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Ultraviolet (UV) irradiation can be considered as a double-edged sword: not only is it a crucial environmental factor that can cause
skin-related disorders but it can also be used for phototherapy of skin diseases. Inducible heme oxygenase-1 (HO-1) in response to a
variety of stimuli, including UV exposure, is vital to maintain cell homeostasis. Heme oxygenase-2 (HO-2), another member of the
heme oxygenase family, is constitutively expressed. In this review, we discuss how heme oxygenase (HO), a vital rate-limiting
enzyme, participates in heme catabolism and cytoprotection. Phylogenetic analysis showed that there may exist a functional
differentiation between HO-1 and HO-2 during evolution. Furthermore, depending on functions in immunomodulation and
antioxidation, HO-1 participates in disease progression, especially in pathogenesis of skin diseases, such as vitiligo and psoriasis.
To further investigate the particular role of HO-1 in diseases, we summarized the profile of the HO enzyme system and its
related signaling pathways, such as Nrf2 and endoplasmic reticulum crucial signaling, both known to regulate HO-1 expression.
Furthermore, we report on a C-terminal truncation of HO-1, which is generally considered as a signal molecule. Also, a newly
identified alternative splice isoform of HO-1 not only provides us a novel perspective on comprehensive HO-1 alternative
splicing but also offers us a basis to clarify the relationship between HO-1 transcripts and oxidative diseases. To conclude, the HO
system is not only involved in heme catabolism but also involved in biological processes related to the pathogenesis of certain
diseases, even though the mechanism of disease progression still remains sketchy. Further understanding the role of the HO
system and its relationship to UV is helpful for revealing the HO-related signaling networks and the pathogenesis of many diseases.

1. Introduction

Heme oxygenase (HO) is an important rate-limiting
enzyme and widely distributed in mammalian tissues.
The HO system can degrade the heme into biliverdin
(BV), free ferrous iron (Fe2+), and carbon monoxide
(CO) [1]. These metabolic products participate in physio-
logical processes including oxidative stress, inflammation,
and apoptosis. The heme oxygenase occurs in two iso-
forms, HO-1 and HO-2 (gene names HMOX1 and
HMOX2). HO-1 is the inducible isoform that can be
induced by a variety of environmental stimuli, such as

UV radiation, heavy metal, lipopolysaccharide, heat shock,
growth factors, hydrogen peroxide, phorbol esters, nitric
oxide, inflammatory cytokines, endotoxins, hyperoxia, and
hypoxia [2–5]. Hence, it is a general concept that HO-1 not
only is an oxidative stress marker but also has some cytopro-
tective properties.

The study on the HO-1 transcriptional regulatory region
shows the presence of regulatory sequences for the binding of
various transcription factors such as AP-1, AP-2, NF-κB,
ATF4, Nrf2, Jun B, and HIF-1, which illustrates that HO-1
could also maintain cellular homeostasis [6, 7]. In contrast
to HMOX1, only a few regulatory elements have been
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identified in the promoter region ofHMOX2, such as a gluco-
corticoid response element (GRE). Indeed, corticosterone or
dexamethasone treatment can increase the expression of
HMOX2 [8].

Human HO-2 is constitutively expressed and plays a role
in the production of CO in neuronal populations. In cerebral
tissue, HO-2 is induced in response to cellular oxidative
damage and NO sources whereas hypoxia could reduce its
expression [9]. HO-2 is also a potential oxygen sensor
through BKCa channel activity and hypoxic response in
mammalian cells [10].

Despite the well-known role in heme catabolism, HO-1
participates in some disease progressions with properties of
immunomodulatory and antioxidation, especially some skin
diseases such as vitiligo and psoriasis.

