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A B S T R A C T   

Osteoporosis (OP)-associated fractures can result in severe morbidity and disability, reduced quality of life, and 
death. Previous studies have suggested that small noncoding RNAs, for example, small regulatory microRNAs 
(miRNAs), play a key role in OP by inhibiting target gene expression. Cuproptosis, a recently proposed copper- 
induced cell death pathway, is linked with OP. Here, we describe the contribution of exosomal miRNAs and 
cuproptosis to OP. First, we highlight the characteristics of exosomes and roles of exosome-related miRNAs. Next, 
we discuss the relationship between cuproptosis and OP. Subsequently, we analyze the crosstalk of exosomal 
miRNAs with cuproptosis in the development of OP. This review aims to investigate a new clinical treatment 
method for OP.   

1. Introduction 

Osteoporosis (OP), a bone-weakening disorder, leads to low bone 
density that increases fracture risk. OP is related to the aging process as 
the incidence of musculoskeletal tissue degeneration increases during 
aging. In recent years, OP has emerged as a critical health concern in the 
general population, with a progressive increase in its incidence in the 
elderly population. Moreover, treatment costs for OP have also rapidly 
increased worldwide [1,2]. OP-related fractures can result in critical 
disability, reduced quality of life, and death in severe cases. The mor-
tality rate of patients with a hip fracture is 20–30% within 1 year [3]. 
Although recent studies have successfully investigated the biology of OP 
in great details, the mechanisms underlying OP remain unclear [4,5]. 

Cuproptosis, a recently identified cell death regulatory pathway, is 
induced by an excessive amount of Cu2+. This cell death pathway differs 
from other such pathways, including ferroptosis, apoptosis, and necro-
sis. In this pathway, protein toxicity stress and the subsequent cell death 
are induced through (1) targeting and binding of intracellular Cu to lipid 
acylated components in the tricarboxylic acid (TCA) cycle, (2) aggre-
gation of lipid acylated mitochondrial proteins bound to Cu, and (3) 
reduction of Fe–S (iron sulfur) clusters [6]. According to recent research, 
excessive cuproptosis is linked with various diseases, for example, tu-
mors, cardiovascular diseases, rheumatoid arthritis, Wilson’s disease, 
obesity, Menkes’ disease, and neurodegenerative diseases [7]. 

Moreover, a recent study indicated that cuproptosis is associated with 
OP occurrence and development [8]. 

Exosomal microRNAs (miRNAs), as another hot research topic, have 
challenged the conventional views of intercellular communications. 
Compared to traditional cell-mediated transfer of bioactive substances 
or direct cell-to-cell communication, a third mechanism for intercellular 
communication has emerged in the last two decades [9]. 

Therefore, in the present review, we discuss the mechanisms of 
extracellular vesicles (EVs) and miRNAs and their physiological inter-
action with cuproptosis in the occurrence of OP as well as their potential 
clinical applications. 

2. Sorting of miRNAs into EVs and releasing to the cellular 
environment 

Overexpression or knockdown of a single miRNA can markedly alter 
cell phenotype; thus, this approach has strong therapeutic potential for 
diseases [10,11]. The interaction between mRNA and miRNA indicates 
that a single miRNA can typically bind up to more than 100 different 
mRNA species, and the 3ʹ-UTR region of most mRNAs contains multiple 
miRNA binding sites. In other words, an miRNA cluster can target a 
single gene; conversely, one miRNA can regulate several genes. 

miRNAs not only play a vital role intracellularly, but they also 
perform different functions extracellularly and circulate in the blood 
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stream. Circulating miRNAs interact with RNA-binding proteins (RBPs), 
for example, nucleophosmin (NPM) or proteins of the Argonaute (Ago) 
family [12]; these miRNAs are encapsulated within EVs or within 
high-density lipoprotein (HDL)-formed vesicles [13]. However, there is 
no clear evidence to suggest that microvesicle-free, NPM- or 
AGO-related miRNAs are actively released from cells; it also remains to 
be established whether they are absorbed by recipient cells [14]. 

Vesicular encapsulation or miRNA-protein association contributes to 
the enhanced stability of miRNAs in biological fluids [15]. Most miRNAs 
derived from plasma can bind to proteins [12]; however, EVs provide 
unappreciated carrier effects that assist transfers of their miRNAs to 
targeted cells (Fig. 1). 

