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Abstract: The influence of background ultrasonic field on the ultimate dynamic strength of adhesive
joints is studied using fracture mechanics analysis. Winkler foundation-type models are applied to
describe the cohesion zone, and the incubation time fracture criterion is used. The challenging task is
to study whether relatively weak ultrasound is able to decrease the threshold values of the external
impact load depending on a joint model, such as an “elastic membrane” or “beam” approximation,
and various boundary conditions at the ends. The specific task was to investigate the case of short
pulse loading through application of time-dependent fracture criterion instead of the conventional
principle of critical stress. Three different load cases, namely, step constant force, dynamic pulse,
and their combination with ultrasonic vibrations, were also studied. The analytical solution to the
problem demonstrates that background vibrations at certain frequencies can significantly decrease
threshold values of fracture impact load. Specific calculations indicate that even a weak background
sonic field is enough to cause a significant reduction in the threshold amplitude of a dynamic short
pulse load. Additionally, non-monotonic dependency of threshold amplitude on pulse duration for
weak background field was observed, which demonstrates the existence of optimal regimes of impact
energy input. Moreover, this phenomenon does not depend on the way in which the beam edges
mount, whether they are clamped or hinged, and it could be applied for micro-electro-mechanical
switch design processes as an additional tool to control operational regimes.

Keywords: dynamic impact; background ultrasonic field; adhesive joint strength; incubation time
criterion; fracture dynamics

1. Introduction

Mechanical adhesion models are extensively studied in various mechanical systems
with the aim of estimating the strength of a joint. There have been many attempts at devel-
oping a mechanical model simulating the gecko’s unique ability to control the cohesive
strength of its toes [1–4]. The frictional adhesion model was suggested to explain the very
low detachment forces observed [5], and an artificial material with gecko-like adhesive
properties was designed [6]. The gecko’s unique ability to move its feet quickly means
that it is able to control adhesion force. One of the possible explanations for this could
be the presence of a temporary vibrational background field that is somehow initiated by
the gecko. This phenomenon was experimentally studied in [7], and it was demonstrated
that the value of pull-off force depends on background vibration parameters. This result
emphasizes the importance of this paper’s task to study the influence of an ultrasonic field
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on the strength of adhesive zones. Another important application of adhesive models is in
microelectromechanical systems (MEMS), where stiction is an essential part of a joint mech-
anism. The basic operating principle of a typical nanoelectromechanical switch consists
of deflecting an active element into physical contact with an electrode using electrostatic
forces [8,9]. A closed switch contains an adhesive joint in which electrostatic force and
van der Waals forces maintain contact against elastic residual stress. As the circuit voltage
lowers, the electrostatic force decreases, and residual stress is able to produce an interfacial
failure in the volatile switch mode. The non-volatile mode corresponds to cases in which
the adhesive force exceeds that of the return elastic stress and the circuit stays closed with
zero voltage and no current. Conventional means to avoid the non-volatile mode utilize
either a distance increase between the active element and the electrode or a change in the
adhesion surface properties of the electrode. Common methods to modify adhesion prop-
erties include surface coatings of different materials and making dimples on the electrode.
The main disadvantage of surface coating is a growth in pull-in voltage level and break-
down current that can lead to the ablation of the active element or the electrode. Moreover,
there is an increase in the beam bending amplitude with a subsequent intensification of
the fatigue fracture process. Furthermore, dimples can produce an unstable contact which
requires additional technological operations to make the switch.

Methods to achieve a volatile mode of switch mentioned thus far rely on an alteration
of physical or dimensional parameters of the system. A further aim of the present study is to
investigate another possible mechanical technique for switch-mode control. A vibrational
background field with relatively weak intensity may be an effective tool for altering MEMS
adhesion properties. Previous studies have shown the significant influence of ultrasonic
vibration on a phase state of condensed matter [10,11] or energy consumption in ultrasonic-
assisted machining processes [12,13]. In some cases, additional vibration that is negligible
in comparison to the main process forces may also reduce their values. It was shown that
this phenomenon was related not only to resonance but also to the change in load type
from quasi-static to dynamic. The influence of background vibrations was demonstrated
when the adhesive joint was considered to be a string on the elastic foundation [14]. For
particular frequencies, oscillations of the background field with an order of amplitude
lower than that of the rupture force magnitude without background vibrations dramatically
decreased this threshold value.