UV as a common environmental factor for skin regulates
HO-1 through a complicated signaling network. In this
review, we explore the relationship between UVA and HO-
1 and focus on Nrf2/Keap1-HO-1 and Eif2α-HO-1 signaling
pathways, which are significant pathways in cellular antioxi-
dation [11–13]. We elucidate the function of HO by intro-
ducing the transcripts of HO-1 and HO-2. Depending on
different cell types, tissues, organs, and species, the HO
system will generate various transcripts that may achieve
distinctive functions. Different from HO-1, HO-2 renders
several transcripts [14, 15]. A truncated form of HO-1 as a
signal transducer localized to the nucleus was already intro-
duced [16]. In previous studies, Bian et al. identified a novel
isoform 14 kDa HO-1 form that might be related to tumor
growth [17]. HO-1 is highly inducible following UVA irradi-
ation in skin fibroblasts, with much lower levels in keratino-
cytes [18, 19]. Furthermore, we found that silencing of HO-2
in keratinocytes increases HO-1, which also further increases
UVA-mediated HO-1 expression in HaCaT cells [20].
Although the vital function of the HO system in heme
catabolism and maintenance of cell homeostasis has been
well elucidated, recent new findings about the multifunc-
tional role of the HO system in many skin diseases and UV
irradiation are worthy to be reviewed in detail. Further
understanding of the role of the HO system is helpful for
revealing the pathogenesis of many diseases.

2. Heme Oxygenase System

2.1. The General Role of the Heme Oxygenase System in
Heme Catabolism and Oxidative Stress. Heme oxygenase
(HO) is the vital rate-limiting enzyme in heme catabolism
and widely exists in mammalian tissues [21]. HO isoen-
zymes are located in the endoplasmic reticulum (ER) [22].
The enzyme can degrade the heme into biliverdin (BV),
free ferrous iron (Fe2+), and carbon monoxide (CO) [1].
With the function of biliverdin reductase (BVR), biliverdin
is converted to bilirubin (BR) and all the metabolic
products of HO activity can participate in the physiological
process including oxidative stress, inflammation, and
apoptosis [23, 24]. The bile pigments biliverdin and biliru-
bin can scavenge ROS and nitrogen reactive species (NRS)
through the recycling mechanism [25, 26]. It was noted that

bilirubin can suppress the inflammatory response and
decrease the cellular toxicity [27].

As a product of the HO enzymatic activity, CO can
modulate the mitogen-activated protein kinase (MAPK)
and p38β pathways to induce antiapoptotic, antiproliferative,
and anti-inflammatory properties [28]. CO stabilizes the
hypoxia-inducible factor 1α (HIF-1α), which plays a role in
cytoprotection in macrophages. CO can inhibit cytochromes
of the respiratory chain and NADPH oxidase (NOX), thus
attributed to the reduction of ROS [29, 30]. Fe2+ is a product
of the HO system and can be rapidly removed by ferritin to
avoid the prooxidant capacity. With intracellular thiols,
Fe2+ can form an iron-sulfur complex [3, 9, 31, 32]. The
extreme hydrophobicity of heme can generate reactive
oxygen species (ROS) and easily bind to the lipids leading
to membrane lipid peroxidation. This can disrupt the mem-
branes of several cellular organelles such as the endoplasmic
reticulum (ER), nuclei, and cell membrane [33].

The HO system has the ability to keep the heme protein
in balanced levels and protects cells from intracellular free
heme damage [34]. Therefore, the cytoprotective role of the
HO system is important in the biological process [35–37].

2.2. Homologous Alignment and Phylogenetic Analysis of HO
System. Homologous alignment revealed that the HMOX1
gene encodes 288 amino acids and HMOX2 encodes 313
amino acids [38]. Figure 1 shows that HMOX1 presents with
21.71% identity to HMOX2 and HMOX1 produced signifi-
cant alignments with those from Bos taurus (41.37%), Mus
musculus (40.51%), Xenopus tropicalis (29.57%), Danio rerio
(21.71%), Drosophila melanogaster (9.23%), Zootermopsis
nevadensis (7.18%), Nicotiana tabacum (4.44%), and Zea
mays (4.10%). To analyze the evolutionary relationship of
HO with the HO-like protein of other species, the
neighbor-joining method was used to construct an HO phy-
logenetic tree. The results demonstrated that Hmox1 might
have a closer relationship with Bos taurus and Capra hircus,
while HMOX2 has a closer relationship with Mus musculus
than other species (Figure 1).

