can be seen as a modified variant of the k-point (multi-
point) crossover. The basic principle relies on the so-called mapping sections (the chromo-
some segments between mapping points). So, at first, the segments of the chromosome
of one parent are moved to the offspring’s chromosome. The same is done for the other
parent. At last, the empty loci (if any) are filled in in a random way.

3.3.6. Swap-Path Crossover (SPX)
3.3.6.1. Swap-Path Crossover (Basic Version)—SPX1

The main distinguishing feature of SPX is that instead of transferring genes from
parents to a child, the genes are, so to speak, rearranged in the chromosomes of the parents.
Let (p′, p′′) be a pair of parents. Then, the process starts from an arbitrary position and the
positions are scanned from left to right. The process continues until a predefined number
of swaps, s (s < n), have been performed. If, in the current position, the genes are the same
for both parents, then one moves to the next position; otherwise, a pairwise interchange

Entropy 2021, 23, 108 8 of 33

of genes of the parents’ chromosomes is accomplished. The interchange is performed in
both parents. For example, if the current position is i and a = p′(i), b = p′′ (i), then there
exists a position j such that b = p′(j), a = p′′ (j); then, after a swap, p′(i) = b, p′′ (i) = a
and p′(j) = a, p′′ (j) = b. Consequently, new chromosomes, say p′′′ , p′′′′ , are produced. In
the next iteration, a pair (p′′′ , p′′′′) is considered, and so on.

3.3.6.2. Swap-Path Crossover (Modified Version I)—SPX2

This modification is achieved when the best offspring (with respect to the fitness of
the offspring) is retained in the course of gene interchanges.

3.3.6.3. Swap-Path Crossover (Modified Version II)—SPX3

The essential feature this crossover procedure is that the offspring fitness is dynami-
cally evaluated: only the gene interchanges that improve the value of the objective function
are accepted.

3.3.6.4. Cycle Crossover—CX

The cycle crossover is based on the pairwise gene interchanges. The key property of
CX is the ability to produce the offspring without distortion of the genetic code; in the other
words, CX enables to create the chromosome with no random (foreign) genes. The negative
aspect of CX is that the offspring may genetically be very close to their predecessors.

3.3.6.5. Cohesive Crossover—COHX

The cohesive crossover was proposed by Z. Drezner [75] to efficiently recombine
individuals’ genes by taking into account the problem data, in particular, the distances
between objects’ locations. From several recombinations of genes, the recombination is
selected that minimizes the objective function.

3.3.6.6. Multi-Parent Crossover—MPX

In the multi-parent crossover, several (or all) members of a population participate
in creation of the offspring. More precisely, the ith position (locus) of the offspring’s
chromosome p◦ is assigned the value j with the probability P(p(i) = j) (under condition
that the value j has not been utilized before).

The probability that p(i) = j (P(p(i) = j)) is calculated according to the formula:
P(p(i) = j) =

qij

∑n
j=1 qij

; where qij is an element of the matrix Q = (qij)n×n; here, qij denotes

the number of times that the ith locus takes the value j in the parental chromosomes.
If there exist several values (j1, j2, . . .) with the same probability, then one of them is
chosen randomly.

3.3.6.7. Universal Crossover—UNIVX

The universal crossover (UNIVX) [124] distinguishes for its versatility and the possi-
bility of flexible usage depending on the specific needs of the user. It is somewhat similar
to what is known as a simulated binary crossover [126].

Our operator is based on the use of a random mask. There are four controlling
parameters: χ1, χ2, χ3, χ4. The mask length is equal to χ1, where χ1 is a (pseudo-)random
number within the interval [ε1, n], n is the length of the chromosome, ε1 = br× nc, r
is the user’s parameter close to 1, for example, 0.9. The mask contains binary values 0
and 1, where 1 signals that the corresponding gene of the first parent’s chromosome must
be chosen and 0 is to indicate that the second parent’s gene needs to be replicated. The
degree of randomness of the mask is controlled by the parameters χ2, χ3. The parameter
χ2 (χ2 ∈ [ε2, ε3], 0 < ε2 ≤ ε3 < 1) dictates how many 0’s and 1’s are there in the mask: the
higher the value of χ2, the bigger total number of 1’s, and vice versa. The juxtaposition of
bits is regulated by the parameter χ3. The bit generation itself is performed by using a kind
of “anytime” min-max sorting algorithm. That is, if the sorting algorithm is interrupted at
some random moment, this results in a randomized (“quasi-sorted”) sequence of bits. The

Entropy 2021, 23, 108 9 of 33

moment of interruption is defined by the number η, where η = χ3w, here χ3 is a (pseudo-)
random real number from the interval [0, 1], and w denotes the maximum number of
iterations required to fully sort all the bits. (As an example, if the bits “0000001111” are
to be sorted in the descending order and the algorithm is stopped at χ3 = 0.9, then the
random mask similar, for example, to “1011000100” would be generated.) Having the
mask generated, the decision is made as to about what genes have to be transmitted to the
offspring’s chromosome. The index of the starting locus of the transferred genes, χ4, is
generated randomly—in such a way that χ4 ∈ [1, n]. Eventually, the empty loci (if any)
are filled in randomly.

3.4. Offspring Improvement
3.4.1. Hierarchical Iterated Tabu Search Algorithm

Every created offspring is improved by using the hierarchical iterated tabu search
algorithm, which inspires from the philosophy of iterated local search [127] and also
the spirit of self-similarity—one of the fundamental properties of nature (see Figure 2).
Basically, this means that the algorithm is (almost) exactly similar to the part of itself. In
the other words, the main idea is the repeated, cyclical adoption (reuse) of the iterated
tabu search algorithm, that is, the iterated tabu search can be reused multiple times. This
idea is not very new, and some variants of hierarchical-like algorithms have been already
investigated [128–134].

Entropy 2021, 23, x FOR PEER REVIEW 10 of 32

Figure 2. Visual conceptual interpretation of hierarchicity.

The k-level hierarchical iterated tabu search algorithm consists of three basic

components: (1) invocation of the k–1-level hierarchical iterated tabu search algorithm to

improve a given solution; (2) acceptance of the candidate (improved) solution for

perturbation, i.e., mutation; (3) mutation of the accepted solution.

Perturbation (mutation) is applied to a chosen optimized solution that is selected by

the defined candidate acceptance rule (see Section 3.4.3). The mutated solution serves as

an input for the self-contained TS procedure. The TS procedure returns an improved

solution, and so on. The overall process continues until a pre-defined number of

iterations have been performed (see Algorithm 2 (Note. The iterated tabu search

procedure (see Algorithm 3) is in the role of the 0-level hierarchical iterated tabu search

algorithm.)). The best found solution is regarded as the resulting solution of HITS.

Algorithm 2. Pseudocode of the k-level hierarchical iterated tabu search algorithm.

k-Level_Hierarchical_Iterated_Tabu_Search procedure;

// input: p—current solution

// output: p
✩

—the best found solution

// parameter: Qk—number of iterations of the k-level HITS algorithm

begin

 p
✩

: = p;

 for qk: = 1 to Qk do begin

 apply k–1-Level_Hierarchical_Iterated_Tabu_Search to p and get p;

 if z(p) < z(p
✩

) then p
✩

: = p; // the best found solution is memorized

 if qk < Qk then begin

 p: = Candidate_Acceptance(p, p
✩

);

 apply mutation procedure to p

 endif

 endfor

end.

Figure 2. Visual conceptual interpretation of hierarchicity.

The paradigm of the hierarchicity based (self-similar) algorithm is as follows:

(1) Set the number of levels, k (1 ≤ k ≤ kmax).
(2) Generate an initial solution p.
(3) Apply k-1-level algorithm to the solution p. Let p be the improved solution.
(4) Memorize the best found solution.
(5) Set p = p or select a solution p from the history of solutions.
(6) Apply a perturbation procedure to the solution p. Let p∼ be the perturbed solution.
(7) Set p = p∼.
(8) If the termination criterion is not satisfied, then go to Step 2; otherwise, stop the

algorithm.

The k-level hierarchical iterated tabu search algorithm consists of three basic compo-
nents: (1) invocation of the k–1-level hierarchical iterated tabu search algorithm to improve
a given solution; (2) acceptance of the candidate (improved) solution for perturbation, i.e.,
mutation; (3) mutation of the accepted solution.

Perturbation (mutation) is applied to a chosen optimized solution that is selected by
the defined candidate acceptance rule (see Section 3.4.3). The mutated solution serves as an
input for the self-contained TS procedure. The TS procedure returns an improved solution,

Entropy 2021, 23, 108 10 of 33

and so on. The overall process continues until a pre-defined number of iterations have been
performed (see Algorithm 2 (Note. The iterated tabu search procedure (see Algorithm 3)
is in the role of the 0-level hierarchical iterated tabu search algorithm.)). The best found
solution is regarded as the resulting solution of HITS.

Algorithm 2. Pseudocode of the k-level hierarchical iterated tabu search algorithm.

k-Level_Hierarchical_Iterated_Tabu_Search procedure;
/ input: p—current solution
/ output: p9—the best found solution
/ parameter: Q〈k〉—number of iterations of the k-level HITS algorithm

begin
p9: = p;
for q〈k〉: = 1 to Q〈k〉 do begin

apply k–1-Level_Hierarchical_Iterated_Tabu_Search to p and get p∇;
if z(p∇) < z(p9) then p9: = p∇; / the best found solution is memorized
if q〈k〉 < Q〈k〉 then begin

p: = Candidate_Acceptance(p∇, p9);
apply mutation procedure to p

endif
endfor

end.

Algorithm 3. Pseudocode of the iterated tabu search algorithm.

Iterated_Tabu_Search procedure;
/ 0-level hierarchical iterated tabu search algorithm
/ input: p—current solution
/ output: p〈0〉—the best found solution
/ parameter: Q〈0〉—number of iterations of the ITS algorithm

begin
p〈0〉: = p;
for q〈0〉 := 1 to Q〈0〉 do begin

apply Tabu_Search to p and get p•;
if z(p•) < z(p〈0〉) then p〈0〉: = p•; / the best found solution is memorized
if q〈0〉 < Q〈0〉 then begin

p: = Candidate_Acceptance(p•, p〈0〉);
apply mutation procedure to p

endif
endfor

end.

The 0-level HITS algorithm is in fact simply iterated tabu search algorithm (for more
details on the ITS algorithm, see [135]) (see Algorithm 3 ((Note. The tabu search procedure
is in the role of the self-contained algorithm.))), which, in turn, uses a self-contained tabu
search algorithm—the “kernel” tabu search procedure. It is this procedure that directly
improves a given solution. This procedure is thus in the role of the search intensification
mechanism, while the mutation procedure is responsible for the diversification of the
search process. It can be seen that the structure of the individual hierarchical levels of
the HITS algorithm is quite simple, but the overall efficacy of the resulting multi-level
algorithm increases significantly, which is demonstrated by the computational experiments.
Of course, the run time increases as well, but this is compensated by the higher quality of
the final results.

The interesting analogy between intensification and diversification (on the one side)
and the phenomenon of entropy (on the other side) can be perceived. Indeed, the inten-

Entropy 2021, 23, 108 11 of 33

sification process can be thought of as a process of the decrease of the entropy; on the
other hand, diversification could be viewed as the increase of the entropy. Actually, the
similar processes are seen in the open real physical systems. An example is the process
of evolution of stars, where formation (birth) of the stars (along with the planets, organic
matter, etc.) can be linked to the apparent decrease of the entropy, while the death of the
stars (supernovae) may be associated with the significant increase of the entropy.

The self-contained tabu search procedure (for a more detailed description of the princi-
ples of TS algorithms, the reader is referred to [136]) iteratively analyses the neighbourhood
of the current solution p (in our case—Θ2(p)) and performs the non-prohibited move that
most improves the value of the objective function. If there are no improving moves, then
the one that least degrades the value of the objective function is accepted. In order to
eliminate search cycles, the return to recently visited solutions is disabled for a specified
period. The list of prohibitions—the tabu list T—is implemented as a two-dimensional
matrix of size n× n. In this case, the entry tij stores the sum of the number of the current
iteration and the tabu tenure, h; in this way, this value indicates from which iteration the ith
and jth elements of a given solution can be again interchanged. The value of the parameter
h depends on the problem size, n, and is chosen to be equal to 0.3n. The tabu status is
ignored at random moments with a very low probability α (α ≤ 0.05). This allows to
slightly increase the number of non-tabu solutions and not to limit the available search
directions too much. The tabu condition is also ignored when the aspiration criterion is
met, i.e., the current obtained solution is better than the best so far found solution. The
resulting formal tabu and aspiration criteria are thus as follows:

tabu_criterion(i,j) ={
TRUE, (tij ≥ q) and (ς ≥ α) and

(
HT
(
(z(p) + ∆(pi,j, p))mod HashSize

)
= TRUE

)
FALSE, otherwise

,

aspiration_criterion(i,j) =

{
TRUE, z(p) + ∆(pi,j, p) < z•

FALSE, otherwise
, where i, j are the current

elements’ indices, q denotes the current iteration number, ς is a (pseudo-)random real
number within the interval [0, 1], and z• denotes the best so far found value of the objec-
tive function. HT denotes the hash table, which is simply a one-dimensional array, and
HashSize is the capacity of the hash table.

In addition, our tabu search procedure uses a so-called secondary memory Γ [137] to
avoid stagnation manifestations during the search process. The purpose of this memory is
to gather high-quality solutions, which although are rated as very good, but are not chosen.
In particular, the secondary memory includes solutions left “second” after the exploration
of the neighbourhood Θ2. So, if the best found solution does not change more than bβτc
iterations, then the tabu list is cleared and the search is restarted from one of the “second”
solutions in the secondary memory Γ (here, τ denotes the number of iterations of the TS
procedure, and β is a so-called idle iterations limit factor such that 1 ≤ bβτc ≤ τ). The TS
procedure is completed as soon as the total number of iterations, τ, has been performed.

The time complexity of the TS algorithm is proportional to O(n2) for the reason that
the exploration of the neighbourhood Θ2 requires n(n−1)

2 operations and also one needs
to recalculate the differences of the objective function after each transition from a given
solution to the new one.

The pseudo-code of the tabu search algorithm is shown in Algorithm 4 (Notes. (1) The
immediate if function iif(x, y1, y2) returns y1 if x = TRUE, otherwise it returns y2. (2) The
function random() returns a pseudo-random number uniformly distributed in [0, 1]. (3)
The function random(x1, x2) returns a pseudo-random number in [x1, x2]. (4) The values
of the matrix Ξ are recalculated according to the Formula (9). (5) β denotes a random access
parameter (we used β = 0.8).).