A Winkler foundation is one of the simplest mechanical models of the adhesion
zone [15], and it was chosen as the base tool for analysis in the present research. This ap-
proach remains popular despite the fact that it was suggested one and a half centuries ago.
There are now many extended Winkler models in which various rheological measurements
of the beam foundation are considered [16–18]. Beam bending under interaction of Win-
kler’s elastic foundation has even been implemented into the finite element method [19],
and the numerical simulation is also a common way to study dynamic problems of ad-
hesive strength analytically. It enables investigation of complicated tasks, such as the
evaluation of the compressive strength of composite laminates under transverse [20] or
longitudinal [21,22] dynamic impacts. It should be noted that, generally, numerical meth-
ods are not able to predict new phenomena since they provide results for certain values of
initial parameters and do not indicate their influence on the final result. Thus, the simplest
one-dimensional model of a beam and the two-dimensional model of a membrane on the
elastic foundation are analyzed in the present study. The influence of all possible boundary
conditions, including hinged, clamped, and free ends, on the strength of adhesive joints is
also considered. Analytical solutions of the stated problems provide the temporal depen-
dence of an upper layer deflection for the chosen point. In the analysis, a peeling load is
applied to the center point of the beam/membrane. It is assumed that the adhesion joint
fracture occurs when the elastic link of the loading point breaks, which is governed by the
incubation time-critical condition [23].

This article has the following structure: Section 2 describes incubation time criterion
concepts in relation to the delamination problem. Sections 3 and 4 are devoted to the
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analytical solution to the problem in membrane and beam approximations of the adhesive
zone. Results and discussions are covered in Section 5, and Section 6 describes some of
our conclusions.

2. Delamination Criterion

The incubation time fracture criterion was also used as the delamination condition
for the link. The application of this criterion is stipulated by its ability to predict the point
of fracture in a wide range of strain rates and pulses over various time profiles [23]. The
criterion is normally written in terms of stresses, whereas, here, the governing differential
equations (GDEs) of the problem were formulated in terms of displacements. Therefore,
the assumption about the elastic behavior of the link must be considered because it allows
the criterion to be re-written using the displacement function [14]:

max
t∈[0,tc ]

1
τ

t∫
t−τ

u(η)dη ≤ uc, (1)

where u(t) is the temporal dependence of a link point displacement, uc is a limiting elonga-
tion of the link under quasistatic loading, τ is the fracture incubation time characterizing
link dynamic strength and considered to be a material property, and tc is the upper border
of the considered time period. It also corresponds to the conventional criterion of critical
stress/elongation in the case of slow static loading. If there is only one moment of time
t ∈ [0, tc] turning the criterion to equality, then a threshold load fracture scenario is real-
ized. Thus, all the threshold amplitudes of external loads are calculated according to the
incubation time approach, which is known to be an effective tool to predict the threshold
characteristics of fracture in both homogenous and non-homogenous materials [24–26].
It should also be noted that the incubation time criterion was successfully applied to the
similar problem of dynamic fracture propagation in a discrete chain, and it explained the
influence of a fracture criterion on admissible regimes [27].