3. miRNAs related to the processes of bone modeling 

3.1. miRNAs involved in reducing bone formation 

Runt-related transcription factor 2 (RUNX2) and the SP7 transcrip-
tion factor (OSTERIX) of osteoblasts are required to enable mesen-
chymal stem cell (MSC) differentiation into osteoblasts as well as for 
functional osteoblast formation. Osteoblast differentiation and matura-
tion involve various signaling pathways such as PI3K/Akt, WNT, and 
BMP. Although many miRNAs quickly activate the osteogenic differen-
tiation signaling pathway of BMSCs and efficiently induce their osteo-
genesis, recent research has confirmed that miRNAs also inhibit the 
osteogenic differentiation of BMSCs by targeting genes. For example, 

miR-185 downregulates the Wnt/β-catenin axis by targeting the PTH 
gene to inhibit osteoblast proliferation and growth during fracture 
healing [16]. miR-370 reduces the expression of BMP-2 and the onco-
gene homolog 1 (Ets1) protein of erythroblastic disease virus E26. The 
Ets1 protein is a key transcription factor that drives tissue destructive 
fibroblast polarization and shows a high expression in the proliferation 
phase of BMP2-stimulated MC3T3-E1 cells [17]. miR-34a inhibits 
glucose metabolism, osteogenic differentiation, and in vivo bone for-
mation in human MSCs by activating the ligand (Jagged1) intracellular 
domain of Notch1 [18]. The transcription factor osterix contains zinc 
fingers, and it shows specific expression in developing bones. Its lack of 
specificity leads to the loss of bone formation ability in mice. miR-96 
shows a high expression in the serum of osteoporotic elderly patients 
and in BMSCs from elderly and mouse sources. miR-96 directly targets 
the coding region (CDS region) of osterix to reduce the osteogenic dif-
ferentiation of BMSCs [19]. 

3.2. miRNAs involved in enhancing bone resorption 

miRNAs are critically involved in osteoclastogenesis regulation. 
miRNAs have been reported to exert the following effects in osteogenic 
differentiation. miR-182 is an important component that positively 
regulates osteoclast differentiation in pathological conditions such as OP 
or bone degeneration or in physiological bone metabolism. For example, 
miR-182 regulates the IFN-β signaling pathway through the targeting of 
protein kinase double-stranded RNA-dependent (PKR), thereby 

Fig. 1. Sorting of miRNAs into EVs and their release into the cellular environment.  
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regulating the pathological activation of osteoclasts [20]. miR-148a was 
found to enhance osteoclast differentiation and function; it negatively 
regulates RANKL-induced osteoclastogenesis by suppressing the nuclear 
factor of activated T cells cytoplasmic 1 (NFATc1) and other 
osteoclast-promoting factors [21]. miR-21, a pro-osteoclastic micro-
RNA, can directly target and suppress the programmed cell death 4 
(PDCD4) protein expression despite RANKL existence [22,23]. miR-29 
comprises miR-29a, miR-29b, and miR-29c; it is a positive osteoclast 
differentiation regulator. miR-29 expression is increased in vitro during 
RANKL-induced osteoclast differentiation in both murine BMMs and 
RAW 264.7 mouse monocytes. Nuclear factor I/A (Nfia), a target of 
miR-29, inhibits monocyte differentiation into both macrophage and 
osteoclast cell lineages [24] (Fig. 1). 

3.3. miRNAs involved in both bone formation reduction and bone 
resorption enhancement 

miR-214 suppresses bone formation and regulates osteoblast activity 
as well as osteoclast differentiation [25]. Osteoblast-targeted miR-214 
overexpression can inhibit collagen I and alkaline phosphatase expres-
sion and matrix mineralization in MC3T3E1 cells by targeting the acti-
vating transcription factor 4 (ATF4), a gene encoding a transcription 
factor critical for osteoblast differentiation [26,27]. miR-214 also pro-
motes osteoclastogenesis in bone marrow monocytes (BMMs) through 
the inhibition of the phosphatase and tensin homolog (PTEN), a crucial 
negative regulator of PI3K, and subsequently activates the PI3K/AKT 
signaling pathway [28] (Table 1). 