Entropy 2021, 23, 108 12 of 33

Algorithm 4. Pseudo-code of the tabu search algorithm.

Tabu_Search procedure;
/input: n—problem size,
/ p—current solution, Ξ—difference matrix
/output: p•—the best found solution (along with the corresponding difference matrix)
/parameters: τ—total number of tabu search iterations, h—tabu tenure, α—randomization
coefficient,
/ Lidle_iter—idle iterations limit

begin
clear tabu list TabuList and hash table HashTable;
p•: = p; k: = 1; k′: = 1; secondary_memory_index: = 0; improved: = FALSE;
while (k ≤ τ) or (improved = TRUE) then begin / main cycle
∆′min: = ∞; ∆”min: = ∞; u′: = 1; v′: = 1;
for i: = 1 to n − 1 do

for j: = i + 1 to n do begin / n(n − 1)/2 neighbours of p are scanned
∆: = Ξ(i, j);
forbidden: = iif(((TabuList(i, j) ≥ k) and (HashTable((z(p) + ∆) mod HashSize) = TRUE) and

(random() ≥ α)), TRUE, FALSE);
aspired := iif(z(p) + ∆ < z(p•), TRUE, FALSE);
if ((∆ < ∆′min) and (forbidden = FALSE)) or (aspired = TRUE) then begin

if ∆ < ∆′min then begin ∆”min: = ∆′min; u”: = u′; v”: = v′; ∆′min: = ∆; u′: = i; v′: = j; endif
else if ∆ < ∆”min then begin ∆”min: = ∆; u”: = i; v”: = j; endif

endif
endfor;

if ∆”min < ∞ then begin / archiving second solution, Ξ, u”, v”
secondary_memory_index: = secondary_memory_index + 1; Γ(secondary_memory_index)← p, Ξ,

u”, v”
endif;
if ∆′min < ∞

p : = φ(p, u′, v′);
recalculate the values of the matrix Ξ;
if z(p) < z(p•) then begin p•: = p; k′: = k endif; / the best so far solution is memorized
TabuList(u′, v′): = k + h; / the elements p(u′), p(v′) become tabu
HashTable((z(p) + ∆) mod HashSize): = TRUE

endif;
improved: = iif(∆′min < 0, TRUE, FALSE);
if (improved = FALSE) and (k − k′ > Lidle_iter) and (k < τ − Lidle_iter) then begin

/ retrieving solution from the secondary memory
random_access_index: = random(β × secondary_memory_index, secondary_memory_index);
p, Ξ, u”, v”← Γ(random_access_index);
p : = φ(p, u′′ , v′′);
recalculate the values of the matrix Ξ;
clear tabu list TabuList;
TabuList(u”, v”): = k + h; / the elements p(u”), p(v”) become tabu
k′: = k

endif;
k: = k + 1

endwhile
end.

3.4.2. Mutation

Each solution found by the tabu search algorithm is subject to perturbation in the
mutation procedure. Remind that formally the mutation process can be defined by the use
of the operator ϕ: Πn → Πn . Thus, if p∼ = ϕ(p), then p∼ ∈ Πn, p∼ 6= p. More formalized
operator can be described as follows: ϕ(p, ξ): Πn × N → Πn , which transforms the
current solution p to the new solution p∼ such that δ(p, p∼) = δ(p, ϕ(p)) = ξ. In this way,
100ξ

n per cent elements of the solution are affected. The parameter ξ (2 ≤ ξ ≤ n) regulates

Entropy 2021, 23, 108 13 of 33

the strength of mutation and is referred to as a mutation rate. (In our algorithm, ξ = b0.2nc.)
It is clear that for any p, p∼ (such that p 6= p∼, δ(p, p∼) = ξ) there always exists a sequence
of distinct integers u1, u2, . . . , uξ such that p∼ = (((pu1, u2)u2, u3)

...
)

uξ−1, uξ .
Choosing the right value of the mutation rate, ξ, plays a very important role in the

mutation procedure and the HITS algorithm and, at the same time, the whole genetic
algorithm. A proper compromise between two extreme cases must be achieved: (1) the
value of ξ is (very) low (close to 0); (2) the value of ξ is (very) high (close to n). In the
first case, the mutation would not guarantee that the obtained mutated solution is “far”
away enough from a given solution, which would lead to cycling search trajectories. In
the second case, useful accumulated information would be lost and the algorithm would
become very similar to a crude random multi-start method.

It should be stressed that the mutation processes are quite different from the crossover
procedures. Mutation processes are by their nature purely random processes. Whilst
crossover procedures only recombine the genetic code contained in the parents, the muta-
tion processes generate, in essence, new information that hadn’t existed in predecessors
earlier. It is the mutation process that implicitly is a true creative process and potentially
produces a real novelty. In our work, twelve different mutation procedures and their
modifications were proposed and tested.

3.4.2.1. Mutation Based on Random Pairwise Interchanges (M1)

In the beginning, the sequence r = (r(1), r(2), . . . , r(ξ)) of random integers r(i) ∈
{1,, n} is generated. Then, we start with the pair (r(1), r(2)), and the elements p(r(1)),
p(r(2)) are interchanged. Then, we exchange the elements p(r(2)), p(r(3)), and so on. This
is repeated ξ − 1 times, where ξ is the value of the mutation rate defined by the algorithm’s
user. The result of the mutation procedure is thus the solution p∼ satisfying the conditions:
p∼ ∈ Πn, δ(p, p∼) = ξ (see Figure 3).

Entropy 2021, 23, x FOR PEER REVIEW 14 of 32

𝛿(𝑝, 𝜑(𝑝)) = 𝜉 . In this way,
100𝜉

𝑛
 per cent elements of the solution are affected. The

parameter 𝜉 (2 ≤ 𝜉 ≤ 𝑛) regulates the strength of mutation and is referred to as a

mutation rate. (In our algorithm, 𝜉 = ⌊0.2𝑛⌋.) It is clear that for any 𝑝, 𝑝~ (such that 𝑝 ≠

𝑝~, 𝛿(𝑝, 𝑝~) = 𝜉) there always exists a sequence of distinct integers 𝑢1, 𝑢2, … , 𝑢𝜉 such

that 𝑝~ = (((𝑝𝑢1, 𝑢2)𝑢2, 𝑢3)…)𝑢𝜉−1,𝑢𝜉.

Choosing the right value of the mutation rate, 𝜉, plays a very important role in the

mutation procedure and the HITS algorithm and, at the same time, the whole genetic

algorithm. A proper compromise between two extreme cases must be achieved: (1) the

value of 𝜉 is (very) low (close to 0); (2) the value of 𝜉 is (very) high (close to 𝑛). In the

first case, the mutation would not guarantee that the obtained mutated solution is “far”

away enough from a given solution, which would lead to cycling search trajectories. In

the second case, useful accumulated information would be lost and the algorithm would

become very similar to a crude random multi-start method.

It should be stressed that the mutation processes are quite different from the

crossover procedures. Mutation processes are by their nature purely random processes.

Whilst crossover procedures only recombine the genetic code contained in the parents,

the mutation processes generate, in essence, new information that hadn’t existed in

predecessors earlier. It is the mutation process that implicitly is a true creative process

and potentially produces a real novelty. In our work, twelve different mutation

procedures and their modifications were proposed and tested.

3.4.2.1. Mutation Based on Random Pairwise Interchanges (M1)

In the beginning, the sequence 𝑟 = (𝑟(1), 𝑟(2), … , 𝑟(𝜉)) of random integers 𝑟(𝑖) ∈

{1, … . , 𝑛} is generated. Then, we start with the pair (𝑟(1), 𝑟(2)) , and the elements

𝑝(𝑟(1)), 𝑝(𝑟(2)) are interchanged. Then, we exchange the elements 𝑝(𝑟(2)), 𝑝(𝑟(3)),

and so on. This is repeated 𝜉 − 1 times, where 𝜉 is the value of the mutation rate

defined by the algorithm’s user. The result of the mutation procedure is thus the solution

𝑝~ satisfying the conditions: 𝑝~ ∈ Π𝑛, 𝛿(𝑝, 𝑝~) = 𝜉 (see Figure 3).

On the basis of the random pairwise interchanges, other modified mutation

procedures can be developed [138].

initial solution 9 3 4 1 7 8 2 5 6

positions' indices 1 2 3 4 5 6 7 8 9

randomly generated indices 2 3 4 6 8

elements after interchange 4 1 8 5 3

mutated solution 9 4 1 8 7 5 2 3 6

Figure 3. Illustration of the mutation procedure (𝑛 = 9, 𝜉 = 5) (The mutation process steps are as

follows: (1) element 3 is interchanged with element 4; (2) element 3 (in position 3) is interchanged

with element 1; (3) element 3 (in position 4) is interchanged with element 8; (4) element 3 (in

position 6) is interchanged with element 5 (element 3 is eventually in position 8)).

3.4.2.2. Random Pairwise Interchanges Using Random Key (M2)

In this case, the mutation process consists of two basic steps: (1) random pairwise

interchanges; (2) shuffling the interchanged elements using a random key. A random

key, 𝑟𝑘, is a list of random indices of size 𝜉—𝑟𝑘(1), 𝑟𝑘(2), … , 𝑟𝑘(𝜉). The random key

values simply determine which elements are again interchanged. The intention is to get

a more “deeply” mutated solution and avoid returning to previously visited solutions.

3.4.2.3. Mutation Using Opposite Values (M3)

In this mutation procedure, the position’s index, let’s say 𝑘 , is randomly

Figure 3. Illustration of the mutation procedure (n = 9, ξ = 5) (The mutation process steps are as
follows: (1) element 3 is interchanged with element 4; (2) element 3 (in position 3) is interchanged
with element 1; (3) element 3 (in position 4) is interchanged with element 8; (4) element 3 (in position
6) is interchanged with element 5 (element 3 is eventually in position 8)).

On the basis of the random pairwise interchanges, other modified mutation procedures
can be developed [138].

3.4.2.2. Random Pairwise Interchanges Using Random Key (M2)

In this case, the mutation process consists of two basic steps: (1) random pairwise
interchanges; (2) shuffling the interchanged elements using a random key. A random key,
rk, is a list of random indices of size ξ—rk(1), rk(2), . . . , rk(ξ). The random key values
simply determine which elements are again interchanged. The intention is to get a more
“deeply” mutated solution and avoid returning to previously visited solutions.

3.4.2.3. Mutation Using Opposite Values (M3)

In this mutation procedure, the position’s index, let’s say k, is randomly deter-
mined. Then, the element e = p(k) is replaced by the following opposite value: o =

Entropy 2021, 23, 108 14 of 33

((p(k) + n
2 − 1) mod n) + 1, where mod denotes the modulo operation. After this replace-

ment, the solution element that was previously equal to o must also be changed. After both
changes, p(k) becomes equal to o, p(l)—equal to e; l indicates the element which was equal
to o. The process is repeated ξ

2 times, where ξ is the muation rate.

3.4.2.4. Distance-Based Mutation (M4)

In this procedure, the indices of the pairs of elements to be interchanged are generated in
such a way that the “distance” (d) between those indices is as large as possible. The following
formula for generating the indices k1, k2, . . . , kξ is used: kl = b((dql + ς− 1) mod n) + 1c,
here d = n

ξ , ς—(pseudo)random real number from the interval [0, 1], ql = (ql−1 mod n)+ 1,
l = 1, 2, . . . , ξ; the initial value q0 is a random integer from the interval [1, n].

3.4.2.5. Modified Random Pairwise Interchanges—Variant I (M5)

This is similar to the random pairwise interchanges. The sequence of random real-
coded values from the interval [0, 1] is generated. The generated numbers along with their
corresponding indices—known as smallest positive values—are sorted in the ascending
order. These values, in particular, determine the elements to be interchanged.

3.4.2.6. Modified Random Pairwise Interchanges—Variant II (M6)

The list of random indices is obtained by directly generating random integers from the
interval [1, n]. The integers may duplicate each other. To avoid duplications, the integers
are sorted according to the ascending order. Indices corresponding to the sorted numbers
indicate the elements that are to be interchanged.

3.4.2.7. Combined Mutation (M7)

This mutation procedure consists of two combined mutation procedures. Initially, the
list of indices of the pairs of elements to be interchanged is constructed (see Section 3.4.2).
The selected elements are then changed using opposite values (see Section 3.4.2).

3.4.2.8. Greedy Adaptive Search Based Mutation (M8)

The basic principle of this mutation procedure is that the solution is disintegrated
in some way, and then reconstructed. The mutation process consists of two steps: (1)
disintegration of the solution, which is random; (2) reconstruction of the solution, which
is greedy-deterministic. In the first step, ξ elements are disregarded. In the second step,
a greedy constructive algorithm is applied, which tries to find the best possible solution
out of ξ! available options. The value of ξ in this case should be quite small to prevent
large increase in the run time of the mutation procedure. This mutation procedure (and
also other procedures described below) are no longer problem-independent as the problem
domain-specific knowledge is taken into account.

3.4.2.9. Greedy Randomized Adaptive Search Based Mutation (M9)

This mutation procedure resembles the one described above. The difference is that a
greedy randomized adaptive search procedure (GRASP) [70] is used in the partial solution
reconstruction phase to obtain an improved solution.

3.4.2.10. Randomized Local Search Based Mutation—Variant I (M10)

In this case, quick procedure based on random pairwise interchanges is initially
performed (see Section 3.4.2). Then, a set of randomly selected elements is formed. A local
search is then performed using the constructed set, i.e., only transitions between solutions
that improve the value of the objective function are accepted.

Entropy 2021, 23, 108 15 of 33

3.4.2.11. Randomized Local Search Based Mutation—Variant II (M11)

This mutation variant is similar to the previous randomized local search variant,
except that the randomly constructed neighbourhood is fully explored in a systematic way.
Again, only improving transitions between solutions are accepted.