2.3. Heme Oxygenase-1. The 32 kDa HO-1 protein belongs to
a family of stress proteins as inducible isoform of HO, which
is highly expressed in the liver, spleen, and bonemarrow [39].
HO-1 can be induced by a variety of environmental stimuli,
including UV radiation, heavy metals, lipopolysaccharides,
heat shock, growth factors, hydrogenperoxide, phorbol esters,
nitric oxide, inflammatory cytokines, endotoxins, hyperoxia,
and hypoxia [2–5]. Due to its expression at low levels under
basal conditions, but quickly upregulated, HO-1 has been
recognized as a biomarker of oxidative stress. The human
HO-1 gene is located on chromosome 22q12 and it contains
4 introns and 5 exons [40, 41]. It is generally cytoprotective,
antiapoptotic, anti-inflammatory, and antioxidant [23].

We have explored the relationship between HO-1 and
UVA. As an environmental factor, UVA irradiation releases
heme from microsomes and generates reactive oxygen spe-
cies (ROS), which could regulate HO-1 expression [42, 43].

Being a multifunctional molecule, HO-1 also participated
in some skin diseases [44]. A recent report noted that HO-1
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Figure 1: Continued.
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is a powerful immunomodulator, and elevated levels of HO-1
can eliminate inflammatory atopic dermatitis-like lesions in
mice [45]. As a multifunctional protein, HO-1 can suppress
dendritic cell maturation, T cell activation, and B cell infiltra-
tion [46]. In experimental models of ischemia/reperfusion,
HO-1 has the ability to protect against cell death, thus mak-
ing HO-1 a promising target in diverse disease phenotypes,
such as myocardial infarction, sepsis, and stoke [47]. In
endothelial cells (EC), HO-1 expression could protect EC
from undergoing programmed cell death and the antiapopto-
tic property of HO-1 is mediated heme catabolism to the car-
bon monoxide (CO) [48]. The major molecular mechanism
is when HO-1 inhibits the extrinsic and intrinsic apoptotic
pathway, including elevated CO production wherein CO
could inhibit P53 expression, decrease prooxidant levels,

and increase bilirubin [49]. HO-1 could stimulate various
types of cell proliferation and growth, and high levels of
HO-1 expression occur in some tumors because of its antia-
poptosis and antioxidation [50–52]. Depending on HO-1
which is related to the tumor growth, we are also provided
a view that the HO-1 inhibitor could become a novel antitu-
mor chemotherapy.

The function of HO-1 showed extreme similarities
among the pathogenesis of vitiligo and psoriasis [53, 54]. In
vitiligo, T cells mediated immune responses against melano-
cytes and against keratinocytes in psoriasis [55]. A previous
study demonstrated that vitiligo melanocytes are equipped
with the dysfunctional Nrf2-HO-1 antioxidant signaling
pathway, as well as the aberrant expression of miRNAs
[56–58]. Oxidative stress is considered as a contributing

(b)

Figure 1: Homologous alignment and phylogenetic analysis of heme oxygenase and HO-like proteins. (a) Phylogenetic analysis of HO from
different species. The amino acid sequences were downloaded from the NCBI website. Amino acid position is presented by a 0.2 bar. (b)
Alignment of deduced HO proteins with other species.
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factor in T cell-mediated attack against melanocytes and
therefore depigmentation of vitiligo skin; the dysfunctional
Nrf2-HO-1 may contribute to pathogenesis of vitiligo.
Furthermore, HO-1 expression has been associated with
immunosuppressive effects, such as immunoregulatory
function of Tregs [59]; the attenuated function of Tregs
affecting progressive vitiligo has been confirmed [55, 60,
61]. In melanoma, HO-1 gene promoter mutations have been
reported [57, 62]. Different from HO-1, HO-2 is constitu-
tively expressed and has hardly been induced, but HO-2 still
plays a vital role in heme homeostasis and antioxidation.

