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ABSTRACT

tRNA-derived small RNA fragments (tRFs) are one
class of small non-coding RNAs derived from trans-
fer RNAs (tRNAs). tRFs play important roles in cellu-
lar processes and are involved in multiple cancers.
High-throughput small RNA (sRNA) sequencing ex-
periments can detect all the cellular expressed sR-
NAs, including tRFs. However, distinguishing gen-
uine tRFs from RNA fragments generated by random
degradation remains a major challenge. In this study,
we developed an integrated web-based computing
system, tRF2Cancer, to accurately identify tRFs from
sRNA deep-sequencing data and evaluate their ex-
pression in multiple cancers. The binomial test was
introduced to evaluate whether reads from a small
RNA-seq data set represent tRFs or degraded frag-
ments. A classification method was then used to an-
notate the types of tRFs based on their sites of origin
in pre-tRNA or mature tRNA. We applied the pipeline
to analyze 10 991 data sets from 32 types of can-
cers and identified thousands of expressed tRFs. A
tool called ‘tRFinCancer’ was developed to facilitate
the users to inspect the expression of tRFs across
different types of cancers. Another tool called ‘tRF-
Browser’ shows both the sites of origin and the distri-
bution of chemical modification sites in tRFs on their
source tRNA. The tRF2Cancer web server is available
at http://rna.sysu.edu.cn/tRFfinder/.

INTRODUCTION

tRNA-derived small RNA fragments (tRFs) are one group
of small non-coding RNAs derived from mature or pre-
cursor transfer RNAs (tRNAs) (1,2). tRFs play important
roles in the regulation of gene expression (3-5). Their func-

tions include control of viral replication (6), modulation
of cell viability and proliferation (7), inhibition of protein
translation (8,9) and modulation of cancer progression (10).
Recent studies revealed that parental sperm tRNA frag-
ments may influence the metabolism of offspring (11-13).

The earliest findings on the cleavage of tRNAs were ob-
served in bacteria (14), primitive eukaryotes (15) and al-
most every branch of life (16-22). The fragments are pri-
marily generated by a single cleavage of mature tRNA in or
near the anticodon loop when cells respond to stress con-
ditions and are referred to as tRNA halves. At the early
stage, they were believed to be the products of degradation
and function in the inhibition of translation by depletion
of the tRNA pool. However, subsequent findings revealed
that tRNAs could generate functional small non-coding
RNAs that play important roles in gene expression regula-
tion (1,2,4). These milestone findings revealed that tRNAs
have additional functions beyond participating in protein
synthesis, thus promoting wide interest in the investigation
of tRFs and their functions (1,2,7,8,10,23-41).

tRFs are generated through precise processing of both
mature and precursor tRNAs (pre-tRNAs). This process
produces at least three types of tRFs, including tRF-5, tRF-
3 and tRF-1 (2). tRF-5 and tRF-3 are derived from the 5
and 3’ ends of mature tRNAs, respectively, and were first
observed in LNCaP and C4-2 cells (2). tRF-1 is derived
from the 3’ trailer fragment of pre-tRNA transcripts and is
tightly correlated with cancer cell proliferation (2,42). An-
other more recently characterized class of tRFs are those
found at the internal region of the mature tRNAs. These
tRFs can straddle the anticodon and are termed inter-
nal tRFs (i-tRFs) (35). Accumulating evidence has demon-
strated that tRFs have important roles in human cancers
(8,10,29-31,34-36,43,44), and their aberrant expression in
cancers was therefore considered as potential diagnostic
biomarkers or even for use in medicine for manipulation
of cancer cells (5). The functions of tRFs and their mecha-
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Figure 1. tRF2Cancer workflow.

nisms influencing cancer processes have become an intrigu-
ingly new aspect under investigation.

In recent years, the development of high-throughput
sRNA sequencing approaches enabled the detection of sR-
NAs at unprecedented depth. This approach has been suc-
cessfully applied to the systematic identification of microR-
NAs (36). However, many problems associated with the
identification of tRFs have been noted (5,45). One of the
major challenges involves distinguishing the bona fide tRF's
from random degradation fragments in a large pool of se-
quenced sSRNAs. Despite accumulating evidence indicating
common features of tRFs, some researchers are still con-
cerned that these fragments could simply represent the by-
products of random cleavage of tRNAs (5). While there ex-
ist extensive tRNA molecules in cellular total RNAs, their
degradation fragments would indeed be present in cells and
probably be detected by deep-sequencing technology. In ad-
dition, the expression of tRFs is spatiotemporal across dif-
ferent cell types and tissue samples. Therefore, the claim of
the discovery of tRFs based on the evidence of detecting
sRNAs from tRNA molecules in a single deep sequencing
run is untenable and will result in more problems in further
functional validation experiments.