3. Membrane Approximation

This section includes the simulation of the adhesive zone as a circular membrane on
an elastic base. In line with the assumption outlined above, the membrane resists only to
tensile forces and not to bending or torsion. A schematic diagram of the system under
consideration is shown on Figure 1. Accordingly, the GDE to describe the system behavior
is as follows:

∂2u
∂x2 −

1
c2

∂2u
∂t2 −

ω2

c2 u = − f (x, t), (2)

where x = (x1, x2), u(x, t) is the displacement of the membrane from the initial zero
position (m), c is the wave velocity

(m
s
)
, ω is the characteristic of the elastic foundation

of rigidity (s−1), f (x, t) is the external peel force (m−1), and R is the radius of the circular
membrane (m). The term ω2/c2u describes the effect of the elastic base on the membrane.
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Polar coordinates are more convenient for the analysis due to the axial symmetry
of the problem. The introduction of radial coordinate r leads to the following form of
the GDE:

∂2u
∂r2 + 1

r
∂u
∂r −

1
c2

∂2u
∂t2 − ω2

c2 u = − f (r, t),
r ∈ (0, R), t > 0 .

(3)

The following boundary and initial conditions correspond to rigid fixation of the membrane
edges and its initial zero position:

u(r, 0) = ∂u
∂t (r, 0) = 0

u(R, t) = 0.
(4)

The dimensionless variables give a new form of the GDE that is more suitable for numeri-
cal analysis:

r′ =
r
R

, t′ =
t
τ

, ω′ = τ ×ω, c′ =
τ

R
× c, (5)

where τ is the incubation time of the fracture. In the following analysis, the primes in the
notations are omitted for convenience. Thus, the original problem (3) and (4) gains the
following dimensionless form of the GDE and initial and boundary conditions:

∂2u
∂r2 +

1
r

∂u
∂r
− 1

c2
∂2u
∂t2 −

ω2

c2 u = −R2 × f (r, t), (6)

u(r, 0) = ∂u
∂t (r, 0) = 0,

u(R, t) = 0.
(7)

The solution to problem (6) and (7) is shown in Appendices A.1 and A.2 and can be written
as follows:

u(r, t) = 2c2

R2 ×
n
∑

k=1

J0

(
α0k×r

R

)
Ωk×(J′0(α0m))

2

∫ t
0 (
∫ R

0 f (ε, η)× ε × J0
( αom×ε

R
)
dε)

× sin(Ωk(t− η))dη.
(8)

Below, three different scenarios of load on the membrane of a Winkler foundation were
analyzed. They include cases of constant load and pulse load applied to the membrane
center, with the addition of an external background high-frequency field. The rupture
of the central link is assumed to be a fracture of an adhesive joint. The incubation time
criterion is applied so as to identify the threshold load parameters necessary to cause link
fracture in order to explore the dependence of the threshold values on the frequency of
background vibration. It is suggested that the threshold load amplitude is the minimum of
those sufficient to elicit the joint fracture.

3.1. Constant Load

The first case of loading considered is the combination of a concentrated constant
force P combined with the background vibration field:

f (r, t) = P
(

H(t)
δ(r)

R2 × r
+ γ× sin(νt)

)
, (9)

where δ(r) is the Dirac delta function, H(t) is the Heaviside function, γ is a relative intensity
of the background vibration field, and ν is a frequency. Thus, the substitution of this load
function (9) into the form of the general solution (8) gives the temporal dependence of
membrane deviation at the central point:

u(0, t) = 2Pc2

R2 ×
n
∑

k=1

1
Ωk×(J′0(α0m))

2 ×
[

1−cos(Ωk×t)
R2×Ωk

+ γ×R2×J1(α0k)×w(Ωk ,ν,t)
α0k

]
,

(10)
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where J1 is the Bessel function of the first order, and w(Ωk, ν) is calculated as follows:

w(Ω, ν, t) =

{
Ω· sin(t×ν)−ν× sin(Ω×t)

Ω2−ν2 , ν 6= Ω
sin( ν×t)

ν − t× cos(ν× t), ν = Ω.
(11)

3.2. Pulse Load

Another type of loading is the external pulse load, which can be represented as a con-
centrated force applied with limited duration T combined with a continuous background
vibration field:

f (r, t) = P
(
(H(t)− H(t− T))

δ(r)
R2 × r

+ γ× sin(νt)
)

. (12)

The substitution of expression (12) into (8) allows one to obtain the solution to problems (6)
and (7) for this case:

u(0, t) = 2Pc2

R2 ×
n
∑

k=1

1
Ωk×(J′0(α0m))

2

×
[

1−cos(Ωk×t)−1−cos(Ωk×(t−T))
R2×Ωk

+ γ×R2×J1(α0k)×w(Ωk ,ν,t)
α0k

]
.