3.4.2.12. Randomized Tabu Search Based Mutation (M12)

Let p(1) = argmin
i=1, ..., n−1, j=i+1, ..., n, move_acceptance_criterion(i,j)=TRUE

{z(pi,j)} and

p(2) = argmin
i=1, ..., n−1, j=i+1, ..., n, move_acceptance_criterion(i,j)=TRUE

{ z(pi,j)
∣∣∣pi,j 6= p(1) },

where:
move_acceptance_criterion(i,j) ={

TRUE, (tabu_criterion(i,j) = FALSE) or (aspiration_criterion(i,j) = TRUE)
FALSE, otherwise

,

tabu_criterion(i,j) =

{
TRUE, (tij ≥ q) and (ς ≥ α)
FALSE, otherwise

,

aspiration_criterion(i,j) =

{
TRUE, z(p) + ∆(pi,j, p) < z•

FALSE, otherwise
, q denotes the current iter-

ation number, ς is a (pseudo-)random number within the interval [0, 1], α denotes the
randomization coefficient, z• denotes the best so far value of the objective function. Then,
in the randomized tabu search procedure, the best achieved solution (“winner solution”)
p(1) is accepted with the probability γ, meanwhile the second solution p(2) is chosen with
the probability 1− γ (note that, in the case of γ = 1, we get the standard (deterministic)
tabu search.) In our algorithm, we use γ = 0.2. So, the central idea of the randomized tabu
search is just this quasi-random mixing between the “winner solution” and “next to the
winner solution” in the course of the tabu search process. Based on the extensive experimen-
tation, we found out that this type of mutation is the most promising mutation procedure
among all the procedures examined. The explanation would be that this type of mutation
rather is more gentle, moderate and controlled than the other mutation procedures.

In the end, note that the computational complexity of all our mutation procedures is
proportional to O(ξn2). This is due to the fact that our mutation procedures recalculate the
differences of the objective function (i.e., the values of the matrix Ξ) approximately ξ times
(see Algorithm 5 (Note. The values of the matrix Ξ are recalculated using Equation (9).)).
So, the smaller the value of ξ, the faster is the mutation procedure. Also, note that the
difference matrix Ξ is (permanently) stored in a RAM (operating memory), so there is no
need to calculate the differences of the objective function from scratch.

Algorithm 5. Pseudo-code of the procedure for recalculation of the differences of the
objective function.

Recalculation_of_the_Differences_of_the_Objective_Function procedure;
/ input: ξ—mutation rate, p—initial permutation before mutation, r—random index array,
Ξ—current differences
/ output: Ξ—new differences

begin
for l: = 1 toξ − 1 do begin

u : = r(l); v : = r(l + 1); p : = φ(p, u, v);
recalculate values of the matrix Ξ

endfor
end.

3.4.3. Candidate Acceptance

Regarding the candidate solution acceptance rule, we always choose the most recently
(newly) found improved solution (the latest result of the HITS (or TS) algorithm) instead of

Entropy 2021, 23, 108 16 of 33

the overall best found solution. Such an approach is thought to allow to explore potentially
larger regions of the solution space.

3.5. Population Replacement

For the population replacement, a modified rule is used to respect not only the quality
of the solutions, but also the difference (distance) between solutions.

We have, in particular, implemented an extended variant of the well-known “µ + λ“
update rule [139]. The new advanced replacement rule is denoted as “µ + λ, ε”. (This rule
is also used for the initial population construction (see Section 3.1).) We remind that if the
minimum mutual distance between population members and the new obtained offspring
is less than the distance threshold, DT, then the offspring is omitted. The only exception is
the case where the offspring appears better than the best population member. Otherwise,
the offspring enters the current population, but only under condition that it is better than
the worst population member. The worst individual is removed in this case. This our
replacement strategy ensures that only individuals that are diverse enough survive for the
further generations.

There are a few replacement variations (options), depending on the parameter RepVar.
If RepVar = 1, then exactly the above replacement strategy is adopted. If RepVar = 2, then
the new offspring replaces the best member of the current population if the offspring is
better than the best population individual. If the offspring is worse than the best individual,
then RepVar = 2 is identical to RepVar = 3. If RepVar = 3, then the offspring replaces
the worst member of the population, ignoring the fitness of the worst individual. The
minimum distance criterion must be taken into account.

3.6. Population Restart

The important feature of our genetic algorithm is the use of the population restart
mechanism to try to avoid the premature convergence and search stagnation. The restart
process is triggered in the situations where the solutions of the population do not change
at all for some number of consecutive generations. This can be operationalized by the
use of a priori parameter called an idle generations limit, Lidle_gen , where Lidle_gen =

max{Lmin,
⌊
ωNgen

⌋
}, here Lmin is a constant (we use Lmin = 3), ω is to denote a stagnation

control parameter and Ngen is the total number of generations of the genetic algorithm.
(The standard value of ω is equal to 0.05.) The restart itself is performed by applying a
so-called multi-mutation, where the mutation process is applied to all the members of
the stagnated population. Such approach is preferred to the complete destroying of the
population, which seems to be too aggressive.

4. Computational Experiments

Our genetic-hierarchical algorithm is implemented by using C# programming lan-
guage. The computational experiments have been carried out on a 3.1 GHz personal
computer running Windows 7 Enterprise. The CPU model is an Intel Core i5-3450.

The algorithm is tested on the small-, medium-and large-scaled QAP benchmark
instances of sizes from n = 10 to n = 128. Most instances are from the online QAP library
QAPLIB [29]. Other instances are from [14,19] (see also http:/mistic.heig-vd.ch/taillard/
problemes.dir/qap.dir/qap.html).

In particular, the following benchmark instances taken from QAPLIB were examined:

(a) random, unstructured instances (these instances are denoted by: rou20, tai10a, tai12a,
tai15a, tai17a, tai20a, tai25a, tai30a, tai35a, tai40a, tai50a, tai60a, tai80a, tai100a);

(b) randomly generated, grid-based instances (they are denoted by: had20, nug30, scr20,
sko42, sko49, sko56, sko64, sko72, sko81, sko90, sko100a..sko100f, tho30, tho40, wil50,
wil100);

(c) real-life, structured instances from practical applications (denoted by: chr25a, els19,
esc32a..esc32h, esc64a, esc128, kra30a, kra30b, ste36a. ste36c, tai64c);

http:/mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html
http:/mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html

Entropy 2021, 23, 108 17 of 33

(d) real-life like (pseudo-random), structured instances (denoted by: tai10b, tai12b, tai15b,
tai20b, tai25b, tai30b, tai35b, tai40b, tai50b, tai60b, tai80b, tai100b).

(e) instances with known optimal solutions (denoted by: lipa20a, lipa20b, lipa30a, lipa30b,
lipa40a, lipa40b, lipa50a, lipa50b, lipa60a, lipa60b, lipa70a, lipa70b, lipa80a, lipa80b,
lipa90a, lipa90b).

In addition, the instances introduced by de Carvalho and Rahmann [19] are investi-
gated. These instances are extremely difficult to solve. They are denoted by bl36, bl49, bl64,
bl81, bl100 (aka. border length minimization instances) and ci36, ci49, ci64, ci81, ci100 (aka.
conflict index minimization instances).

We also tested the instances dre15, dre18, dre21, dre24, dre28, dre30, dre42, dre56,
dre72, dre90, tai27e1, tai27e2, tai27e3, tai45e1, tai45e2, tai45e3, tai75e1, tai75e2, tai75e3
proposed by Drezner and Taillard in [14].

In the initial computational experiments, we used the following “learning set” of the
QAP benchmark instances of sizes from n = 35 to n = 70: bl49, bl64, ci49, ci64, dre42, dre56,
lipa70a, lipa70b, sko56, sko64, tai35a, tai35b, tai40a, tai40b, tai45e1, tai50a, tai50b, tai60a,
tai60b, wil50. These particular instances were chosen based on our preliminary experience.

As a performance criterion, we adopt the average relative percentage deviation (θ) of
the yielded solutions from the best known solution (BKS). It is calculated by the following
formula: θ = 100 (z−zbkv)

zbkv
[%], where z is the average objective function value over 10 runs

of the algorithm, while zbkv denotes the best known value (BKV) of the objective function
that corresponds to the BKS (BKVs are from [14,29,86]).

At every run, the algorithm is applied to the particular instance. Each time, the
algorithm starts from a new random initial population. The algorithm is terminated if
either the maximum number of generations, Ngen, has been reached or the best known
solution has been achieved.

In the experiments, the goal was to empirically test the performance of the basic setup
of our algorithm and also its various variants in terms of the quality of solutions and the run
time of the algorithm. To do so, we have identified some essential algorithm’s components
(ingredients) (namely, “initial population”, “selection”, “crossover”, “local improvement
(hierarchical tabu search)”, “mutation”, “population replacement”) to reveal their influence
on the efficiency of GHA and to “synthesize” the preferable fine-tuned architecture of the
algorithm. The following combination of the particular options (parameters) related to
these components is declared as the basic version of GHA: {InitPopVar = 1 , PS = 10,
Ngen = 100, σ = 1.5, CrossVar = “1PX”, τ = 20, Qhier = 28 = 256, MutVar = “M1”,
RepVar = 1}; here, Qhier denotes the total cumulative number of hierarchical iterations
(Qhier = Q(0) × Q(1) × Q(2) × Q(3) × Q(4) × Q(5) × Q(6) × Q(7)), Q(0), . . . , Q(7) denote,
respectively, the corresponding numbers of iterations of the 0th-level, . . . , 7th-level hi-
erarchical iterated tabu search algorithms. The prescribed default values of the control
parameters corresponding to the basic version of GHA are shown in Tables 1 and 2. (These
values were later over-ridden in particular separate experiments).

Table 1. Values of the control parameters of the basic version of GHA used in the experiments.

Parameter Value Remarks

Population size, PS 10
Number of generations, Ngen 100

Initial population variant, InitPopVar 1
Selection factor, σ 1.5

Distance threshold, DT max{2, b0.05nc} 0 < DT ≤ n
Idle generations limit, Lidle_gen max{3,

⌊
0.05Ngen

⌋
} 0 < Lidle_gen ≤ Ngen

Population replacement variant, RepVar 1

Entropy 2021, 23, 108 18 of 33

Table 2. Standard values of the control parameters of the hierarchical iterated tabu search algorithm.

Parameter Value Remarks

Number of hierarchical iterated tabu
search iterations, Qhier

256 Qhier = Q(0) ×Q(1) ×Q(2) ×Q(3)×
Q(4) ×Q(5) ×Q(6) ×Q(7) †

Number of tabu search iterations, τ 20
Idle iterations limit, Lidle_iter b0.2τc 0 < Lidle_iter ≤ τ

Tabu tenure, h b0.3nc h > 0
Randomization coefficient for tabu

search, α
0.02 0 ≤ α < 1

Mutation rate, ξ b0.2nc 2 ≤ ξ ≤ n
†Q(0) = Q(1) = Q(2) = Q(3) = Q(4) = Q(5) = Q(6) = Q(7) = 2.

In the initial experiments, twelve crossover procedures (1PX, 2PX, UX, SX, PMX, SPX1,
SPX2, SPX3, CX, COHX, MPX, UNIVX) have been compared against each other. The
obtained results (presented in Table 3) demonstrate that our proposed universal crossover
(UNIVX) with the tuned control parameters yields the most promising results.

In the further experiments, the different mutation procedures (M1, M2, M3, M4, M5,
M6, M7, M8, M9, M10, M11, M12) were examined. This time, we have found out that the
randomized tabu search based mutation is clearly the best among the all tested mutation
variants (see Table 4).

Further, we were interested in how various options (configurations) of the initial
population construction affect the performance of the genetic-hierarchical algorithm. The
particular separate configurations differ with respect to the option of the population
construction (InitPopVar), the size of pre-initial population (PS′), as well as the number
of TS iterations during the population initialization (τ′). In particular, the following
variants were investigated: (1) InitPopVar = 1, PS′ = 10, τ′ = 20; (2) InitPopVar = 1,
PS′ = 20, τ′ = 40; (3) InitPopVar = 1, PS′ = 40, τ′ = 80; (4) InitPopVar = 1, PS′ = 100,
τ′ = 200; (5) InitPopVar = 2, PS′ = 10, τ′ = 20; (6) InitPopVar = 2, PS′ = 20, τ′ = 40;
(7) InitPopVar = 2, PS′ = 40, τ′ = 80; (8) InitPopVar = 2, PS′ = 100, τ′ = 200; (9)
InitPopVar = 3, PS′ = 10, τ′ = 20; (10) InitPopVar = 3, PS′ = 20, τ′ = 40; (11)
InitPopVar = 3, PS′ = 40, τ′ = 80; (12) InitPopVar = 3, PS′ = 100, τ′ = 200.

We have observed that maintaining the higher quality initial populations, in general,
allows to significantly increase the overall efficiency of GHA when comparing to the lower
quality initial populations (see Table 5).

Additionally, we experimented with some few population replacement options. The
particular population replacement variants are as follows: (1) PS′ = 10, τ′ = 20, RepVar = 1;
(2) PS′ = 10, τ′ = 20, RepVar = 2; (3) PS′ = 10, τ′ = 20, RepVar = 3; (4) PS′ = 20, τ′ = 40,
RepVar = 1; (5) PS′ = 20, τ′ = 40, RepVar = 2; (6) PS′ = 20, τ′ = 40, RepVar = 3; (7)
PS′ = 40, τ′ = 80, RepVar = 1; (8) PS′ = 40, τ′ = 80, RepVar = 2; (9) PS′ = 40, τ′ = 80,
RepVar = 3; (10) PS′ = 100, τ′ = 200, RepVar = 1; (11) PS′ = 100, τ′ = 200, RepVar = 2;
(12) PS′ = 100, τ′ = 200, RepVar = 3.

It was observed that the aggressive strategy of replacement of the best population
member (RepVar = 2) seems to be superior to other options (see Table 6). Further, more
extensive experiments are required to strengthen this conjecture.

In addition, we have tested some other different scenarios (regimes) in order to unveil
some possible tendencies of the behaviour of the HITS algorithm. The following scenarios
were investigated: (1) scenario of “quick search”: small value of τ—small value of Qhier; (2)
scenario of “diversified quick search”: small value of τ—large value of Qhier; (3) scenario
of “extensive search”: large value of τ—small value of Qhier; (4) scenario of “diversified
extensive search”: large value of τ—large value of Qhier. Note that, in these scenarios, the
number of generations of GHA should be accordingly balanced in order to stay within the
fixed run time. The corresponding values of the control parameters are as follows: (1-a)
τ = 20, Qhier = 28 = 256, Ngen = 100; (1-b) τ = 25, Qhier = 28 = 256, Ngen = 80; (1-c)
τ = 40, Qhier = 28 = 256, Ngen = 50; (2-a) τ = 50, Qhier = 28 = 256, Ngen = 40; (2-b)

Entropy 2021, 23, 108 19 of 33

τ = 10, Qhier = 29 = 512, Ngen = 100; (2-c) τ = 20, Qhier = 29 = 512, Ngen = 50; (3-a)
τ = 10, Qhier = 5× 27 = 640, Ngen = 80; (3-b) τ = 20, Qhier = 5× 27 = 640, Ngen = 40;
(3-c) τ = 10, Qhier = 210 = 1024, Ngen = 50; (4-a) τ = 20, Qhier = 210 = 1024, Ngen = 25;
(4-b) τ = 10, Qhier = 10× 27 = 1280, Ngen = 40; (4-c) τ = 20, Qhier = 10× 27 = 1280,
Ngen = 20.