2.4. Heme Oxygenase-2. HO-2 is a 36 kDa protein that is
encoded on human chromosome 16q12 [40]. HO-2 is mainly
expressed in the brain, testis, spleen, neurons, and endothe-
lial and glial cells [63]. In the brain, HO-2 is expressed in
an abundant form, since HO-2 is constitutively expressed
in neurons and is involved in antiapoptosis in the cortical
and hippocampal [64, 65]. HO-2 acts in the production of
CO in neuronal populations, and due to its high expression,
in cerebral tissue, HO-2 can respond to cellular damage [9,
66]. Unlike HO-1, HO-2 is hardly inducible and can only
be induced by NO donors, which is reduced by hypoxia
[67, 68]. Owing to the deficient cysteine motifs in HO-1,
HO-2 is a potential oxygen sensor through the BKCa channel
activity and hypoxic response in mammalian cells [10]. In
contrast to HO-1, HO-2 is mainly constitutively expressed
and a few regulatory elements have been identified in the
promoter region of HO-2 [9], such as a glucocorticoid
response element (GRE) [8]. The expression of HO-2 can
be induced under a few conditions. It is upregulated by adre-
nal glucocorticoids; in endothelial cells, estrogen also upregu-
lates HO-2 [8]. A previous study noted that adrenal
glucocorticoids can also modulate the HO-2 expression [8].
In cerebral and smooth muscle cells, HO-2 is also activated
by glutamate and increased CO production. As an enzyme,
HO-2 activity can be affected by posttranslational modifica-
tions; it can also be regulated by the presence of NO and
ROS [9, 69]. Basal levels of HO-2 have the ability to maintain
heme homeostasis; meanwhile, it can protect against cellular
oxidative stress as well [70]. In contrast to HO-2, there are
still some publications that reported that HO-1 is a multi-
functional protein involved in some vital biological processes
and further investigating its transcriptional regulation has
become a matter of significance.

3. Ultraviolet Radiation and HO System

Ultraviolet (UV) light is electromagnetic radiation with
wavelengths in the range of 200-400nm. Based on the wave-
length of UV light, it can be divided into three parts, UVA
(320-400 nm), UVB (280-320 nm), and UVC (lower than
280nm) [71, 72]. In general, the solar radiation is an environ-
mental factor, which can trigger some skin diseases, such as
polymorphic solar eruption (PMLE), photoaging, and skin
cancer. Melanoma, squamous cell carcinoma (SCC), and
basal cell carcinoma (BCC) are the three main types of skin
cancer, and UV radiation (UVR) is the major risk factor for
the occurrence of skin cancers [73]. Melanin, produced in

melanocytes, plays a critical role in protecting against UV-
mediated mutagenesis. However, a recent study observed a
decrease in the risk of melanoma and nonmelanoma skin
cancer in vitiligo subject with the absence of melanin in
vitiligo skin, which may be explained by the inverse relation-
ship between the risk of vitiligo and skin cancers in the
RALY-EIF252-ASIPAHCY-ITCH, IRF4, TYR, and MC1R
genes [74–77]. UVR could disrupt skin keratinocytes, which
cause inflammatory disorders. However, UV radiation
exhibited both beneficial and detrimental effects. Ultraviolet
radiation, including narrowband UVB (311-313 nm), broad-
band UVB (290-320 nm), and UVA-1 (340-400nm), was
employed as phototherapy for several chronic inflammatory
skin diseases, including atopic dermatitis, vitiligo, pruritus,
cutaneous mastocytosis, and psoriasis [78–80].

Long-time exposure to UVA radiation can accumulate
reactive oxygen species (ROS), which leads to cellular oxida-
tive stress and activates antioxidation pathways [81]. High
doses of UVA (>300 J) can cause DNA damage in either
direct or indirect ways related to pathogenesis [82]. Our lab
has shown that different wavelengths of UV can activate
specific signal pathways [13, 83–85]. As the long wavelength
UVA radiation mainly exists in the living environment, it has
attracted our attention to UVA radiation research.

HO-1, which belongs to the heme oxygenase family, can
be upregulated by low and medium doses of UVA irradia-
tion; the induction of HO-1 contributes to cellular redox
homeostasis. We have explored the relationship between
HO-1 and UVA. As an environmental factor, UVA irradia-
tion releases heme from microsomal and generates reactive
oxygen species (ROS), which could regulate HO-1 expression
[42, 43]. Both UVA and UVB can induce HO-1 expression,
though much higher levels of induction were found for
UVA irradiation. When UVA induction of Nrf2 and HO-1
is abolished in skin cells, they are more sensitive to oxidative
stress, such as UVA and H2O2, indicating that the Nrf2/HO-
1 system has a protective role in skin cells [86].