4. Cuproptosis and OP 

The molecular characteristics of cuproptosis-related genes can pro-
vide important insights into the bone marrow microenvironment char-
acteristics and the potential mechanism of OP. OP occurs not only 
because of alterations in the bone marrow microenvironment but also 
because of dysregulation of cellular homeostasis. Cells such as osteo-
blasts, BMSCs, osteocytes, osteoclasts, macrophages, chondrocytes, 
endothelial cells, and adipocytes possess metabolic mechanisms related 
to cuproptosis [31]. 

Osteoblasts participate in bone formation and are differentiated from 
BMSCs in vivo. Glutamine is critically involved in the energy metabolism 
of osteoblasts [32]. According to recent studies, the metabolism of 
glutamine regulates lineage allocation and cell proliferation in skeletal 
stem cells [33]. Glutamine shows an association with cuproptosis, and 
its decreased level markedly inhibits cuproptosis. Thus, it might 

influence the energy metabolism of osteoblasts. Glucose is the primary 
nutrient for osteoblasts. A study with advanced total-body PET/CT 
showed significant glucose uptake in skeleton, and this skeletal glucose 
uptake is influenced by dysregulated metabolism and age [34]. Huang 
et al. also demonstrated that aging decreases ERRalpha-directed mito-
chondrial glutaminase expression that suppresses glutamine anaplerosis 
and osteogenic differentiation of MSCs [35]. 

Osteoclasts, derived from hematopoietic stem cells (HSCs), share 
precursors with macrophages and have unique function of bone matrix 
resorption. According to several studies, reactive oxygen species (ROS)- 
induced oxidative stress has a critical involvement in OP. Copper ions 
generate excessive ROS through the Fenton reaction, thereby inducing 
lipid peroxidation and DNA damage [36]. ROS can indirectly affect the 
survival, differentiation, and activation of osteoclasts by stimulating 
bone formation-associated cells to generate macrophage 
colony-stimulating factor (M-CSF), osteoprotegerin, and RANKL; these 
are critical regulatory factors that identify osteoclasts and osteoclast 
precursor cells for conducting bone resorption signals [37]. 

A unique characteristic of OP and the early stage of osteoarthritis 
(OA) is increased subchondral bone loss. As shown in previous studies, 
Runx1 signals chondrocytes to osteoblast lineage commitment and 
augments endochondral bone formation by enhancing the expression of 
genes involved in both chondrogenesis and osteogenesis, thus indicating 
that Runx1 could serve as a therapeutic target to improve endochondral 
bone formation and prevent OP-related fractures [38]. Additionally, 
Stegen et al. demonstrated that SOX9, a crucial chondrogenic tran-
scription factor, induces the metabolism of glutamine. This metabolic 
adaptation is essential to facilitate gene expression, redox homeostasis, 
and protein biosynthesis in chondrocytes [39]. Glutaminase 1 (GLS1), 
an essential cuproptosis-associated gene, also affects chondrocytes by 
promoting redox homeostasis, glutamine metabolism, efferocytosis, and 
antioxidant functions [8]. 

OP is also an inflammatory disease. For example, rheumatoid 
arthritis (RA) or ankylosing spondylitis is characterized by systemic 
bone loss [31]. Recently, the regulation of immunity by nutrients has 
received increasing attention, and related studies have been conducted 
on the effects of high salt, high sugar, etc. Mechanistic target of rapa-
mycin complex 1 (mTORC1), a key cell metabolism regulator, is an 
atypical serine/threonine protein kinase. It coordinates upstream signals 
with downstream effectors, including transcription and translation, for 
regulating basic cellular processes such as protein synthesis, energy 
utilization, cell growth and proliferation, and autophagy. Because the 
mTORC1-dependent pathway is the core pathway of cell growth and 
metabolism, it is associated with several human diseases, including 
cancer, type 2 diabetes, neurodegeneration, obesity, and aging [40]. 
Therefore, effector T cells function through an mTORC1-dependent 
pathway by utilizing glycolytic uptake of glucose and glutamine for 
energy; this might suppress cuproptosis [8]. M1 macrophages are 
glycolytic cells that attenuate cuproptosis by releasing several proin-
flammatory factors that participate in OP development and progression. 