The results of the experiments (see Table 7) demonstrate that the scenario of diversified
extensive search is obviously preferable to other examined scenarios.

Additional scenarios have been examined to reveal the reaction of GHA when ex-
tensively increasing the cumulative number of iterations of the hierarchical iterated tabu
search algorithm—Qhier. The computational budget is not constant (“balanced”) anymore,
but grows as the value of Qhier increases. The following scenarios have been tried: (1)
PS = 10, PS′ = 150, τ′ = 300, Qhier = 5× 27 = 640; (2) PS = 10, PS′ = 150, τ′ = 300,
Qhier = 6 × 27 = 768; (3) PS = 10, PS′ = 150, τ′ = 300, Qhier = 7 × 27 = 896; (4)
PS = 10, PS′ = 150, τ′ = 300, Qhier = 8× 27 = 1024; (5) PS = 20, PS′ = 300, τ′ = 300,
Qhier = 5 × 27 = 640; (6) PS = 20, PS′ = 300, τ′ = 300, Qhier = 6 × 27 = 768; (7)
PS = 20, PS′ = 300, τ′ = 300, Qhier = 7× 27 = 896; (8) PS = 20, PS′ = 300, τ′ = 300,
Qhier = 8× 27 = 1024; (9) PS = 10, PS′ = 200, τ′ = 400, Qhier = 7× 27 = 896; (10)
PS = 10, PS′ = 200, τ′ = 400, Qhier = 7× 27 = 1024; (11) PS = 20, PS′ = 400, τ′ = 400,
Qhier = 7× 27 = 896; (12) PS = 20, PS′ = 400, τ′ = 400, Qhier = 7× 27 = 1024; here, τ′

denotes the number of TS iterations during the construction of the initial population.
The results confirm that, as expected, there exists a clear correlation between the

number of improving iterations (the number of TS/HITS iterations) and the quality of the
obtained solutions (see Table 8).

To have a reflection of the obtained results from a different perspective—in particular,
a demonstration of the stability and robustness properties of our algorithm—we have
constructed histograms of the frequency of the objective function values for one of the
most difficult instances of the “learning set”—bl64 (see Figure A1 in the “Appendix A”
Section). In fact, we have created the histograms of the frequency of the average percentage
deviation, θ, over 10 algorithm runs within the interval [0.0, 1.0), where 0.0 stands for zero
deviation and 1.0 means the maximum possible deviation. (Note that the average deviation
never exceeded 1.0 for the instance bl64 (see Table 8).)

(Regarding the selection factor, σ, the obtained results are quite “flat” and not statisti-
cally significant, so they are omitted).

On the whole, we have found the best known solutions in the 9191 cases (runs) out of
14400 cases (64% of cases). The BKS was found at least once for all examined instances. The
cumulative average percentage deviation is equal to 1.452% and the cumulative average
CPU time per run is equal to approximately 65.9 s. The average deviation is less than 0.5
in 73% of cases, while the average deviation is less than 1.0 in 89% of cases. 14 instances
(ci49, ci64, dre42, lipa70a, lipa70b, sko56, sko64, tai35a, tai35b, tai40b, tai45e1, tai50b, tai60b,
wil50) were solved to pseudo-optimality in more than 300 runs.

After experimenting with the “learning set” of instances, the other instances (the “test-
ing set” of instances) were examined using the fine-tuned parameters in order to find out
how quickly the genetic-hierarchical algorithm converges to the best known/optimal solu-
tions. The obtained results are presented in Table 9. It can be seen that all tested instances
(88 instances) are solved to pseudo-optimality within extremely small computation time.

Entropy 2021, 23, 108 20 of 33

Table 3. Comparison of crossover procedures.

Instance BKV
θ̄

Time (s)
1PX 2PX UX SX PMX SPX1 SPX2 SPX3 CX COHX MPX UNIVX

bl49 4548 0.730 0.765 0.712 0.756 0.756 0.812 0.792 0.730 0.765 0.712 0.853 0.688 63.9
bl64 5988 1.009 0.775 0.768 1.222 1.062 0.795 1.136 1.096 0.882 0.962 1.416 0.962 126.7
ci49 236355034 0.004 0.002 0.009 0.000 0.012 0.004 0.000 0.000 0.003 0.013 0.003 0.005 10.7
ci64 325671035 0.092 0.086 0.103 0.087 0.081 0.097 0.066 0.055 0.085 0.068 0.110 0.098 65.4

dre42 764 8.770 15.052 13.665 11.990 11.126 18.770 9.738 8.586 14.058 14.607 7.696 7.408 18.1
dre56 1086 28.785 28.674 36.206 37.661 35.470 39.282 38.122 38.471 29.963 24.199 46.335 26.298 59.6

lipa70a 169755 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 23.3
lipa70b 4603200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.8
sko56 34458 0.002 0.001 0.018 0.000 0.017 0.021 0.002 0.000 0.002 0.000 0.014 0.001 16.9
sko64 48498 0.006 0.000 0.022 0.000 0.000 0.016 0.000 0.000 0.000 0.000 0.015 0.006 8.4
tai35a 2422002 0.355 0.416 0.332 0.263 0.233 0.506 0.313 0.239 0.386 0.252 0.215 0.484 16.0
tai35b 283315445 0.000 0.000 0.000 0.000 0.000 0.019 0.000 0.000 0.000 0.000 0.000 0.000 1.5
tai40a 3139370 0.483 0.417 0.556 0.477 0.482 0.686 0.464 0.462 0.513 0.622 0.534 0.601 39.1
tai40b 637250948 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.0
tai45e1 6412 3.253 1.366 2.944 1.307 1.285 2.682 0.172 1.597 3.506 2.327 6.323 1.482 29.2
tai50a 4938796 0.810 0.834 0.872 0.742 0.712 0.960 0.784 0.884 0.829 0.797 0.838 0.912 67.1
tai50b 458821517 0.000 0.033 0.033 0.000 0.000 0.000 0.000 0.033 0.033 0.066 0.113 0.033 3.9
tai60a 7205962 0.819 0.826 0.904 0.894 0.858 0.976 0.899 0.865 0.971 0.762 0.901 0.888 103.4
tai60b 608215054 0.037 0.000 0.000 0.000 0.037 0.000 0.000 0.000 0.000 0.000 0.040 0.000 6.8
wil50 48816 0.002 0.003 0.013 0.007 0.007 0.011 0.008 0.000 0.005 0.007 0.007 0.011 6.2

Average: 2.266 2.471 2.866 2.779 2.615 3.290 2.633 2.659 2.608 2.278 3.279 2.001

Notes. Time denotes the average CPU time per one run. In all cases, the first mutation variant (M1) is used.

Table 4. Comparison of mutation procedures.

Instance BKV
θ̄

Time (s)
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

bl49 4548 0.730 0.800 0.994 0.712 0.739 0.642 1.099 0.976 1.020 1.082 0.624 0.792 63.8
bl64 5988 1.009 1.075 1.336 0.855 0.862 1.049 1.229 1.376 1.229 2.057 0.755 1.336 125.2
ci49 236355034 0.004 0.004 0.080 0.021 0.000 0.001 0.097 0.003 0.003 0.000 0.001 0.001 9.6
ci64 325671035 0.092 0.085 0.218 0.089 0.074 0.092 0.187 0.256 0.110 0.083 0.075 0.049 66.3

dre42 764 8.770 11.204 22.984 1.466 15.026 7.016 25.916 20.524 14.346 16.335 8.063 0.000 18.9
dre56 1086 28.785 32.431 40.829 26.538 29.705 37.459 41.197 39.576 34.494 56.814 26.206 16.777 58.1

Entropy 2021, 23, 108 21 of 33

Table 4. Cont.

Instance BKV
θ̄

Time (s)
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

lipa70a 169755 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 24.0
lipa70b 4603200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.1
sko56 34458 0.002 0.000 0.082 0.019 0.000 0.000 0.096 0.064 0.003 0.001 0.000 0.000 16.4
sko64 48498 0.006 0.000 0.002 0.006 0.000 0.000 0.007 0.026 0.001 0.000 0.006 0.000 8.3
tai35a 2422002 0.355 0.386 0.707 0.377 0.240 0.365 0.672 0.520 0.513 0.000 0.197 0.034 17.2
tai35b 283315445 0.000 0.000 0.000 0.084 0.000 0.000 0.000 0.000 0.037 0.000 0.000 0.028 1.3
tai40a 3139370 0.483 0.501 0.797 0.508 0.487 0.520 0.771 0.652 0.699 0.337 0.448 0.289 40.1
tai40b 637250948 0.000 0.201 0.000 0.000 0.000 0.000 0.000 0.201 0.402 0.000 0.000 0.603 2.2
tai45e1 6412 3.253 1.376 10.231 11.784 2.714 2.246 9.454 8.456 17.034 0.000 1.301 15.490 30.5
tai50a 4938796 0.810 0.718 1.193 0.876 0.813 0.846 1.064 1.044 0.899 0.601 0.737 0.487 67.5
tai50b 458821517 0.000 0.000 0.078 0.253 0.000 0.033 0.019 0.033 0.035 0.000 0.033 0.123 3.7
tai60a 7205962 0.819 0.879 1.123 0.908 0.883 0.882 1.200 1.041 0.935 0.649 0.830 0.487 103.7
tai60b 608215054 0.037 0.000 0.002 0.201 0.000 0.000 0.037 0.005 0.000 0.000 0.000 0.409 6.9
wil50 48816 0.002 0.005 0.017 0.018 0.003 0.003 0.025 0.011 0.014 0.000 0.007 0.000 6.6

Average: 2.266 2.492 4.042 2.244 2.586 3.290 4.162 3.746 3.597 3.906 1.972 1.854

Note. In all cases, the 1PX crossover is used.

Table 5. Comparison of different variants of the initial population construction.

Instance BKV
θ̄

Time (s)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

bl49 4548 0.607 0.589 0.554 0.607 0.668 0.598 0.589 0.624 0.616 0.598 0.519 0.493 115.2
bl64 5988 0.601 0.835 0.741 0.661 0.741 0.501 0.768 0.681 0.735 0.681 0.715 0.661 243.1
ci49 236355034 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 16.3
ci64 325671035 0.055 0.019 0.029 0.000 0.051 0.060 0.028 0.000 0.008 0.007 0.000 0.000 81.6

dre42 764 4.267 3.272 6.466 0.000 6.309 4.869 4.293 0.000 1.335 0.000 0.000 0.000 16.7
dre56 1086 23.462 20.626 12.302 4.494 13.131 22.118 13.941 11.013 20.166 19.153 4.807 3.757 129.8

lipa70a 169755 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 18.8
lipa70b 4603200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.8
sko56 34458 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.9
sko64 48498 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.5
tai35a 2422002 0.201 0.169 0.076 0.000 0.127 0.081 0.000 0.000 0.000 0.000 0.000 0.000 22.0
tai35b 283315445 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.4

Entropy 2021, 23, 108 22 of 33

Table 5. Cont.

Instance BKV
θ̄

Time (s)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

tai40a 3139370 0.443 0.377 0.335 0.219 0.512 0.277 0.263 0.083 0.311 0.231 0.088 0.067 66.8
tai40b 637250948 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.2
tai45e1 6412 0.730 0.730 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 36.6
tai50a 4938796 0.647 0.715 0.628 0.450 0.620 0.610 0.560 0.352 0.577 0.488 0.372 0.191 120.4
tai50b 458821517 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.7
tai60a 7205962 0.721 0.672 0.643 0.519 0.667 0.660 0.549 0.463 0.633 0.506 0.460 0.353 194.9
tai60b 608215054 0.037 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 60.1
wil50 48816 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.4

Average: 1.591 1.403 1.091 0.350 1.144 1.491 1.052 0.664 1.222 1.086 0.351 0.279

Note. In all cases, the UNIVX crossover and the twelfth mutation variant (M12) are used.

Table 6. Comparison of different variants of population replacement.

Instance BKV
θ̄

Time (s)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

bl49 4548 0.607 0.624 0.677 0.589 0.642 0.580 0.554 0.624 0.616 0.607 0.589 0.589 62.1
bl64 5988 0.601 0.635 0.715 0.835 0.715 0.688 0.741 0.695 0.768 0.661 0.635 0.755 123.0
ci49 236355034 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10.2
ci64 325671035 0.055 0.035 0.040 0.019 0.051 0.036 0.029 0.032 0.027 0.000 0.000 0.000 67.7

dre42 764 4.267 6.963 8.246 3.272 1.492 2.094 6.466 1.466 5.419 0.000 0.000 0.000 19.6
dre56 1086 23.462 15.488 9.687 20.626 11.326 18.250 12.302 8.122 10.055 4.494 5.783 7.035 57.0

lipa70a 169755 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 24.3
lipa70b 4603200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.1
sko56 34458 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.2
sko64 48498 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.7
tai35a 2422002 0.201 0.222 0.142 0.169 0.130 0.165 0.076 0.076 0.032 0.000 0.000 0.000 17.8
tai35b 283315445 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.1
tai40a 3139370 0.443 0.410 0.444 0.377 0.415 0.438 0.335 0.326 0.296 0.219 0.219 0.222 38.5
tai40b 637250948 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.9
tai45e1 6412 0.730 2.920 2.492 0.730 1.023 0.605 0.000 0.000 0.459 0.000 0.000 0.000 33.2
tai50a 4938796 0.647 0.701 0.648 0.715 0.671 0.685 0.628 0.611 0.606 0.450 0.450 0.424 66.7
tai50b 458821517 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.2
tai60a 7205962 0.721 0.740 0.687 0.672 0.690 0.744 0.643 0.627 0.627 0.519 0.469 0.501 105.9

Entropy 2021, 23, 108 23 of 33

Table 6. Cont.

Instance BKV
θ̄

Time (s)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

tai60b 608215054 0.037 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.1
wil50 48816 0.003 0.002 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.7

Average: 1.591 1.440 1.192 1.403 0.861 1.217 1.091 0.632 0.948 0.350 0.410 0.479

Note. In all cases, the UNIVX crossover and the mutation variant M12 are used. Also, the initial population construction option InitPopVar = 1 is used.