Currently, there is no online tool available for biolo-
gists, who are unfamiliar with the command-line environ-
ments, to efficiently identify tRFs in their own sRNA-
sequencing data and compare the results with other pub-
lic data sets. Therefore, given the increasing amount of
small RNA sequencing data available (especially large-scale
cancer-related data sets) there is a great need to develop a
web-based tool to identify tRFs and explore the expression
of tRFs in multiple types of cancers.

To address this need, we developed tRF2Cancer, the first
public server for identifying tRFs and their expression in
cancers from deep-sequencing data (Figure 1). Our web
server is able to accurately identify known and novel types
of tRFs using a proven statistical method. In addition, the
expression of these tRFs in 10 991 samples from 32 types of
cancers is provided. tRF2Cancer is also designed to search
for the relationships between tRFs and multiple types of

chemical modifications on their source tRNAs. We believe
that this web server will help researchers investigate new
tRFs and discover their functions and potential use as can-
cer biomarkers from sRNA deep-sequencing data.

tRF2Cancer ANALYSIS WORKFLOW
Data sources and gene annotation

Human genome sequences were downloaded from the
UCSC bioinformatics websites (version hgl9) (46), and
human gene annotations were obtained from the UCSC
database (47) and Ensembl database (Release 76) (48).
Known non-coding RNA sequences were obtained from the
Rfam database (Release 12.0) (49). microRNA genes were
obtained from the miR Base database (Release 21) (50). The
tRNA sequences were downloaded from the GtRNAdb
database (Release 2.0) (51), and these data were subject to
several pre-processing steps. For precursor tRNA genes, we
extracted the sequences including the tRNA genes and 100
bp up- and downstream of the 3’-end of tRNA genes. For
mature tRNA sequences, we removed the introns and added
CCA to the 3'-end of the tRNA gene sequences. Small RNA
sequencing data of cancer samples were retrieved from the
Cancer Genome Atlas (TCGA) database (52). A total of 10
991 samples from 32 types of cancers were integrated into
tRF2Cancer. Table 1 lists the types and numbers of cancer
samples. The tRNA modifications sites were retrieved from
RMBase (Release 1.0), a database that contains RNA mod-
ifications identified from high-throughput sequencing data
sets (53). The secondary structure of tRNA was displayed
by forna (54). A javascript-based genome browser, Jbrowse
(Release 1.11.6), was used to navigate the modification sites
and tRF reads distribution on source tRNAs (55).

Searching tRNA-derived small RNAs from deep-sequencing
data

Figure 1 presents the workflow of tRF2Cancer. After the
pre-processing of the sequencing data, small RNAs were
first mapped to the human genome to remove unmapped
reads. Aligned reads were then mapped to the known hu-
man transcript sequences, including mRNAs, snoRNAs,
snRNAs, rRNAs, microRNAs and repeat sequences. Reads
that were successfully mapped to those known transcripts
were discarded. The remaining reads were then mapped to
both precursor tRNA genes and mature tRNA sequences.
We use bowtie (version 1 or version 2) (56,57), an ul-
trafast and exhaustive small RNA mapping program, to
perform the sequence alignment between deep-sequencing
small RNAs and long transcripts. The alignment mode and
parameters can be set by users. The parameters include the
number of allowed mismatches (0 by default), the region of
tRFs length (16-30 nt by default), and whether indels (in-
sertions and deletions) are allowed (no indels by default).
Finally, only those reads that were aligned to the same
strand with the source tRNA transcripts were considered as
tRNA-derived small RNAs and used for subsequent analy-
sis.