Bone marrow adipocytes discovered in human bone marrow over a 
century ago are a unique group of cells derived from bone marrow 
lipogenic lineage precursor cells and bone marrow mesenchymal pro-
genitor cells. Although these cells have long been considered space 
fillers for the bone marrow cavity, recent research has shown that these 
cells affect other cell populations in the bone marrow, influence sys-
temic metabolism, and inhibit local bone composition by secreting a 
specific set of adipokines [41,42]. Previous research supports a rela-
tionship between bone loss and accumulation of promote adipogenesis 
[43,44]. Because of an imbalance in the population of adipocytes/os-
teoblasts, aging diminishes bone formation by promoting adipogenesis. 
Potentially, the loss of bone mass can lead to OP [45,46]. In the bone 
environment of oxidative stress, aging adipocytes can diffuse the aging 
phenomenon to surrounding bone cells and bones by secreting 
senescence-associated secretory phenotype (SASP) factors, resulting in 
aging cell accumulation in the local environment [47]. A previous study 

Table 1 
miRNAs with critical roles in bone modeling.  

miRNA Target gene/target 
protein 

Ref. 

miRNAs reducing bone formation: 
miR-185 PTH [17] 
miR-370 BMP-2 [29] 
miR-34a JAG1 [18] 
miR-96 Osterix [19]  

miRNAs enhancing bone resorption: 
miR-182 PKR [20] 
miR-148a NFATc1 [30] 
miR-21 PDCD4 PI3K  
miR-29 RANKL Nfia [21]   

[22, 
23] 

miRNAs both reducing bone formation and 
enhancing bone resorption:  

[24] 

miR-214 ATF4 [26, 
27] 

PI3K [28]  
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revealed that senescence is initiated by p53 and p21 (the downstream 
target of p53) through a telomere-dependent pathway [48]. p53, a 
crucial metabolic regulator, is associated with two critical components 
of the cuproptotic pathway: the copper chelator glutathione and 
biogenesis of iron-sulfur clusters. This suggests that p53 has a critical 
role in cuproptosis [49]. 

Several lines of evidence indicate that endothelial cells (ECs) play 
crucial roles in bone regeneration [50]. ECs stimulate osteoblast matu-
ration and activation; however, they suppress the osteogenic differen-
tiation of bone progenitor cells. Copper-catalyzed free radical reaction 
leads to the synthesis of the most active hydroxyl radical, which in-
creases ROS concentration in cells, leading to the oxidation of 
low-density lipoprotein (LDL), damaging the endothelium, and resulting 
in the formation of early atherosclerosis [36]. Atherosclerosis can lead 
to plaque formation or lumen stenosis, destroy the aortic wall, and 
eventually form an aneurysm. Cu transport within the cytoplasm is 
closely coordinated by a finely tuned network of high-affinity Cu mo-
lecular chaperones. Companion antioxidant 1 (ATOX1) mediates copper 
transfer to ATP7A and ATP7B in the trans-Golgi network and promotes 
the production of copper enzymes such as lysine oxidase, tyrosinase, and 
plasma ceruloplasmin. ATP7A is expressed in various cells, and its mu-
tations can lead to genetic disorders in copper metabolism. A decrease in 
the expression of the ATP7A gene increases miR-125b expression and 
augments proinflammatory signal transduction, thereby accelerating 
the formation of aortic aneurysms. This process is positively correlated 
with copper [51]. Ceruloplasmin, also known as copper oxidase, is a 
copper-containing glycoprotein synthesized by the liver and shows ge-
netic polymorphism. Each protein can bind 6 copper atoms; this facili-
tates the metabolism of copper and iron in the body and affects the 
function of vascular endothelial cells through oxidation and nitric oxide 
reduction. The cytokine ceruloplasmin is involved in lipid peroxidation 
and atherosclerosis formation, and it is closely associated with the sta-
bility of the coronary artery plate [52]. Therefore, the inhibition of 
cuproptosis in cells could prevent or treat aneurysms and OP. 