(13)

4. Beam Approximation

Similar analysis is performed to model the adhesion zone based on beam approxima-
tion, which takes into account the bending rigidity of the structure. This model is based on
a Euler–Bernoulli beam on an elastic foundation under dynamic loading. The axis Ox is
directed along the axis of the beam, the axis Oz is normal to the adhesive zone, and w(x, t)
is vertical deflection of the beam along Oz at point x and at time t. A schematic diagram of
beam and coordinate system are shown in Figure 2. Tensile forces can be ignored because
their influence on the system is significantly less than that of bending forces. In this case,
the adhesion zone is described by a fourth-order partial differential equation [9]:

EI
∂4w
∂x4 + kw = P(x, t)− ρS

∂2w
∂t2 , x ∈ (0, l), t > 0, (14)

where E (Pa) is the Young’s modulus, I
(
m4) is the moment of inertia, ρ (kg/m3) is the

density, S is the cross-sectional area, k (Pa) is the modulus elastic foundation, P(x, t) (N/m)
is the distributed external force, and l (m) is the beam length. The coordinate transformation
and new notations are

x′ =
x
l

, t′ =
t
τ

, w′ =
w
l

, c2 =
τ2

l4
EI
ρS

, ω2 = τ2 k
ρS

, f (x, t) = l3 P(x, t)
EI

, (15)

where τ is the incubation time. The equation takes the following dimensionless form
(omitting the primes):

∂4w
∂x4 +

1
c2

∂2w
∂t2 +

ω2

c2 w = f (x, t), x ∈ (0, 1), t > 0, (16)

where c is a parameter corresponding to the wave propagation velocity, andω characterizes
the rigidity of the elastic foundation. Initial conditions corresponding to the balance
position are as follows:

w(x, 0) =
∂w
∂t

(x, 0) = 0. (17)
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Boundary conditions of three types are considered:

• Hinged ends of the beam:

w(0, t) = w(l, t) = 0,
∂2w
∂x2 (0, t) =

∂2w
∂x2 (l, t) = 0, (18)

• Clamped ends of the beam:

w(0, t) = w(l, t) = 0,
∂w
∂x

(0, t) =
∂w
∂x

(l, t) = 0, (19)

• Beam with free ends:

∂2w
∂x2 (0, t) =

∂2w
∂x2 (l, t) = 0,

∂3w
∂x3 (0, t) =

∂3w
∂x3 (l, t) = 0. (20)

The solution can be obtained in a similar way to that shown above (Appendix A.3):

w(x, t) = c2
n

∑
k=1

Uk(x)
Ωk||Uk||2

∫ t

0

(∫ l

0
f (ξ, η)Uk(ξ)dξ))

)
sin(Ωk(t− η))dη. (21)

4.1. Constant Load

The first case is a constant force load in the center of the adhesive zone under action
of the external vibration field to be an external load:

f (x, t) = P
(

H(t)δ
(

x− l
2

)
+ rsin(νt)

)
. (22)

For this type of loading, the solution is:

w
(

l
2

, t
)
= Pc2

n

∑
k=1

[Ak(1− cos(Ωkt)) + rBkg(ν, Ωk, t)], (23)

where Ak =
(

Uk(l/2)
Ωk ||Uk ||

)2
, Bk =

Uk(x)
Ωk||Uk||2

∫ l
0 Uk(ξ)dξ,

g(ν, Ω, t) =

{ 1
ν2−Ω2 (ν sin(Ωt)−Ω sin(νt)), ν 6= Ω
1
2

(
1
ν sin(νt)− t cos(νt)