Table 7. Comparison of different variants of the hierarchical iterated tabu search algorithm.

Instance BKV
θ̄

Time (s)
(1-a) (1-b) (1-c) (2-a) (2-b) (2-c) (3-a) (3-b) (3-c) (4-a) (4-b) (4-c)

bl49 4548 0.598 0.545 0.633 0.633 0.440 0.589 0.528 0.475 0.528 0.510 0.475 0.510 125.1
bl64 5988 0.735 0.675 0.788 0.935 0.721 0.715 0.661 0.808 0.695 0.681 0.675 0.755 350.5
ci49 236355034 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 15.3
ci64 325671035 0.031 0.014 0.019 0.021 0.011 0.017 0.004 0.011 0.007 0.000 0.004 0.000 65.1

dre42 764 3.613 1.466 0.000 2.670 0.000 1.335 0.000 0.000 0.000 0.000 0.000 0.000 27.2
dre56 1086 8.692 13.297 14.512 16.133 17.017 19.227 13.223 7.974 9.816 5.506 6.851 5.672 180.7

lipa70a 169755 0.052 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 23.4
lipa70b 4603200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 18.4
sko56 34458 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 29.3
sko64 48498 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 28.4
tai35a 2422002 0.108 0.136 0.000 0.000 0.077 0.020 0.063 0.078 0.000 0.000 0.067 0.000 37.0
tai35b 283315445 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 19.8
tai40a 3139370 0.342 0.337 0.350 0.277 0.362 0.264 0.315 0.275 0.322 0.263 0.267 0.201 132.7
tai40b 637250948 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.9
tai45e1 6412 0.586 0.730 0.293 2.015 0.000 0.293 0.000 0.000 0.000 0.000 0.000 0.000 67.7
tai50a 4938796 0.487 0.599 0.559 0.499 0.613 0.612 0.614 0.527 0.504 0.524 0.481 0.491 281.1
tai50b 458821517 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 33.3
tai60a 7205962 0.649 0.607 0.620 0.582 0.573 0.564 0.562 0.635 0.543 0.584 0.542 0.511 345.5
tai60b 608215054 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 36.8
wil50 48816 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.9

Average: 0.795 0.920 0.889 1.188 0.991 1.182 0.799 0.539 0.621 0.403 0.468 0.407

Note. In all cases, the UNIVX crossover and the mutation variant M12 are used. Also, the initial population construction option InitPopVar = 1 and population replacement option RepVar = 2 are used.

Entropy 2021, 23, 108 24 of 33

Table 8. Results of the experiments with the increased number of iterations of the hierarchical iterated tabu search algorithm.

Instance BKV
θ̄

Time (s)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

bl49 4548 0.440 0.466 0.466 0.396 0.475 0.484 0.396 0.440 0.484 0.396 0.484 0.466 230.5
bl64 5988 0.615 0.608 0.568 0.541 0.548 0.528 0.574 0.635 0.508 0.521 0.648 0.581 650.0
ci49 236355034 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.3
ci64 325671035 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 66.8

dre42 764 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 28.4
dre56 1086 5.654 1.344 0.000 1.731 4.696 1.289 0.000 4.678 0.000 2.910 0.000 2.910 520.0

lipa70a 169755 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 23.7
lipa70b 4603200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 19.3
sko56 34458 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 29.8
sko64 48498 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 29.6
tai35a 2422002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 40.2
tai35b 283315445 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 19.3
tai40a 3139370 0.015 0.030 0.037 0.037 0.022 0.037 0.030 0.037 0.037 0.037 0.022 0.022 199.5
tai40b 637250948 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12.9
tai45e1 6412 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 68.8
tai50a 4938796 0.084 0.116 0.117 0.080 0.092 0.152 0.119 0.057 0.036 0.092 0.052 0.011 291.0
tai50b 458821517 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 34.1
tai60a 7205962 0.221 0.258 0.237 0.238 0.235 0.236 0.277 0.221 0.214 0.211 0.200 0.161 554.0
tai60b 608215054 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 37.5
wil50 48816 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10.1

Average: 0.351 0.141 0.071 0.151 0.303 0.136 0.070 0.303 0.064 0.208 0.070 0.208

Notes. In all cases, the UNIVX crossover and the mutation variant M12 are used. Also, the options InitPopVar = 3, RepVar = 2 are used.

Entropy 2021, 23, 108 25 of 33

Table 9. Results of GHA for the set of 88 instances of QAPLIB [14,19,29].

Instance BKV θ̄ Time (s) Instance BKV θ̄ Time (s)

bl36 3296 0.000 9.491 lipa90b 12490441 0.000 0.803
chr25a 3796 0.000 1.936 nug30 6124 0.000 0.122

ci36 168611971 0.000 1.279 rou20 725522 0.000 0.089
ci49 236355034 0.000 6.864 scr20 110030 0.000 0.022
ci64 325671035 0.000 46.818 sko42 15812 0.000 0.592
ci81 427447820 0.000 250.470 sko49 23386 0.000 7.989

dre15 306 0.000 0.003 sko56 34458 0.000 7.145
dre18 332 0.000 0.034 sko64 48498 0.000 7.833
dre21 356 0.000 0.033 ste36a 9526 0.000 0.830
dre24 396 0.000 0.178 ste36b 15852 0.000 0.175
dre28 476 0.000 0.470 ste36c 8239110 0.000 0.513
dre30 508 0.000 0.875 tai10a 135028 0.000 0.005
dre42 764 0.000 9.809 tai10b 1183760 0.000 0.003
dre56 1086 0.000 86.024 tai12a 224416 0.000 0.003
dre72 1452 0.000 489.877 tai12b 39464925 0.000 0.003
els19 17212548 0.000 0.023 tai15a 388214 0.000 0.006

esc32a 130 0.000 0.237 tai15b 51765268 0.000 0.005
esc32b 168 0.000 0.022 tai17a 491812 0.000 0.009
esc32c 642 0.000 0.005 tai20a 703482 0.000 0.122
esc32d 200 0.000 0.008 tai20b 122455319 0.000 0.014
esc32e 2 0.000 0.003 tai25a 1167256 0.000 0.262
esc32f 2 0.000 0.005 tai25b 344355646 0.000 0.041
esc32g 6 0.000 0.003 tai27e1 2558 0.000 0.332
esc32h 438 0.000 0.008 tai27e2 2850 0.000 0.399
esc64a 116 0.000 0.026 tai27e3 3258 0.000 0.078
esc128 64 0.000 0.335 tai30a 1818146 0.000 0.392
had20 6922 0.000 0.013 tai30b 637117113 0.000 0.176
kra30a 88900 0.000 0.304 tai35a 2422002 0.000 1.527
kra30b 91420 0.000 0.643 tai35b 283315445 0.000 0.800
lipa20a 3683 0.000 0.009 tai40b 637250948 0.000 0.900
lipa20b 27076 0.000 0.002 tai45e1 6412 0.000 1.346
lipa30a 13178 0.000 0.038 tai45e2 5734 0.000 5.713
lipa30b 151426 0.000 0.008 tai45e3 7438 0.000 2.471
lipa40a 31538 0.000 0.190 tai50b 458821517 0.000 5.488
lipa40b 476581 0.000 0.017 tai60b 608215054 0.000 5.036
lipa50a 62093 0.000 0.473 tai64c 1855928 0.000 0.022
lipa50b 1210244 0.000 0.062 tai75e1 14488 0.000 52.287
lipa60a 107218 0.000 4.446 tai75e2 14444 0.000 25.134
lipa60b 2520135 0.000 0.153 tai75e3 14154 0.000 36.677
lipa70a 169755 0.000 6.915 tai80b 818415043 0.000 29.161
lipa70b 4603200 0.000 0.251 tai100b 1185996137 0.000 83.515
lipa80a 253195 0.000 22.615 tho30 149936 0.000 0.097
lipa80b 7763962 0.000 0.579 tho40 240516 0.000 3.928
lipa90a 360630 0.000 81.371 wil50 48816 0.000 3.133

Note. Time denotes the average CPU time per one run.

We have also compared our algorithm with the memetic algorithm (MA) proposed be
Benlic and Hao [78], which is most likely the best so far heuristic algorithm for the QAP, to
the best of our knowledge. The results of comparison of the algorithms are presented in
Tables 10–12. It seems that our genetic-hierarchical algorithm outperforms MA. Addition-
ally, we used the genetic algorithms by Drezner et al. [14] and Drezner and Misevičius [86]
in the further comparison (see Tables 13–16). Again, our algorithm compares favourably to
both the algorithm by Drezner et al. as well as Drezner and Misevičius.

Entropy 2021, 23, 108 26 of 33

Table 10. Comparative results between GHA and memetic algorithm (MA) [78] (part I).

Instance BKV
GHA MA

θ̄ Time (s) θ̄ Time (s)

sko72 66256 0.000 29.380 0.000 240.000
sko81 90998 0.000 95.421 0.000 258.000
sko90 115534 0.000 229.456 0.000 918.000

sko100a 152002 0.000 542.640 0.000 1338.000
sko100b 153890 0.000 227.774 0.000 390.000
sko100c 147862 0.000 400.697 0.000 720.000
sko100d 149576 0.000 377.108 0.006 1254.000
sko100e 149150 0.000 438.632 0.000 714.000
sko100f 149036 0.000 790.550 0.000 1380.000
wil100 273038 0.000 600.566 0.000 870.000

Note. Time denotes the average CPU time per one run.

Table 11. Comparative results between GHA and memetic algorithm (MA) [78] (part II).

Instance BKV
GHA MA

θ̄ Time (s) θ̄ Time (s)

tai40a 3139370 0.052(3) 204.916 0.059(2) 486.000
tai50a 4938796 0.192(2) 268.705 0.131(2) 2520.000
tai60a 7205962 0.215(1) 713.455 0.144(2) 4050.000
tai80a 13499184 0.367(0) 3040.000 0.426(0) 3948.000

tai100a 21043560 0.311(0) 6200.000 0.447(0) 2646.000
Notes. Time denotes the average CPU time per one run. In parentheses, we present the number of times that the
BKS has been found. The best known value for tai100a is from [140].

Table 12. Comparative results between GHA and memetic algorithm (MA) [78] (part III).

Instance BKV
GHA MA

θ̄ Time (s) θ̄ Time (s)

tai50b 458821517 0.000 5.488 0.000 72.000
tai60b 608215054 0.000 5.036 0.000 312.000
tai80b 818415043 0.000 29.161 0.000 1878.000
tai100b 1185996137 0.000 83.515 0.000 816.000

Note. Time denotes the average CPU time per one run.

Table 13. Comparative results between GHA and hybrid genetic algorithm (HGA) [14] (part I).

Instance BKV
GHA HGA

θ̄ Time (s) θ̄ Time (s)

dre30 508 0.000(10) 0.875 0.000 143.400
dre42 764 0.000(10) 9.809 1.340 547.800
dre56 1086 0.000(10) 86.024 17.460 1810.800
dre72 1452 0.000(10) 489.877 27.280 5591.400
dre90 1838 10.351(2) 9999.978 33.880 11,557.800

Note. Time denotes the average CPU time per one run. In parentheses, we present the number of times that the
BKS has been found.

Entropy 2021, 23, 108 27 of 33

Table 14. Comparative results between GHA and hybrid genetic algorithm (HGA) [14] (part II).

Instance BKV
GHA HGA

θ̄ Time (s) θ̄ Time (s)

tai27e1 2558 0.000 0.332 0.000 ~60.000
tai27e2 2850 0.000 0.399 0.000 ~60.000
tai27e3 3258 0.000 0.078 0.000 ~60.000
tai45e1 6412 0.000 1.346 0.000 ~300.000
tai45e2 5734 0.000 5.713 0.000 ~300.000
tai45e3 7438 0.000 2.471 0.000 ~300.000
tai75e1 14488 0.000 52.287 0.000 ~2220.000
tai75e2 14444 0.000 25.134 0.339 ~2220.000
tai75e3 14154 0.000 36.677 0.000 ~2220.000

Note. Time denotes the average CPU time per one run.

Table 15. Comparative results between GHA and hybrid genetic algorithm with differential improve-
ment (HGA-DI) [86] (part I).

Instance BKV
GHA HGA-DI

θ̄ Time (s) θ̄ Time (s)

bl36 3296 0.000(10) 9.491 0.000(10) 51.000
bl49 4548 0.229(2) 217.540 0.334(0) 125.000
bl64 5988 0.294(1) 550.060 0.227(0) 356.000
bl81 7532 0.490(0) 1725.800 0.494(0) 937.000

bl100 9264 0.527(0) 4070.800 0.548(0) 2306.000
Note. Time denotes the average CPU time per one run. In parentheses, we present the number of times that the
BKS has been found.

Table 16. Comparative results between GHA and hybrid genetic algorithm with differential improve-
ment (HGA-DI) [86] (part II).

Instance BKV
GHA HGA-DI

θ̄ Time (s) θ̄ Time (s)

ci36 168611971 0.000(10) 1.279 0.000(10) 50.000
ci49 236355034 0.000(10) 6.864 0.000(10) 124.000
ci64 325671035 0.000(10) 46.818 0.000(10) 354.000
ci81 427447820 0.000(10) 250.470 0.000(10) 932.000

ci100 523146366 0.003(7) 4270.300 0.007(3) 2285.000
Note. Time denotes the average CPU time per one run. In parentheses, we present the number of times that the
BKS has been found.

5. Concluding Remarks

In this paper, we have presented the hybrid genetic-hierarchical algorithm for the
solution of the quadratic assignment problem. The key feature of the proposed algorithm is
that the genetic algorithm is hybridized with the hierarchicity-based (self-similar) iterated
tabu search algorithm, which serves as a powerful local optimizer of the offspring solutions
produced by the crossover operator.

The algorithm was examined on the QAP benchmark instances of various sizes
and complexity. The results obtained from the experiments demonstrate the excellent
performance of the genetic-hierarchical algorithm. Our algorithm seems to outperform
other state-of-the-art heuristic algorithms for many examined QAP instances or is at least
very much competitive with them. A more pronounced improvement in the quality of the
results might be achieved by a thorough calibration of the algorithm’s parameters.

The following are some possible future research directions: balancing of the number
of tabu search iterations and the number of hierarchical iterated tabu search iterations, as
well as the number of hierarchical levels; extensive experimental analysis of the particu-
lar components and configurations of the genetic-hierarchical algorithm; designing and
implementing a multi-level hierarchical (master-slave) genetic algorithm.