4. UV-Related Signal Pathways and
Transcription Involved in Regulation of HO-1

4.1. Transcription Regulation of HO-1. In humans, HMOX1
transcription is involved in a variety of signal transduction
pathways that activate different transcription factors. HO-1
can be upregulated by various inducers, and the transcrip-
tional regulation is essential to explore the relationship
between UVA and HO-1. It is well known that UVA is
an oxidative agent, so we mainly focused on the molecular
mechanism of UVA which actives the antioxidant signal
pathways which affect the transactivation of HMOX1 and
other antioxidant genes [87–89]. Previously, transcription
factor binding sites have been identified in the HO-1
promoter region, such as AP-1, AP-2, NF-κB, ATF4,
Nrf-2, Jun B, and HIF-1, which are associated with the
immediate response to tissue injury, inflammatory, and
oxidation stress [6, 90].

AP-1 binding sites have been identified, which suggest
that a contribution of Jun/Fos transcription factor family
induces HO-1 gene transcription by multiple agents [91].
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AP-2 and NF-κB binding sites may be implicated as HO-1 in
response to tissue injury, oxidation stress, cell growth
control, and differentiation processes. As for the NF-κB tran-
scription factor, it is involved in many cell type challenges
and pathogenic stimuli, including virus, bacterial, stress,
and inflammatory cytokines. HIF-1 is a factor that is related
to hypoxia, and ATF4 is an activating transcription factor
that can upregulate some genes [12, 92, 93].

4.2. Nrf2/Keap1-HO-1 Signaling. Nrf2 (nuclear factor
erythroid-derived 2 related factor 2) belongs to the basic
leucine zipper family of transcription factors and is
responsible for the regulation of cellular redox balance and
antioxidation [94]. The antioxidant response element
(ARE) is attributed to a consensus binding sequence, identi-
fied in HMOX1, thioredoxin reductase 1 (Txnrd1), and series
of antioxidative genes [95]. Antioxidation genes could be
induced in response to environmental stimuli, such as UV.
The procedural activation of cascade affects the status of
the cells and provides protection against cellular oxidative
stress [96]. Apart from Nrf2, some factors like Nrf1 and
Nrf3 as well as transcriptional repressors Bach1 and Bach2
are also members of the bZIP family of transcription factors
[97]. Keap1 is a cysteine-rich protein, serving as an adaptor
protein for the Cul3-dependent E3 ubiquitin ligase complex
[98–100].

Under oxidative stress, including UV irradiation, Nrf2 is
separated from Keap1 and translocates to the cell nucleus
[95]. Nrf2 combines with small Maf proteins (sMaf) and
CBP (CREB-binding protein) and then binds to the antioxi-
dant responsive elements (ARE) in the promoters of target

genes [101]. However, Nrf2 can be degraded in the nucleus
via the β-TrCP-GSK3β axis or it may translocate back to
the cytoplasm and is degraded by Keap1 [102]. Under
normal conditions, Keap1 promotes ubiquitination and
degradation of Nrf2 and Nrf2 exhibiting a short nearly
20min half-life, which keeps the low level of Nrf2 to main-
tain cellular homoeostasis [103]. Keap1, as a thiol-rich
protein, contains cysteine residues; the Cys273 and Cys288
are important for Keap1 to regulate Nrf2 under oxidation
stress conditions and Cys151 is vital to active Keap1 under
cellular stress conditions [99, 104, 105]. It was found that
silencing of Keap1 increases the expression of HO-1 by
several fold [103].

Therefore, the Nrf2/Keap1-HO-1 pathway is an
indispensable route to minimize oxidative stress. Nrf2 is an
essential factor through binding to the Maf recognition
element (MARE) thereby activating the antioxidant respon-
sive element (ARE), which participates in oxidative stress
response [106]. We conclude that Keap1 acts as a sensor in
response to oxidative stress and leads to translocation of acti-
vated Nrf2 which in turn regulates transcription of a series of
antioxidant genes, including HO-1, so that the Nrf2/Keap1-
HO-1 signaling pathway is sensitive to oxidative stress.