)
, ν = Ω

(24)

4.2. Pulse Load

In the second instance, another type of external load corresponding to the pulses of
finite duration is also considered:

f (x, t) = P
(
(H(t)− H(t− t0))δ

(
x− l

2

)
+ rsin(νt)

)
, (25)
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where t0 is pulse duration. For this type of loading, the solution is

w
(

l
2 , t
)
= Pc2

n
∑

k=1
{Ak[(1− cos(Ωkt))H(t)− (1− cos(Ωk(t− t0)))H(t− t0)]

+rBkg(ν, Ωk, t)}.
(26)

5. Results and Discussion

Analysis demonstrates the behavior of the limit load in dependence on various addi-
tional vibrations. For the beam approximation, Figure 3 shows the plot of the threshold
values of constant load P versus the background field frequency ν at various relative inten-
sities γ. It is clear that there are certain values of frequency of background vibrational fields
that drastically decrease the threshold amplitudes of the load required for beam delamina-
tion. Consequently, an external field of relatively weak amplitude can have a significant
effect on the characteristics of a plane adhesive layer fracture. Similar results with the same
critical frequency were observed for membrane approximation (Figure 3d). However, a
decrease in strength is not observed for all boundary conditions. In the case of free-ended
beams (Figure 3c), the delamination process is not affected by the vibrational field.
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Figure 3. Dependence of load threshold amplitude on the background field frequency for (a) hinged beam, (b) clamped
beam, (c) free-ended beam, and (d) membrane.

Figure 4 shows the dependence of the critical amplitude P on its duration T at a certain
frequency of the background field ν = Ω1+Ω2

2 for the cases of the pulse load of the beam
or the membrane. These plots demonstrate the decrease in the threshold amplitude with
the growth of the load pulse duration, and it is almost independent of duration greater
than T > 0, 1. This phenomenon is typical for transition to the static branch of the temporal
dependencies of strength in various problems of dynamic fracture [28–30].
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The plots in Figure 5 show the threshold amplitude of fracture pulse load dependency
on the frequency ν for different values of relative intensity of the external background field
γ. The first graph is plotted for a pulse duration T1 = τ

3 , τ = 0, 2 and the second one for
T2 = 3τ, and, therefore, T2 > T1.
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the membrane (Figure 5e,f) and as the beam approximation (Figure 5a–d), as has been 

Figure 5. Dependence of pulse load critical amplitude on the frequency of the external background field with the pulse
duration Ti for (a) hinged beam, T1 = τ

3 (b) hinged beam, T2 = 3τ, (c) clamped beam, T1 = τ
3 (d) membrane, T2 = 3τ,

(e) membrane, T1 = τ
3 , and (f) clamped beam, T2 = 3τ.

These graphs show the existence of certain frequencies of the background field as
in the membrane (Figure 5e,f) and as the beam approximation (Figure 5a–d), as has been
shown above for the constant force loading. The same phenomenon of a significant decrease
in the threshold amplitude is also observed, and the same influence of the external field for
even weak intensity on critical load characteristics can be identified. It should be noted
that only the hinged beam case has specific peculiarities, as demonstrated in Figure 5a,b.
The influence of background field on the threshold amplitude of short pulse load does
not completely depend on the value of γ (Figure 5a), whereas vibrations with relative
magnitude γ = 0.5 provide higher reduction in the critical amplitude of long pulses than
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those with γ = 0.1 (Figure 5b). This implies that the relative energy consumption for short
pulses is also less than that for long pulses since there is almost no difference in effect of
weak γ = 0.1 and moderate γ = 0.5 background fields. A similar tendency emerges in
the membrane approximation case. Figure 5e demonstrates that the effect of weak γ = 0.1
background field is more obvious for short load pulses than for long pulses (Figure 5f).