Entropy 2021, 23, 108 28 of 33

Author Contributions: The proposed algorithm was designed and implemented by A.M. All sections
and experiments were described by both authors. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Faculty of Informatics of Kaunas University of Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Entropy 2021, 23, x FOR PEER REVIEW 27 of 32

Figure A1. Histograms of the frequency of the objective function values for the instance bl64 for different examined

scenarios: (a) 𝑃𝑆 = 10, 𝑃𝑆′ = 150, 𝜏′ = 300, 𝑄ℎ𝑖𝑒𝑟 = 640; (b) 𝑃𝑆 = 10, 𝑃𝑆′ = 150, 𝜏′ = 300, 𝑄ℎ𝑖𝑒𝑟 = 768; (c) 𝑃𝑆 = 10,

𝑃𝑆′ = 150, 𝜏′ = 300, 𝑄ℎ𝑖𝑒𝑟 = 896; (d) 𝑃𝑆 = 10, 𝑃𝑆′ = 150, 𝜏′ = 300, 𝑄ℎ𝑖𝑒𝑟 = 1024. The histograms are developed in

such a way that the frequency of the average deviation is visualized over 10 discrete sub-intervals of the interval [0.0,:
[0.0, 0.1); [0.1, 0.2); [0.2, 0.3); …; [0.9, 1.0). It can be seen that the average deviation from (pseudo-)optimal solutions

stably decreases by increasing the number of search iterations (𝑄ℎ𝑖𝑒𝑟).

References

1. Burkard, R.E.; Çela, E.; Pardalos, P.M.; Pitsoulis, L.S. The quadratic assignment problem. In Handbook of Combinatorial

Optimization; Du, D.Z., Pardalos, P.M., Eds.; Kluwer: Dordrecht, The Netherlands, 1998; Volume 3, pp. 241–337.

2. Burkard, R.E.; Dell’amico, M.; Martello, S. Assignment Problems; SIAM: Philadelphia, PA, USA, 2009.

3. Çela, E. The Quadratic Assignment Problem: Theory and Algorithms; Kluwer: Dordrecht, The Netherlands, 1998.

4. Drezner, Z. The quadratic assignment problem. In Location Science; Laporte, G., Nickel, S., Saldanha da Gama, F., Eds.; Springer:

Cham, Switzerland, 2015; pp. 345–363, doi:10.1007/978-3-319-13111-5_13.

5. Koopmans, T.; Beckmann, M. Assignment problems and the location of economic activities. Econometrica 1957, 25, 53–76.

6. Rendl, F. The quadratic assignment problem. In Facility Location: Applications and Theory; Drezner, Z., Hamacher, H., Eds.;

Springer: Berlin, Germany, 2002; pp. 439–457.

7. Hanan, M.; Kurtzberg, J.M. Placement techniques. In Design Automation of Digital Systems: Theory and Techniques; Breuer, M.A.,

Ed.; Prentice-Hall: Englwood Cliffs, NJ, USA, 1972; Volume 1, pp. 213–282.

8. Steinberg, L. The backboard wiring problem: A placement algorithm. SIAM Rev. 1961, 3, 37–50.

9. Heffley, D.R. Assigning runners to a relay team. In Optimal Strategies in Sports; Ladany, S.P., Machol, R.E., Eds.; North-Holland:

Amsterdam, The Netherlands, 1977; pp. 169–171.

10. Drezner, Z. Finding a cluster of points and the grey pattern quadratic assignment problem. OR Spectr. 2006, 28, 417–436,

doi:10.1007/s00291-005-0010-7.

11. Burkard, R.E.; Offermann, J. Entwurf von schreibmaschinentastaturen mittels quadratischer zuordnungsprobleme. Z. Oper.

Res. 1977, 21, 121–132.

12. Dell’amico, M.; Díaz, J.C.D.; Iori, M.; Montanari, R. The single-finger keyboard layout problem. Comput. Oper. Res. 2009, 36,

3002–3012, doi:10.1016/j.cor.2009.01.018.

13. Herthel, A.B.; Subramanian, A. Optimizing single-finger keyboard layouts on smartphones. Comput. Oper. Res. 2020, 120,

104947, doi:10.1016/j.cor.2020.104947.

14. Drezner, Z.; Hahn, P.M.; Taillard, E.D. Recent advances for the quadratic assignment problem with special emphasis on

instances that are difficult for metaheuristic methods. Ann. Oper. Res. 2005, 139, 65–94, doi:10.1007/s10479-005-3444-z.

Figure A1. Histograms of the frequency of the objective function values for the instance bl64 for different examined
scenarios: (a) PS = 10, PS′ = 150, τ′ = 300, Qhier = 640; (b) PS = 10, PS′ = 150, τ′ = 300, Qhier = 768; (c) PS = 10,
PS′ = 150, τ′ = 300, Qhier = 896; (d) PS = 10, PS′ = 150, τ′ = 300, Qhier = 1024. The histograms are developed in
such a way that the frequency of the average deviation is visualized over 10 discrete sub-intervals of the interval [0.0, :
[0.0, 0.1); [0.1, 0.2); [0.2, 0.3); . . . ; [0.9, 1.0). It can be seen that the average deviation from (pseudo-)optimal solutions
stably decreases by increasing the number of search iterations (Qhier).

References
1. Burkard, R.E.; Çela, E.; Pardalos, P.M.; Pitsoulis, L.S. The quadratic assignment problem. In Handbook of Combinatorial Optimization;

Du, D.Z., Pardalos, P.M., Eds.; Kluwer: Dordrecht, The Netherlands, 1998; Volume 3, pp. 241–337.
2. Burkard, R.E.; Dell’amico, M.; Martello, S. Assignment Problems; SIAM: Philadelphia, PA, USA, 2009.
3. Çela, E. The Quadratic Assignment Problem: Theory and Algorithms; Kluwer: Dordrecht, The Netherlands, 1998.
4. Drezner, Z. The quadratic assignment problem. In Location Science; Laporte, G., Nickel, S., Saldanha da Gama, F., Eds.; Springer:

Cham, Switzerland, 2015; pp. 345–363. [CrossRef]
5. Koopmans, T.; Beckmann, M. Assignment problems and the location of economic activities. Econometrica 1957, 25, 53–76.

[CrossRef]

http://doi.org/10.1007/978-3-319-13111-5_13
http://doi.org/10.2307/1907742

Entropy 2021, 23, 108 29 of 33

6. Rendl, F. The quadratic assignment problem. In Facility Location: Applications and Theory; Drezner, Z., Hamacher, H., Eds.; Springer:
Berlin, Germany, 2002; pp. 439–457.

7. Hanan, M.; Kurtzberg, J.M. Placement techniques. In Design Automation of Digital Systems: Theory and Techniques; Breuer, M.A.,
Ed.; Prentice-Hall: Englwood Cliffs, NJ, USA, 1972; Volume 1, pp. 213–282.

8. Steinberg, L. The backboard wiring problem: A placement algorithm. SIAM Rev. 1961, 3, 37–50. [CrossRef]
9. Heffley, D.R. Assigning runners to a relay team. In Optimal Strategies in Sports; Ladany, S.P., Machol, R.E., Eds.; North-Holland:

Amsterdam, The Netherlands, 1977; pp. 169–171.
10. Drezner, Z. Finding a cluster of points and the grey pattern quadratic assignment problem. OR Spectr. 2006, 28, 417–436.

[CrossRef]
11. Burkard, R.E.; Offermann, J. Entwurf von schreibmaschinentastaturen mittels quadratischer zuordnungsprobleme. Z. Oper. Res.

1977, 21, 121–132. [CrossRef]
12. Dell’amico, M.; Díaz, J.C.D.; Iori, M.; Montanari, R. The single-finger keyboard layout problem. Comput. Oper. Res. 2009,

36, 3002–3012. [CrossRef]
13. Herthel, A.B.; Subramanian, A. Optimizing single-finger keyboard layouts on smartphones. Comput. Oper. Res. 2020, 120, 104947.

[CrossRef]
14. Drezner, Z.; Hahn, P.M.; Taillard, E.D. Recent advances for the quadratic assignment problem with special emphasis on instances

that are difficult for metaheuristic methods. Ann. Oper. Res. 2005, 139, 65–94. [CrossRef]
15. Francis, R.L.; White, J.A. Facility Layout and Location: An Analytical Approach; Prentice Hall: Englewood Cliffs, NJ, USA, 1998.
16. Phillips, A.T.; Rosen, J.B. A quadratic assignment formulation of the molecular conformation problem. J. Glob. Optim. 1994,

4, 229–241. [CrossRef]
17. Taillard, E.D. Comparison of iterative searches for the quadratic assignment problem. Locat. Sci. 1995, 3, 87–105. [CrossRef]
18. Ben-David, G.; Malah, D. Bounds on the performance of vector-quantizers under channel errors. IEEE Trans. Inf. Theory 2005,

51, 2227–2235. [CrossRef]
19. De Carvalho, S.A., Jr.; Rahmann, S. Microarray layout as a quadratic assignment problem. In German Conference on Bioinformatics,

GCB 2006, Lecture Notes in Informatics–Proceedings; Huson, D., Kohlbacher, O., Lupas, A., Nieselt, K., Zell, A., Eds.; Gesellschaft für
Informatik: Bonn, Germany, 2006; Volume P-83, pp. 11–20.

20. Brusco, M.J.; Stahl, S. Using quadratic assignment methods to generate initial permutations for least-squares unidimensional
scaling of symmetric proximity matrices. J. Classif. 2000, 17, 197–223. [CrossRef]

21. Dickey, J.W.; Hopkins, J.W. Campus building arrangement using TOPAZ. Transp. Res. 1972, 6, 59–68. [CrossRef]
22. Elshafei, A.N. Hospital layout as a quadratic assignment problem. Oper. Res. Q. 1977, 28, 167–179. [CrossRef]
23. Lstibůrek, M.; Stejskal, J.; Misevičius, A.; Korecký, J.; El-Kassaby, Y. Expansion of the minimum-inbreeding seed orchard design

to operational scale. Tree Genet. Genomes 2015, 11, 1–8. [CrossRef]
24. Laporte, G.; Mercure, H. Balancing hydraulic turbine runners: A quadratic assignment problem. Eur. J. Oper. Res. 1988,

35, 378–381. [CrossRef]
25. Saremi, H.Q.; Abedin, B.; Kermani, A.M. Website structure improvement: Quadratic assignment problem approach and ant

colony metaheuristic technique. Appl. Math. Comput. 2008, 195, 285–298. [CrossRef]
26. Abdel-Basset, M.; Manogaran, G.; Rashad, H.; Zaied, A.N.H. A comprehensive review of quadratic assignment problem: Variants,

hybrids and applications. J. Ambient Intell. Hum. Comput. 2018, 9, 1–24. [CrossRef]
27. Sahni, S.; Gonzalez, T. P-complete approximation problems. J. ACM 1976, 23, 555–565. [CrossRef]
28. Anstreicher, K.M.; Brixius, N.W.; Gaux, J.P.; Linderoth, J. Solving large quadratic assignment problems on computational grids.

Math. Program. 2002, 91, 563–588. [CrossRef]
29. Burkard, R.E.; Karisch, S.; Rendl, F. QAPLIB—A quadratic assignment problem library. J. Glob. Optim. 1997, 10, 391–403.

[CrossRef]
30. Date, K.; Nagi, R. Level 2 reformulation linearization technique–based parallel algorithms for solving large quadratic assignment

problems on graphics processing unit clusters. INFORMS J. Comput. 2019, 31, 771–789. [CrossRef]
31. Ferreira, J.F.S.B.; Khoo, Y.; Singer, A. Semidefinite programming approach for the quadratic assignment problem with a sparse

graph. Comput. Optim. Appl. 2018, 69, 677–712. [CrossRef]
32. Gonçalves, A.D.; Pessoa, A.A.; Bentes, C.; Farias, R.; De Drummond, A.L.M. A graphics processing unit algorithm to solve

the quadratic assignment problem using level-2 reformulation-linearization technique. INFORMS J. Comput. 2017, 29, 676–687.
[CrossRef]

33. Hahn, P.M.; Zhu, Y.-R.; Guignard, M.; Hightower, W.L.; Saltzman, M.J. A level-3 reformulation-linearization technique-based
bound for the quadratic assignment problem. INFORMS J. Comput. 2012, 24, 202–209. [CrossRef]

34. Nyberg, A.; Westerlund, T. A new exact discrete linear reformulation of the quadratic assignment problem. Eur. J. Oper. Res. 2012,
220, 314–319. [CrossRef]

35. Rendl, F.; Sotirov, R. Bounds for the quadratic assignment problem using the bundle method. Math. Program. 2007, 109, 505–524.
[CrossRef]

36. Nyström, M. Solving Certain Large Instances of the Quadratic Assignment Problem: Steinberg’s Examples; Tech. Rep.; California
Institute of Technology: Pasadena, CA, USA, 1999.

37. Martí, R.; Pardalos, P.M.; Resende, M.G.C. (Eds.) Handbook of Heuristics; Springer: Cham, Switzerland, 2018.

http://doi.org/10.1137/1003003
http://doi.org/10.1007/s00291-005-0010-7
http://doi.org/10.1007/BF01918175
http://doi.org/10.1016/j.cor.2009.01.018
http://doi.org/10.1016/j.cor.2020.104947
http://doi.org/10.1007/s10479-005-3444-z
http://doi.org/10.1007/BF01096724
http://doi.org/10.1016/0966-8349(95)00008-6
http://doi.org/10.1109/TIT.2005.847750
http://doi.org/10.1007/s003570000019
http://doi.org/10.1016/0041-1647(72)90111-6
http://doi.org/10.1057/jors.1977.29
http://doi.org/10.1007/s11295-015-0842-5
http://doi.org/10.1016/0377-2217(88)90227-5
http://doi.org/10.1016/j.amc.2007.04.095
http://doi.org/10.1007/s12652-018-0917-x
http://doi.org/10.1145/321958.321975
http://doi.org/10.1007/s101070100255
http://doi.org/10.1023/A:1008293323270
http://doi.org/10.1287/ijoc.2018.0866
http://doi.org/10.1007/s10589-017-9968-8
http://doi.org/10.1287/ijoc.2017.0754
http://doi.org/10.1287/ijoc.1110.0450
http://doi.org/10.1016/j.ejor.2012.02.010
http://doi.org/10.1007/s10107-006-0038-8

Entropy 2021, 23, 108 30 of 33

38. Armour, G.C.; Buffa, E.S. A heuristic algorithm and simulation approach to relative location of facilities. Manag. Sci. 1963, 9,
294–304. [CrossRef]

39. Buffa, E.S.; Armour, G.C.; Vollmann, T.E. Allocating facilities with CRAFT. Harv. Bus. Rev. 1964, 42, 136–158.
40. Murtagh, B.A.; Jefferson, T.R.; Sornprasit, V. A heuristic procedure for solving the quadratic assignment problem. Eur. J. Oper.