4.3. Bach1/HO-1 Signaling. Both Bach1 and Bach2 consist of
the BTB and CNC homology family, as a transcription factor
that belongs to the basic region-leucine zipper factor family
(bZIP) [97, 107]. In general, Bach1 and Bach2 form heterodi-
mers with sMaf proteins and bind to the MARE to become
transcription repressors [108, 109]. The BTB domain is
required for protein-protein interactions and the bZIP
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domain possesses the nuclear localization signal [107, 110].
Bach2 has the ability to bind a TPA (12 O-tetra decanoyl-
phorbol-13-acetate) response element (TRE) in its promoter
region (5′UTR). Except for TRE, Bach2 can also bind to
MARE (MAF response element) and ARE (antioxidant
response element) in complex with the MAF protein, which
results in repressed transcription. Depending on the same
consensus sequence (TGAG/CTCA), TRE, MARE, and
ARE elements can be bound by Maf family proteins [111].
Bach1 as a competitive binder to the ARE motifs leads to
exclusion of Nrf2. As a repressive transcription factor, Bach1
regulates gene induction by release from enhancer elements.
Otherwise, Bach1 plays a vital role in the Nrf2/Keap1-HO-1
pathway. Silencing of Bach1 increases HO-1 mRNA and
protein dramatically, and the strong suppression of HO-1
activation is primarily mediated by Bach1 in HaCaT cells
[43]. The phenomenon also illustrates that competitive
binding of Bach1 to ARE motifs ensures that ARE motifs
are not overstimulated by oxidation so that this mechanism
probably maintains the heme balance by tightly regulating
HO-1 expression.

4.4. PERK-HO-1 Signaling. In addition to the Nrf2-HO-1
pathway, there is another important signal pathway that
can regulate the expression of HO-1. The PERK-ATF4-
HO-1 pathway, which belongs to the cellular homeostatic
pathways, can be activated by integrated stress response
(ISR) [12, 112]. UVA irradiation leads to oxidative stress
and generation of ROS, and all these stressors may trigger
disruptions of endoplasmic reticulum (ER) homeostasis,
thereby causing ER stress [113, 114]. PERK belongs to the
transmembrane ER receptor with a serine/threonine
cytoplasmic domain; activated protein kinase RNA-like
endoplasmic reticulum kinase (PERK) makes the eukaryotic
initiation factor 2 alpha (eIF2α) phosphorylation, especially
for Ser51 phosphorylation of eIF2α, and affects the repres-
sion of global protein synthesis and preferential translation
of selected genes [114, 115]. In the mouse epidermal cell,
Xue et al. found that UVA irradiation could activate eIF2α
phosphorylation and Nrf2-HO-1 signaling and that modu-
lated eIF2α phosphorylation status could change the Nrf2-
HO-1 pathway [116].

Increasing eIF2α phosphorylation enhanced expression
of activating transcription factor 4 (ATF4); ATF4 is a bZIP
transcription factor that can be upregulated by multiple effec-
tors that determine cell fate [117, 118]. Since ATF4 is down-
stream of PERK, it could participate in the metastatic cascade
and is also critical for the regulation of autophagy [12]. ATF4
transcriptionally regulates several antioxidant genes in
response to oxidative stress, including HO-1 and superoxide
dismutase 2 (SOD2) [119, 120]. In general, ATF4 regulates
the expression of genes by mainly binding to C/EBP-ATF
regulatory elements (CARE) in the gene promoter region;
however, latest studies of the HO-1 promoter have shown
that ATF4 binds to unique ARE sites in the HO-1 promoter
and interacts with Nrf2 to upregulate expression following
matrix detachment [12, 121]. However, PERK directly phos-
phorylates Nrf2 to activate a cascade of antioxidant signaling.
Nrf2 is also widely regarded as the primary transcriptional