This also indicates that a weak background sonic field that does not demand a large
energy input is enough for a significant reduction in the threshold amplitude of a dynamic
short pulse load. In order to study this phenomenon, the dependence of absolute critical
amplitude of the load pulse on its duration for hinged and clamped beams is considered.
A slightly different constant frequency of background vibrations is chosen from the main
spectral value ν = 1.05Ω1 (Figure 6).
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The most remarkable dependency is obtained for γ = 0.1 since it demonstrates the
existence of local minimum points alternating with constant phases. The global form of this
dependency looks similar to that of the non-vibrational case, as the threshold amplitude
becomes infinite for very short pulses and the average level of plain phases tends towards
the critical value of the constant load at infinity. However, the moderate background
vibrations γ = 0.5 provide the main influence on fracture onset and apparently stop being
“background”, because the threshold amplitude of short pulses does not increase and is still
bounded when the pulse duration decays to zero. It can finally be concluded that the non-
monotonic dependency of threshold amplitude on pulse duration for weak background
field γ = 0.1 is not trivial, and this indicates the existence of optimal regimes of impact
energy input, a finding that will be the focus of our next study.

6. Conclusions

A number of problems of adhesive joint dynamic impact fracture in the presence
of a background ultrasonic field using the Winkler approximation for the beam (mem-
brane) on the elastic foundation were studied. Various types of boundary conditions were
considered—clamped, hinged, and free ends. Threshold amplitudes of varying external
load pulses dependent on ultrasonic frequency were first found in accordance with the
nonlocal incubation time criterion. This enabled us to demonstrate that the threshold
values of the primary pulsed load amplitude could be considerably decreased at certain
frequency values of the background field. Particular calculations indicate that even a weak
background sonic field is enough for a significant reduction in threshold amplitude of
dynamic short pulse load. This phenomenon does not qualitatively depend on boundary
conditions and bending stiffness parameters, which, on the whole, do not alter its existence.
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The phenomenon can be utilized in MEMS applications, with the background vibrational
field as a factor controlling volatile regimes of nano-electromechanical switches.
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Appendix A

Appendix A.1. Solution to the Problem Using the Fourier Method

∂2u
∂r2 +

1
r

∂u
∂r
− 1

c2
∂2u
∂t2 −

ω2

c2 u = −R2 × f (r, t), (A1)

u(r, 0) = ∂u
∂t (r, 0) = 0

u(R, t) = 0.
(A2)

Problems (A1) and (A2) can be solved using the Fourier method, in which a solution
is looked for in the form of a series [31]:

u(r, t) =
n

∑
k=1

fk(r)gk(t). (A3)

Substitution of the general form of solution (A3) to the problem leads to the auxiliary tasks
of searching for fk(r) and gk(t):{

r2 f ′′ + r f ′+ λ2r2 f = 0
f (R) = 0

, (A4)


n
∑

k=1
fk(r)gk(t) = − f (r, t)

gk(0) = 0
g′k(0) = 0.

(A5)

The equation in problem (A4) is the Bessel equation, and, therefore, the solution is:

fm(r) = J0

(
α0m × r

R

)
, (A6)

where J0 is the zero-order Bessel function and α0m represents the zeroes of the zero
Bessel function.

Substitution (A6) into Equation (A5) lets to obtain the expression for gm(t) [31]:

gm(t) =
1

R2Ωk ×
(

J′0(α0m)
)2

∫ t

0
(
∫ R

0
f (ε, η)× ε × J0

(
αom × ε

R

)
dε)× sin(Ωk(t− η))dη, (A7)
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where Ωk =
√

c2 × λ2
k + ω2, λk = R× αok.