Res. 1982, 9, 71–76. [CrossRef]
41. Nugent, C.E.; Vollmann, T.E.; Ruml, J. An experimental comparison of techniques for the assignment of facilities to locations. J.

Oper. Res. 1968, 16, 150–173. [CrossRef]
42. Angel, E.; Zissimopoulos, V. On the quality of local search for the quadratic assignment problem. Discret. Appl. Math. 1998,

82, 15–25. [CrossRef]
43. Chiang, W.-C.; Chiang, C. Intelligent local search strategies for solving facility layout problems with the quadratic assignment

problem formulation. Eur. J. Oper. Res. 1998, 106, 457–488. [CrossRef]
44. Murthy, K.A.; Li, Y.; Pardalos, P.M. A local search algorithm for the quadratic assignment problem. Informatica 1992, 3, 524–538.
45. Pardalos, P.M.; Murthy, K.A.; Harrison, T.P. A computational comparison of local search heuristics for solving quadratic assigment

problems. Informatica 1993, 4, 172–187.
46. Aksan, Y.; Dokeroglu, T.; Cosar, A. A stagnation-aware cooperative parallel breakout local search algorithm for the quadratic

assignment problem. Comput. Ind. Eng. 2017, 103, 105–115. [CrossRef]
47. Benlic, U.; Hao, J.-K. Breakout local search for the quadratic assignment problem. Appl. Math. Comput. 2013, 219, 4800–4815.

[CrossRef]
48. Burkard, R.E.; Rendl, F. A thermodynamically motivated simulation procedure for combinatorial optimization problems. Eur. J.

Oper. Res. 1984, 17, 169–174. [CrossRef]
49. Connolly, D.T. An improved annealing scheme for the QAP. Eur. J. Oper. Res. 1990, 46, 93–100. [CrossRef]
50. Wilhelm, M.; Ward, T. Solving quadratic assignment problems by simulated annealing. IIE Trans. 1987, 19, 107–119. [CrossRef]
51. Bölte, A.; Thonemann, U.W. Optimizing simulated annealing schedules with genetic programming. Eur. J. Oper. Res. 1996,

92, 402–416. [CrossRef]
52. Misevičius, A. A modified simulated annealing algorithm for the quadratic assignment problem. Informatica 2003, 14, 497–514.

[CrossRef]
53. Paul, G. An efficient implementation of the simulated annealing heuristic for the quadratic assignment problem. arXiv 2011,

arXiv:1111.1353.
54. Taillard, E.D. Robust taboo search for the QAP. Parallel. Comput. 1991, 17, 443–455. [CrossRef]
55. Battiti, R.; Tecchiolli, G. The reactive tabu search. ORSA J. Comput. 1994, 6, 126–140. [CrossRef]
56. Drezner, Z. The extended concentric tabu for the quadratic assignment problem. Eur. J. Oper. Res. 2005, 160, 416–422. [CrossRef]
57. Misevicius, A. A tabu search algorithm for the quadratic assignment problem. Comput. Optim. Appl. 2005, 30, 95–111. [CrossRef]
58. Zhu, W.; Curry, J.; Marquez, A. SIMD tabu search for the quadratic assignment problem with graphics hardware acceleration. Int.

J. Prod. Res. 2010, 48, 1035–1047. [CrossRef]
59. Fescioglu-Unver, N.; Kokar, M.M. Self controlling tabu search algorithm for the quadratic assignment problem. Comput. Ind. Eng.

2011, 60, 310–319. [CrossRef]
60. Sergienko, I.V.; Shylo, V.P.; Chupov, S.V.; Shylo, P.V. Solving the quadratic assignment problem. Cybern. Syst. Anal. 2020, 56, 53–57.

[CrossRef]
61. Shylo, P.V. Solving the quadratic assignment problem by the repeated iterated tabu search method. Cybern. Syst. Anal. 2017,

53, 308–311. [CrossRef]
62. Abdelkafi, O.; Derbel, B.; Liefooghe, A. A parallel tabu search for the large-scale quadratic assignment problem. In Proceedings of

the IEEE Congress on Evolutionary Computation, IEEE CEC 2019, Wellington, New Zealand, 10–13 June 2019; IEEE: Piscataway,
NJ, USA, 2019; pp. 3070–3077. [CrossRef]

63. Czapiński, M. An effective parallel multistart tabu search for quadratic assignment problem on CUDA platform. J. Parallel Distrib.
Comput. 2013, 73, 1461–1468. [CrossRef]

64. Ramkumar, A.S.; Ponnambalam, S.G.; Jawahar, N.; Suresh, R.K. Iterated fast local search algorithm for solving quadratic
assignment problems. Robot. Comput. Integr. Manuf. 2008, 24, 392–401. [CrossRef]

65. Stützle, T. Iterated local search for the quadratic assignment problem. Eur. J. Oper. Res. 2006, 174, 1519–1539. [CrossRef]
66. Misevicius, A. An implementation of the iterated tabu search algorithm for the quadratic assignment problem. OR Spectr. 2012,

34, 665–690. [CrossRef]
67. Dokeroglu, T.; Cosar, A. A novel multistart hyper-heuristic algorithm on the grid for the quadratic assignment problem. Eng.

Appl. Artif. Intell. 2016, 52, 10–25. [CrossRef]
68. Fleurent, C.; Glover, F. Improved constructive multistart strategies for the quadratic assignment problem using adaptive memory.

INFORMS J. Comput. 1999, 11, 198–204. [CrossRef]
69. Wang, J. A multistart simulated annealing algorithm for the quadratic assignment problem. In Proceedings of the 2012 Third

International Conference on Innovations in Bio-Inspired Computing and Applications, IBICA 2012, Kaohsiung, Taiwan, 26–28
September 2012; IEEE: Los Alamitos, CA, USA; Washington, DC, USA; Tokyo, Japan, 2012; pp. 19–23. [CrossRef]

http://doi.org/10.1287/mnsc.9.2.294
http://doi.org/10.1016/0377-2217(82)90013-3
http://doi.org/10.1287/opre.16.1.150
http://doi.org/10.1016/S0166-218X(97)00129-7
http://doi.org/10.1016/S0377-2217(97)00285-3
http://doi.org/10.1016/j.cie.2016.11.023
http://doi.org/10.1016/j.amc.2012.10.106
http://doi.org/10.1016/0377-2217(84)90231-5
http://doi.org/10.1016/0377-2217(90)90301-Q
http://doi.org/10.1080/07408178708975376
http://doi.org/10.1016/0377-2217(94)00350-5
http://doi.org/10.15388/Informatica.2003.037
http://doi.org/10.1016/S0167-8191(05)80147-4
http://doi.org/10.1287/ijoc.6.2.126
http://doi.org/10.1016/S0377-2217(03)00438-7
http://doi.org/10.1007/s10589-005-4562-x
http://doi.org/10.1080/00207540802555744
http://doi.org/10.1016/j.cie.2010.11.014
http://doi.org/10.1007/s10559-020-00219-8
http://doi.org/10.1007/s10559-017-9930-x
http://doi.org/10.1109/CEC.2019.8790152
http://doi.org/10.1016/j.jpdc.2012.07.014
http://doi.org/10.1016/j.rcim.2007.01.004
http://doi.org/10.1016/j.ejor.2005.01.066
http://doi.org/10.1007/s00291-011-0274-z
http://doi.org/10.1016/j.engappai.2016.02.004
http://doi.org/10.1287/ijoc.11.2.198
http://doi.org/10.1109/IBICA.2012.56

Entropy 2021, 23, 108 31 of 33

70. Li, Y.; Pardalos, P.M.; Resende, M.G.C. A greedy randomized adaptive search procedure for the quadratic assignment problem.
In Quadratic Assignment and Related Problems. DIMACS Series in Discrete Mathematics and Theoretical Computer Science; Pardalos,
P.M., Wolkowicz, H., Eds.; AMS: Providence, RI, USA, 1994; Volume 16, pp. 237–261.

71. Ahuja, R.K.; Orlin, J.B.; Tiwari, A. A greedy genetic algorithm for the quadratic assignment problem. Comput. Oper. Res. 2000,
27, 917–934. [CrossRef]

72. Lim, M.H.; Yuan, Y.; Omatu, S. Efficient genetic algorithms using simple genes exchange local search policy for the quadratic
assignment problem. Comput. Optim. Appl. 2000, 15, 249–268. [CrossRef]

73. Merz, P.; Freisleben, B. Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans.
Evol. Comput. 2000, 4, 337–352. [CrossRef]

74. Migkikh, V.V.; Topchy, A.A.; Kureichik, V.M.; Tetelbaum, A.Y. Combined genetic and local search algorithm for the quadratic
assignment problem. In Proceedings of the First International Conference on Evolutionary Computation and Its Applications
(EvCA’96); Russian Academy of Sciences: Moscow, Russia, 1996; pp. 335–341.

75. Drezner, Z. A new genetic algorithm for the quadratic assignment problem. INFORMS J. Comput. 2003, 15, 320–330. [CrossRef]
76. Misevicius, A. An improved hybrid genetic algorithm: New results for the quadratic assignment problem. Knowl.-Based Syst.

2004, 17, 65–73. [CrossRef]
77. Tosun, U.; Dokeroglu, T.; Cosar, A. A robust island parallel genetic algorithm for the quadratic assignment problem. Int. J. Prod.

Res. 2013, 51, 4117–4133. [CrossRef]
78. Benlic, U.; Hao, J.-K. Memetic search for the quadratic assignment problem. Expert Syst. Appl. 2015, 42, 584–595. [CrossRef]
79. Özçetin, E.; Öztürk, G. A hybrid genetic algorithm for the quadratic assignment problem on graphics processing units. Anadolu

Univ. J. Sci. Technol. A Appl. Sci. Eng. 2016, 17, 167–180. [CrossRef]
80. Chmiel, W.; Kwiecień, J. Quantum-inspired evolutionary approach for the quadratic assignment problem. Entropy 2018, 20, 781.

[CrossRef]
81. Ahmed, Z.H. A multi-parent genetic algorithm for the quadratic assignment problem. OPSEARCH 2015, 52, 714–732. [CrossRef]
82. Ahmed, Z.H. A hybrid algorithm combining lexisearch and genetic algorithms for the quadratic assignment problem. Cogent Eng.

2018, 5, 1423743. [CrossRef]
83. Baldé, M.A.M.T.; Gueye, S.; Ndiaye, B.M. A greedy evolutionary hybridization algorithm for the optimal network and quadratic

assignment problem. Oper. Res. 2020, 1–28. [CrossRef]
84. Chmiel, W. Evolutionary algorithm using conditional expectation value for quadratic assignment problem. Swarm Evol. Comput.

2019, 46, 1–27. [CrossRef]
85. Drezner, Z.; Drezner, T.D. The alpha male genetic algorithm. IMA J. Manag. Math. 2019, 30, 37–50. [CrossRef]
86. Drezner, Z.; Misevičius, A. Enhancing the performance of hybrid genetic algorithms by differential improvement. Comput. Oper.

Res. 2013, 40, 1038–1046. [CrossRef]
87. Harris, M.; Berretta, R.; Inostroza-Ponta, M.; Moscato, P. A memetic algorithm for the quadratic assignment problem with parallel

local search. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015;
IEEE: Piscataway, NJ, USA, 2015; pp. 838–845. [CrossRef]

88. Tang, J.; Lim, M.-H.; Ong, Y.S.; Er, M.J. Parallel memetic algorithm with selective local search for large scale quadratic assignment
problems. Int. J. Innov. Comput. Inf. Control 2006, 2, 1399–1416.

89. Tosun, U. A new recombination operator for the genetic algorithm solution of the quadratic assignment problem. Procedia Comput.
Sci. 2014, 32, 29–36. [CrossRef]

90. Abdel-Basset, M.; Manogaran, G.; El-Shahat, D.; Mirjalili, S. Integrating the whale algorithm with tabu search for quadratic
assignment problem: A new approach for locating hospital departments. Appl. Soft Comput. 2018, 73, 530–546. [CrossRef]

91. Acan, A.; Ünveren, A. A great deluge and tabu search hybrid with two-stage memory support for quadratic assignment problem.
Appl. Soft Comput. 2015, 36, 185–203. [CrossRef]

92. Drezner, Z.; Drezner, T.D. Biologically inspired parent selection in genetic algorithms. Ann. Oper. Res. 2020, 287, 161–183.
[CrossRef]

93. Fleurent, C.; Ferland, J.A. Genetic hybrids for the quadratic assignment problem. In Quadratic Assignment and Related Problems.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science; Pardalos, P.M., Wolkowicz, H., Eds.; AMS: Providence, RI,
USA, 1994; Volume 16, pp. 173–188.