inducer of HO-1, which implies a cooperative activity of
ATF4 and Nrf2 that may regulate the transcription of HO-
1 [11, 12]. It also reveals that the intersection node between
PERK-eIF2α and PERK-Nrf2 signaling toward regulating
the transcription of HO-1 suggests that PERK could poten-
tially be a therapeutic target for disease [122–124]. For fur-
ther studies, various pathways can be activated in
association with distinct wavelengths of UV, especially
PERK-eIF2α signaling. It is known that ER stress signaling
in response to unfolded protein stress (UPR) and based on
diverse degrees of UPR could determine cell fate through
the ER stress pathway. However, PERK can phosphorylate
not only eIF2α but also Nrf2 [11]. Increasing eIF2α phos-
phorylation enhanced ATF4 expression and ATF4 could also
regulate HO-1 expression, as shown in Figure 2. Zong et al.
found that 60Coγ radiation induces ATF4 mRNA and pro-
tein expression in a dose- and time-dependent manner in
AHH1 lymphoblast cells. Following 60Coγ radiation, ATF4
expression was increased in murine spleen cells, endothelial
cells, and liver LO2 cells [125]. ATF4 is sensitive to ionizing
radiation, which further confirms that HO-1 in response to
diverse radiation modes may be related to ATF4 as an
inducer. Therefore, we hypothesized that there may be a
cross-talk relation between ATF4 and Nrf2 signaling through
phosphorylation cascades (Figure 2). The phosphorylation
status probably demonstrates the dose equivalent of radia-
tion and also provides a new way to explore the principles
of biological processes in response to different wavelength
radiation modes.

4.5. Bioinformatics Analyzation of the HO-1 5′UTR Region.
In order to further illustrate the mechanism of HO-1 regula-
tory relation, MatInspector was performed to predict the 5′
-flanking region and some cis-regulatory elements (CREs)
that were detected in the HO-1 5′-untranslated region.
Although there are still some diverse mutations that exist
on the different types of the human HO-1 promoter region,
it is sufficient information to illustrate the potential regula-
tory relationship. Table 1 shows the AARE binding factors
that were found. An ATF4 binding site means that either
ATF4 or a heterodimer of CEBP epsilon and ATF4 could
regulate HO-1 expression. Activator protein 1 could be
induced in response to stimuli that have been reported.
Estrogen-related receptor alpha binding site showed that
estrogen could affect HO-1 and HO-1 expression suggesting
that HO-1 levels may be different in male vs. female
organisms. In addition, a binding site for the leucine zipper
protein NF-E2 was predicted. A binding site for the C/EBP
homologous protein (CHOP) could mean that HO-1 may
be involved in the apoptosis process. Heat shock factor 1
showed that heat temperature difference may affect HO-1
expression. The hypoxia-inducible factor, bHLH/PAS pro-
tein family, is related to oxygen deficit. Nuclear factor kappa
B (p50, p65) may be involved in inflammatory response.
Signal transducer and activator of transcriptions 1, 3, 5, and
6 were likely related to signal transmission and proliferation.
Besides, there are still some attractive binding sites that were
found by predication, such as autoimmune regulatory
element binding factor, nuclear factor Y binding factor,
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calcium-response factor, tumor suppressor p53, and tumor
protein p63, which require further investigations to demon-
strate that these factors are relevant for HO-1 regulation.

5. The Effects of HO Transcripts and
Truncated HO-1

5.1. Transcripts of HO. As opposed to HO-1, HO-2 pos-
sesses some transcripts [15, 126]. Depending on different
cell types, tissues, organs, and species, it generates various
transcripts that have distinct functions. Different sizes of
HO-2 transcripts have been identified; most of them are
associated with tissue- and development-specific regulation
[14]. However, in other species, HO-1 and HO-2 exert a
similar mechanism. Various HO-2 transcripts can be
generated by alternative splicing, alternative usage of
polyadenylation sites, stage-specific exon utilization, or
transcriptional site initiation [127]. The promoter region is
important for the transcript formation [128, 129]. There also
exists evidence that genetic variations of HMOX1 impact on
the physiological function [14], especially for the single
nucleotide polymorphism (SNP) and a microsatellite GT-
dinucleotide repeat in the promoter region that is related to
incidence and progression of disease [6, 130]. These
polymorphisms may be a potential component of the patho-
genesis through HMOX-1 transcription or translation
regulation. The length of the polymorphism is also associated
with susceptibility to many diseases such as cardiovascular
disease, peripheral artery diseases, lung adenocarcinoma,
and Parkinson’s disease [131–136]. Moreover, common
polymorphisms usually can affect alternative splicing [137].
A recent report by Bian et al. identified an alternative splice
isoform of 14 kDa HO-1, which may be involved in tumor
growth and telomere modulation [17]. The alternative splice
isoform of HO-1 has been found, which helps to clarify its
potential function in diseases and provides some meaningful
data.