Therefore, the solution to the original problem (A1), (A2) can be obtained by substitut-
ing solutions (A6) and (A7) into Equation (A3):

u(r, t) = 2c2

R2 ×
n
∑

k=1

J0(
α0k ·r

R )
Ωk×(J′0(α0m))

2

∫ t
0 (
∫ R

0 f (ε, η)× ε × J0
( αom×ε

R
)
dε)

× sin(Ωk(t− η))dη.
(A8)

Appendix A.2. Calculation of the Green Function

This section is devoted to the derivation of the fundamental solution to problems
A1 and A2 in order to simplify further analysis. Subsequently, the solution to this initial-
boundary problem for any load can be found by the convolution of the load with a
fundamental solution. The fundamental solution to the initial-boundary value problem is
also called the Green function.

To search for the Green function, it is necessary to substitute the elementary load
f (r, t) = δ(r−r0)

r ·δ(t− t0) into (A8). As a result, one can obtain the fundamental solution to
problems (6) and (7):

G(r, r0, t, t0) =
2c2

R2 ×
n

∑
k=1

J0

(
α0k×r

R

)
Ωk ×

(
J′0(α0m)

)2 × J0

(
αom × r0

R

)
× sin(Ωk(t− t0)). (A9)

Therefore, the solution to the initial-boundary problems (6) and (7) for any load force can
be written as follows:

u(r, t) =
∫ t

0

∫ R

0
r0 × G(r, r0, t, t0)× f (r0, t0) dr0dt0. (A10)

Appendix A.3. Solution for the Beam Model

∂4w
∂x4 +

1
c2

∂2w
∂t2 +

ω2

c2 w = f (x, t), x ∈ (0, 1), t > 0, (A11)

w(x, 0) =
∂w
∂t

(x, 0) = 0. (A12)

The solution can be obtained in a similar way to that applied above:

w(x, t) = c2
n
∑

k=1

Uk(x)
Ωk||Uk||2

∫ t
0

(∫ l
0 f (ξ, η)Uk(ξ)dξ))

)
sin(Ωk(t− η))dη, Ωk

=
√

ω2 + c2λ4
k

(A13)

where ,
∣∣∣∣∣∣Uk

∣∣∣∣∣∣2 =
∫ l

0 (Uk(x))2dx , and Uk and λk represent the solution to spectral problem

U IV − λ4U = 0. Expressions of these auxiliary parameters are provided in the Table A1.

Table A1. Auxiliary parameters for the different types of boundary conditions.

Condition λk Uk

Hinged beam πk/l sin λkx
Clamped beam Roots of ch(λl) cos(λl) = 1 K4(λkx)− K4(λk l)

K3(λk l)K3(λkx)

Free ends Roots of ch(λl) cos(λl) = 1 K2(λkx)− K4(λk l)
K3(λk l)K1(λkx)
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where Ki represents the functions of Krylov:

K1(z) =
(chz+cos z)

2 , K2(z) = (shz + sin z)/2,
K3(z) =

(chz−cos z)
2 , K4(z) = (shz− sin z)/2.

(A14)

Nomenclature

α0m [-] zeros of the zero-order Bessel function
c [ m

s ] wave velocity
γ [-] relative intensity of the background vibration field
δ [-] Dirac delta function
E [Pa] Young’s modulus
f [m−1] external force
G [-] Green’s function
H [-] Heaviside step function
I [m4] area moment of inertia
J0, J1 [-] zero-order and first-order Bessel function
k [Pa] modulus elastic foundation
Ki [-] Krylov’s functions
l [m] beam length
ν [s−1] frequency of the background vibration field
P [-] concentrated constant force
P̃ [-] relative critical force
R [m] radius of the circular membrane
S [m2] cross-sectional area
ρ [kg/m3] density
t0 [s] pulse duration
tc [s] upper border of the considered time period
τ [s] incubation time
u [m] displacement
uc [m] displacement limit under quasistatic loading
w [m] vertical deflection of the beam
ω [s−1] characteristic of the elastic foundation rigidity
Ω(k) [s−1] critical frequencies
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