94. James, T.; Rego, C.; Glover, F. Sequential and parallel path-relinking algorithms for the quadratic assignment problem. IEEE Intell.
Syst. 2005, 20, 58–65. [CrossRef]

95. Lalla-Ruiz, E.; Expósito-Izquierdo, C.; Melián-Batista, B.; Moreno-Vega, M.J. A hybrid biased random key genetic algorithm for
the quadratic assignment problem. Inf. Process. Lett. 2016, 116, 513–520. [CrossRef]

96. Lim, W.L.; Wibowo, A.; Desa, M.I.; Haron, H. A biogeography-based optimization algorithm hybridized with tabu search for the
quadratic assignment problem. Comput. Intell. Neurosc. 2016, 2016, 5803893. [CrossRef]

97. Misevičius, A.; Rubliauskas, D. Testing of hybrid genetic algorithms for structured quadratic assignment problems. Informatica
2009, 20, 255–272. [CrossRef]

98. Ng, K.M.; Tran, T.H. A parallel water flow algorithm with local search for solving the quadratic assignment problem. J. Ind.
Manag. Optim. 2019, 15, 235–259. [CrossRef]

http://doi.org/10.1016/S0305-0548(99)00067-2
http://doi.org/10.1023/A:1008743718053
http://doi.org/10.1109/4235.887234
http://doi.org/10.1287/ijoc.15.3.320.16076
http://doi.org/10.1016/j.knosys.2004.03.001
http://doi.org/10.1080/00207543.2012.746798
http://doi.org/10.1016/j.eswa.2014.08.011
http://doi.org/10.18038/btda.15399
http://doi.org/10.3390/e20100781
http://doi.org/10.1007/s12597-015-0208-7
http://doi.org/10.1080/23311916.2018.1423743
http://doi.org/10.1007/s12351-020-00549-7
http://doi.org/10.1016/j.swevo.2019.01.004
http://doi.org/10.1093/imaman/dpy002
http://doi.org/10.1016/j.cor.2012.10.014
http://doi.org/10.1109/CEC.2015.7256978
http://doi.org/10.1016/j.procs.2014.05.394
http://doi.org/10.1016/j.asoc.2018.08.047
http://doi.org/10.1016/j.asoc.2015.06.061
http://doi.org/10.1007/s10479-019-03343-7
http://doi.org/10.1109/MIS.2005.74
http://doi.org/10.1016/j.ipl.2016.03.002
http://doi.org/10.1155/2016/5803893
http://doi.org/10.15388/Informatica.2009.249
http://doi.org/10.3934/jimo.2018041

Entropy 2021, 23, 108 32 of 33

99. Oliveira, C.A.S.; Pardalos, P.M.; Resende, M.G.C. GRASP with path-relinking for the quadratic assignment problem. In
Efficient and Experimental Algorithms, WEA 2004, Lecture Notes in Computer Science; Ribeiro, C.C., Martins, S.L., Eds.; Springer:
Berlin/Heidelberg, Germany, 2004; Volume 3059, pp. 237–261. [CrossRef]

100. Rodriguez, J.M.; Macphee, F.C.; Bonham, D.J.; Bhavsar, V.C. Solving the quadratic assignment and dynamic plant layout problems
using a new hybrid meta-heuristic approach. In Proceedings of the 18th Annual International Symposium on High Performance
Computing Systems and Applications (HPCS), Winnipeg, MB, Canada, 16–19 May 2004; Eskicioglu, M.R., Ed.; Curran Associates:
Red Hook, NY, USA, 2004; pp. 9–16.

101. Tseng, L.-Y.; Liang, S.-C. A hybrid metaheuristic for the quadratic assignment problem. Comput. Optim. Appl. 2006, 34, 85–113.
[CrossRef]

102. Vázquez, M.; Whitley, L.D. A hybrid genetic algorithm for the quadratic assignment problem. In Proceedings of the 2nd Annual
Conference on Genetic and Evolutionary Computation, Las Vagas, NV, USA, 8–12 July 2000; pp. 135–142.

103. Xu, Y.-L.; Lim, M.H.; Ong, Y.S.; Tang, J. A GA-ACO-local search hybrid algorithm for solving quadratic assignment problem.
In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, WA, USA, 8–12 June 2006;
Volume 1, pp. 599–605. [CrossRef]

104. Zhang, H.; Liu, F.; Zhou, Y.; Zhang, Z. A hybrid method integrating an elite genetic algorithm with tabu search for the quadratic
assignment problem. Inf. Sci. 2020, 539, 347–374. [CrossRef]

105. Hafiz, F.; Abdennour, A. Particle swarm algorithm variants for the quadratic assignment problems—A probabilistic learning
approach. Expert Syst. Appl. 2016, 44, 413–431. [CrossRef]

106. Szwed, P.; Chmiel, W.; Kadłuczka, P. OpenCL implementation of PSO algorithm for the quadratic assignment problem. In
Artificial Intelligence and Soft Computing, ICAISC 2015, Lecture Notes in Computer Science; Rutkowski, L., Korytkowski, M., Scherer,
R., Tadeusiewicz, R., Zadeh, L., Zurada, J., Eds.; Springer: Cham, Switzerland, 2015; Volume 9120, pp. 223–234. [CrossRef]

107. Gambardella, L.M.; Taillard, E.D.; Dorigo, M. Ant colonies for the quadratic assignment problem. J. Oper. Res. Soc. 1999,
50, 167–176. [CrossRef]

108. Dokeroglu, T.; Sevinc, E.; Cosar, A. Artificial bee colony optimization for the quadratic assignment problem. Appl. Soft Comput.
2019, 76, 595–606. [CrossRef]

109. Samanta, S.; Philip, D.; Chakraborty, S. A quick convergent artificial bee colony algorithm for solving quadratic assignment
problems. Comput. Ind. Eng. 2019, 137, 106070. [CrossRef]

110. Abdel-Baset, M.; Wu, H.; Zhou, Y.; Abdel-Fatah, L. Elite opposition-flower pollination algorithm for quadratic assignment
problem. J. Intell. Fuzzy Syst. 2017, 33, 901–911. [CrossRef]

111. Dokeroglu, T. Hybrid teaching–learning-based optimization algorithms for the quadratic assignment problem. Comput. Ind. Eng.
2015, 85, 86–101. [CrossRef]

112. Duman, E.; Uysal, M.; Alkaya, A.F. Migrating birds optimization: A new metaheuristic approach and its performance on
quadratic assignment problem. Inf. Sci. 2012, 217, 65–77. [CrossRef]

113. Ismail, M.M.; Hezam, I.M.; El-Sharkawy, E. Enhanced cuckoo search algorithm with SPV rule for quadratic assignment problem.
Int. J. Comput. Appl. 2017, 158, 39–42. [CrossRef]

114. Kiliç, H.; Yüzgeç, U. Tournament selection based antlion optimization algorithm for solving quadratic assignment problem. Eng.
Sci. Technol. Int. J. 2019, 22, 673–691. [CrossRef]

115. Mzili, I.; Riffi, M.E.; Benzekri, F. Penguins search optimization algorithm to solve quadratic assignment problem. In Proceedings
of the 2nd International Conference on Big Data, Cloud and Applications, Tetouan, Morocco, 29–30 March 2017; ACM: New York,
NY, USA, 2017; pp. 1–6. [CrossRef]

116. Qawqzeh, Y.K.; Jaradat, G.; Al-Yousef, A.; Abu-Hamdah, A.; Almarashdeh, I.; Alsmadi, M.; Tayfour, M.; Shaker, K.; Haddad,
F. Applying the big bang-big crunch metaheuristic to large-sized operational problems. Int. J. Electr. Comput. Eng. 2020,
10, 2484–2502. [CrossRef]

117. Riffi, M.E.; Saji, Y.; Barkatou, M. Incorporating a modified uniform crossover and 2-exchange neighborhood mechanism in a
discrete bat algorithm to solve the quadratic assignment problem. Egypt. Inform. J. 2017, 18, 221–232. [CrossRef]

118. Zamani, R.; Amirghasemi, M. A self-adaptive nature-inspired procedure for solving the quadratic assignment problem. In
Frontier Applications of Nature Inspired Computation. Springer Tracts in Nature-Inspired Computing; Khosravy, M., Gupta, N., Patel, N.,
Senjyu, T., Eds.; Springer: Singapore, 2020; pp. 119–147. [CrossRef]

119. Loiola, E.M.; De Abreu, N.M.M.; Boaventura-Netto, P.O.; Hahn, P.; Querido, T. A survey for the quadratic assignment problem.
Eur. J. Oper. Res. 2007, 176, 657–690. [CrossRef]

120. Frieze, A.M.; Yadegar, J.; El-Horbaty, S.; Parkinson, D. Algorithms for assignment problems on an array processor. Parallel Comput.
1989, 11, 151–162. [CrossRef]

121. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley: Reading, MA, USA, 1989.
122. Drezner, Z. Compounded genetic algorithms for the quadratic assignment problem. Oper. Res. Lett. 2005, 33, 475–480. [CrossRef]
123. Tate, D.M.; Smith, A.E. A genetic approach to the quadratic assignment problem. Comput. Oper. Res. 1995, 22, 73–83. [CrossRef]
124. Misevičius, A.; Kuznecovaitė, D.; Platužienė, J. Some further experiments with crossover operators for genetic algorithms.

Informatica 2018, 29, 499–516. [CrossRef]
125. Pavai, G.; Geetha, T.V. A survey on crossover operators. ACM Comput. Surv. 2017, 49, 1–43. [CrossRef]
126. Deb, K.; Agrawal, R.B. Simulated binary crossover for continuous search space. Compl. Syst. 1995, 9, 115–148.

http://doi.org/10.1007/978-3-540-24838-5_27
http://doi.org/10.1007/s10589-005-3069-9
http://doi.org/10.1145/1143997.1144103
http://doi.org/10.1016/j.ins.2020.06.036
http://doi.org/10.1016/j.eswa.2015.09.032
http://doi.org/10.1007/978-3-319-19369-4_21
http://doi.org/10.1057/palgrave.jors.2600676
http://doi.org/10.1016/j.asoc.2019.01.001
http://doi.org/10.1016/j.cie.2019.106070
http://doi.org/10.3233/JIFS-162141
http://doi.org/10.1016/j.cie.2015.03.001
http://doi.org/10.1016/j.ins.2012.06.032
http://doi.org/10.5120/IJCA2017912787
http://doi.org/10.1016/j.jestch.2018.11.013
http://doi.org/10.1145/3090354.3090375
http://doi.org/10.11591/ijece.v10i3.pp2484-2502
http://doi.org/10.1016/j.eij.2017.02.003
http://doi.org/10.1007/978-981-15-2133-1_6
http://doi.org/10.1016/j.ejor.2005.09.032
http://doi.org/10.1016/0167-8191(89)90025-2
http://doi.org/10.1016/j.orl.2004.11.001
http://doi.org/10.1016/0305-0548(93)E0020-T
http://doi.org/10.15388/Informatica.2018.178
http://doi.org/10.1145/3009966

Entropy 2021, 23, 108 33 of 33

127. Lourenco, H.R.; Martin, O.; Stützle, T. Iterated local search. In Handbook of Metaheuristics; Glover, F., Kochenberger, G., Eds.;
Kluwer: Norwell, MA, USA, 2002; pp. 321–353. [CrossRef]

128. Ahmed, A.K.M.F.; Sun, J.U. A novel approach to combine the hierarchical and iterative techniques for solving capacitated
location-routing problem. Cogent Eng. 2018, 5, 1463596. [CrossRef]

129. Battarra, M.; Benedettini, S.; Roli, A. Leveraging saving-based algorithms by master–slave genetic algorithms. Eng. Appl. Artif.
Intell. 2011, 24, 555–566. [CrossRef]

130. Garai, G.; Chaudhuri, B.B. A distributed hierarchical genetic algorithm for efficient optimization and pattern matching. Pattern
Recognit. 2007, 40, 212–228. [CrossRef]

131. Hauschild, M.; Bhatia, S.; Pelikan, M. Image segmentation using a genetic algorithm and hierarchical local search. In Proceedings
of the 14th Annual Conference on Genetic and Evolutionary Computation, Philadelphia, PA, USA, 7–11 July 2012; Soule, T., Ed.;
ACM Press: New York, NY, USA, 2012; pp. 633–639. [CrossRef]

132. Hussin, M.S.; Stützle, T. Hierarchical iterated local search for the quadratic assignment problem. In Hybrid Metaheuristics, HM
2009, Lecture Notes in Computer Science; Blesa, M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2009; Volume 5818, pp. 115–129. [CrossRef]

133. Rokbani, N.; Kromer, P.; Twir, I.; Alimi, A.M. A hybrid hierarchical heuristic-ACO with local search applied to travelling salesman
problem. Int. J. Syst. Dyn. Appl. 2020, 9, 58–73. [CrossRef]

134. Schaefer, R.; Byrski, A.; Kołodziej, J.; Smołka, M. An agent-based model of hierarchic genetic search. Comput. Math. Appl. 2012,
64, 3763–3776. [CrossRef]

135. Smyth, K.; Hoos, H.H.; Stützle, T. Iterated robust tabu search for MAX-SAT. In Advances in Artificial Intelligence, Proceedings of the
16th Conference of the Canadian Society for Computational Studies of Intelligence. Lecture Notes in Artificial Intelligence, Halifax, NS,
Canada, 11–13 June 2003; Xiang, Y., Chaib-Draa, B., Eds.; Springer: Berlin, Germany, 2003; Volume 2671, pp. 129–144. [CrossRef]

136. Glover, F.; Laguna, M. Tabu Search; Kluwer: Dordrecht, The Netherlands, 1997.
137. Dell’amico, M.; Trubian, M. Solution of large weighted equicut problems. Eur. J. Oper. Res. 1998, 106, 500–521. [CrossRef]
138. Lim, S.M.; Sultan, A.B.M.; Sulaiman, M.N.; Mustapha, A.; Leong, K.Y. Crossover and mutation operators of genetic algorithms.

Int. J. Mach. Learn. Comput. 2017, 7, 9–12. [CrossRef]
139. Sivanandam, S.N.; Deepa, S.N. Introduction to Genetic Algorithms; Springer: Berlin/Heidelberg, Germany; New York, NY,

USA, 2008.
140. Misevičius, A. Letter: New best known solution for the most difficult QAP instance “tai100a”. Memet. Comput. 2019, 11, 331–332.

[CrossRef]

http://doi.org/10.1007/0-306-48056-5_11
http://doi.org/10.1080/23311916.2018.1463596
http://doi.org/10.1016/j.engappai.2011.01.007
http://doi.org/10.1016/j.patcog.2006.04.023
http://doi.org/10.1145/2330163.2330253
http://doi.org/10.1007/978-3-642-04918-7_9
http://doi.org/10.4018/IJSDA.2020070104
http://doi.org/10.1016/j.camwa.2012.02.052
http://doi.org/10.1007/3-540-44886-1_12
http://doi.org/10.1016/S0377-2217(97)00287-7
http://doi.org/10.18178/ijmlc.2017.7.1.611
http://doi.org/10.1007/s12293-019-00289-y

	Introduction
	Basic Definitions
	Hybrid Genetic-Hierarchical Algorithm for the Quadratic Assignment Problem
	Creation of Initial Population
	Selection of Parents
	Crossover Operators
	One-Point Crossover—1PX
	Two-Point Crossover—2PX
	Uniform Crossover—UX
	Shuffle Crossover—SX
	Partially-Mapped Crossover—PMX
	Swap-Path Crossover (SPX)

	Offspring Improvement
	Hierarchical Iterated Tabu Search Algorithm
	Mutation
	Candidate Acceptance

	Population Replacement
	Population Restart

	Computational Experiments
	Concluding Remarks
	
	References