5.2. Truncated HO-1. In mouse 3T3 cells, a 28 kDa HO-1
band was induced under hypoxic exposure; the 28 kDa HO-
1 was primarily localized to the nucleus and known as
nuclear proteins. This isoform of HO-1 missing 52 amino
acids from the C terminus was found to be enzymatically
inactive [16]. Hori et al. showed that an enzymatically
inactive form of HO-1 was also able to protect against oxida-
tion damage; it can bind to heme but cannot degrade it into
biliverdin [138]. In addition, Kassovska-Bratinova et al. used
mass spectroscopy to identify a 27 kDa nuclear form of HO-1
that lacks the C terminus [139].

The truncation of the C terminus of human HO-1 by
23 amino acids maintains enzyme activity, but further
truncation by 56-68 amino acids reduces HO activity
[140]. The C-terminal truncation of HO-1 does not alter
the heme catalytic pocket [16]. Meanwhile, the truncated
HO-1 modulates stabilization and nuclear accumulation of
Nrf2, so the truncated HO-1 protein may play a role in
cellular signaling through migration to the nucleus or affect
nuclear transcription [141].

There are several examples of cytoplasmic enzymes
serving functions in the nucleus; we are also interested in
the procession of HO-1 translocation to the nucleus. In gen-
eral, nuclear localization sequences (NLS) are essential for
the majority of proteins that migrate to the nucleus. So far,
no NLS has been identified in HO-1; however, HO-1 has a
nuclear export sequence (NES). The oxidative modification
can modify the function of an NES [142]. In most instances,
CRM1 binds with RanGTP to form a complex to allow the
nuclear pore through to the cytoplasm [143].

HO-1 may bind to the CRM1 complex for nuclear import
rather than for nuclear export [144]. This suggests that
CRM1 may shuttle across the nuclear pore and that
truncated HO-1 may participate in intercellular signaling
[16, 20]. According to the HO transcripts and truncated
HO-1, we found that the HO system may play a vital role
in cellular homeostasis, which transforms into different
transcriptional profiles and performs diverse functions.

6. Conclusion

HO proteins are vital rate-limiting enzymes, which
participate in heme catabolism and protect against cellular
oxidative stress. HO-1 can be induced by UV irradiation
[145], and UV regulates several pathways involving
phosphorylation of eIF2α, phosphatidylinositol- (PI-) 3
kinase, mitogen-activated protein kinases (MAPKs), ATM,
and ATR [13, 146–148]. A complex signaling network
betweenHO-1 andUV irradiation has recently been revealed,
including Nrf2-HO-1 signaling, eIF2α-ATF4-HO-1 signaling
and Bach1/HO-1. The phosphorylation of eIF2α could induce
HO-1 expression. Moreover, Nrf2/Keap1-HO-1 signaling is
another crucial antioxidative signaling pathway that is
activated in response to UV exposure. PERK not only phos-
phorylated Nrf2 but also phosphorylated eIF2α, suggesting
that there may exist a relation between Nrf2 and ER stress
signaling. Furthermore, We also introduced a new form of
truncated HO-1 which is revealed to be related to tumor
growth and telomere modulation. Associated with immuno-
modulation and antioxidation, HO-1 plays a crucial role in
pathology. Taken together, this review describes the character
of theHOenzyme system, and its relationship toUV is helpful
for revealing the HO-related signaling networks and the
pathogenesis of many diseases, which also might provide
new insights into potential therapeutic applications, i.e., by
manipulating potential genetic targets.
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