5. Interplay between exosomal miRNAs and cuproptosis in OP 

5.1. Exosomal miRNAs regulate the participation of genes in the 
cuproptosis response 

Cuproptosis is associated with three negative regulatory factors, 
including glutaminase (GLS), cyclin-dependent kinase inhibitor 2A 
(CDKN2A), and metal regulatory transcription factor 1 (MTF1). It is also 
associated with 7 positive regulatory factors, including ferredoxin 1 
(FDX1) and 6 acylated proteins, including either the lipoic acid pathway 
elements (three essential components: lipoacyltransferase 1 (LIPT1), 
lipoic acid synthase (LiAS), and dihydroacylamide dehydrogenase 
(DLD)) or acylated protein targets (dihydroacylamide S-acetyltransfer-
ase (DLAT), pyruvate dehydrogenase E1 subunit α 1 (PDHA1), and the 
E1 subunit of pyruvate dehydrogenase β (PDHB) [6]. 

The exosomal miRNA miR-21-5p, which is obtained from cisplatin- 
resistant SKOV3 ovarian cancer cells, enhances the glycolysis process 
and suppresses chemosensitivity of its progenitor SKOV3 cells through 
PDHA1 targeting [53]. PDHA1 is a cuproptosis-related gene (CRG), and 
it has an essential role in glucose metabolism, the TCA cycle, and 
mitochondrial oxidative phosphorylation [54]. PDHA1 inhibition might 
facilitate the proliferation of osteoblasts, while PDHA1 activation could 
affect macrophages and osteoblasts by inhibiting the release of inflam-
matory factors [8]. 

Exosomal miR-4536-5p from human keloid fibroblasts inhibited the 
expression of PDHB [55]. PDHB may influence osteoclast differentiation 
by interacting with NIMA-associated kinase ten [8]. Exosomal miR-663a 
derived from human umbilical cord mesenchymal stem cells (hucMSCs) 
repairs hypoxia-induced injury of endometrial epithelial cells by regu-
lating CDKN2A [56]. CDKN2A is associated with OP through the P16 
protein, which is mainly involved in cellular senescence [8]. 

MSC-Exo shuttling miR-182 can modify the polarization status of 
macrophages [57]. Two typical subtypes of macrophages are (1) M1 
macrophages that are classically activated and (2) M2 macrophages that 
are alternatively activated. Several lines of evidence indicate that MSCs 
trigger macrophages to switch toward the anti-inflammatory M2 
phenotype. Exosomal miR-182-5p derived from BMSCs minimizes in-
flammatory responses by targeting TLR4 [58]. The modulation of the 
TLR4/NF-κB and MAPK signaling pathway can prevent Cu cardiotox-
icity by decreasing inflammatory response, oxidative injury, and 
apoptosis [59]. 

5.2. Cuproptosis regulates the expression of several exosomal miRNAs 

Aging, inflammation, and oxidative stress upregulate miR-34a 
expression in exosomes derived from muscles, and this miRNA subse-
quently induces cellular senescence in bone stem cells. In C2C12 myo-
blasts, exosomal miR-34a overexpression inhibits the expression of Sirt1 
mRNA and protein [60]. miR-34a is critically involved in regulating 
myocardial physiology as well as pathophysiological processes that 
induce senescence in cardiomyocytes and vascular smooth muscle cells 
and promote cardiac fibrosis [61]. Aging and an increased amount of 
exposure to inflammatory factors and ROS, both of which increase 
cuproptosis, are suggested to contribute to cancer, injury, and inflam-
mation [62]. 

A common chemical reaction in cells is the Fenton reaction that 
generates ROS through metal catalysis. Cu + catalyzes the degradation 
of H2O2 to ⋅OH, OH-, and O2, thereby producing excessive amounts of 
ROS [63]. H2O2 treatment increases miR-183-5p abundance in 
bone-derived exosomes in MSCs. Furthermore, the exosomal miRNA 
miR-183-5p is a significant active contributor in the impairment of MSC 
proliferation and induction of bone stem cell senescence [64]. 

6. Conclusions 

The study of vesicular miRNAs and their interplay with cuproptosis 
provides a novel and intriguing approach to understand the molecular 
mechanisms underlying OP biology. Despite their nano size, EVs func-
tion as crucial communication facilitators between cells. EVs secrete 
various biological molecules, including miRNAs, proteins, and their 
complexes. Together with designing of modified miRNA molecules for 
application in gene therapies and in addition to the potential application 
of EVs, advanced techniques for rapid, reliable, sensitive, and efficient 
OP treatment should be evaluated in future studies [65,66]. 
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