Table 1. Cancer types and number of samples used in tRF2Cancer
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Abbreviation Cancer Types Sample Counts
ACC Adrenocortical Carcinoma 80
BLCA Bladder Urothelial Carcinoma 437
BRCA Breast Invasive Carcinoma 1207
CESC Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma 312
CHOL Cholangiocarcinoma 45
COAD Colon Adenocarcinoma 447
DLBC Lymphoid Neoplasm Diftuse Large B-cell Lymphoma 47
ESCA Esophageal Carcinoma 200
GBM Glioblastoma Multiforme 5
HNSC Head and Neck Squamous Cell Carcinoma 569
KICH Kidney Chromophobe 91
KIRC Kidney Renal Clear Cell carcinoma 616
KIRP Kidney Renal Papillary Cell Carcinoma 326
LGG Brain Lower Grade Glioma 530
LIHC Liver Hepatocellular Carcinoma 425
LUAD Lung Adenocarcinoma 567
LUSC Lung Squamous Cell Carcinoma 523
MESO Mesothelioma 87
oV Ovarian Serous Cystadenocarcinoma 499
PAAD Pancreatic adenocarcinoma 183
PCPG Pheochromocytoma and Paraganglioma 187
PRAD Prostate Adenocarcinoma 551
READ Rectum Adenocarcinoma 161
SARC Sarcoma 263
SKCM Skin Cutaneous Melanoma 452
STAD Stomach Adenocarcinoma 497
TGCT Testicular Germ Cell Tumors 156
THCA Thyroid Carcinoma 573
THYM Thymoma 126
UCEC Uterine Corpus Endometrioid Carcinoma 579
UCS Uterine Carcinosarcoma 57
UvM Uveal Melanoma 80

Analyzing the sequenced small RNAs to identify tRFs accord-
ing to their biogenesis

The major challenge in tRF identification involves distin-
guishing actual tRFs from random degradation fragments.
To solve this problem, we developed tR Ffinder to accurately
identify tRFs according to their biogenesis. The tRNA pre-
cursors (pre-tRNA) first underwent a series of processing
to generate mature tRINA molecules, including cleavage of
5" end (5’ leader) and 3’ end (3’ trailer) by RNase P and tR-
NaseZ, respectively; addition of 3’ CCA trinucleotide to the
acceptor stem; splicing of introns, if necessary; and chemi-
cal modification of bases in the nucleus before transporta-
tion into the cytoplasm (58). Then, the mature tRNA with a
stable structure could be recognized and cut by endonucle-
ases (such as Dicer) to release tRF-5 at the 5’ end and/or
tRF-3 at the 3’-end (Figure 2A). Otherwise, the tRNAs
are degraded to generate various random sRNAs (Figure
2B). In summary, compared with the randomly degraded
fragments, the tRFs possess at least the following three
characteristics: (i) remarkable site-specificity; (i) defined
lengths; and (iii) significantly higher abundance. Therefore,
if a tRNA generates genuine tRFs, then one can expect that
most of the deep-sequencing reads are enriched in one or
more of the three following regions: the 5’ end, the 3’ end
and the 3’ trailer region of the tRNA (Figure 2A). Further-
more, it is expected that only very few reads do not corre-
spond to these three products. Otherwise, the degradation
fragments are distributed randomly on the source tRNA
(Figure 2B).

After mapping the small RNA reads to tRNA sequences,
tRFfinder first assumes that reads are randomly distributed
along the entire tRNA. According to this assumption, we
could conclude that, of the entire length of tRNA, the prob-
ability (p) of specific nucleotide position in tRNA sequence
(either precursor or mature) being mapped by one small-
RNA read is

1
P= L—-1+1 M
where L is the length of the tRNA, and /s the length of the
small RNA fragment being mapped onto the tRNA.
Based on the assumption of random distribution, the
probability of more than k (inclusive) small RNA fragments
mapped onto the same position in the tRNA follows the bi-
nomial distribution, and the probability of this event is

razb=Y"_ (4)ra-pr e

where k is the observed counts of small RNA fragments
mapped onto that specific nucleotide position in the tRNA,
and 7 is the total number of reads mapped onto the entire
length of tRNA. Hence, P is the probability that one nu-
cleotide position in the tRNA is included into & or more
small RNA fragments as a product of random degradation.

For the real mapping case, if one specific nucleotide in the
tRNA sequence corresponds to more than & or more small
RNA sequencing reads, but the probability of this event
occurring by chance (Equation 2) is less than 1% (by de-
fault), then we could conclude that this site contains a sig-



W188 Nucleic Acids Research, 2016, Vol. 44, Web Server issue

/s

tRNA gene Cleavage fragments

tRF-1

Uuu CCA

RF-5 <_/\

X

>

~

tRNA-derived small RNA fragments (tRFs)

Sequencing reads

= N

cc

>

uu

c

NG
(s

tRNA gene Degradation product
uuy | / —
I
/

~
</

—_\
N\
]

\
{
!

( N—7

o

~—uuu

~

Random fragments

Sequencing reads

¢ LN

[(CCCC(C ((compepemeey ))) B {{{{ceesey }))) N (({1999)) ) BA{{{{oeeeesy }))))))) ) ) ) Eoevevmvmvevevovsosemvosseony

Figure 2. Analysis of small RNA sequencing reads for identification of tRNA-derived small RNA fragments (tRFs). (A) After cleavage of transfer RNAs
(tRNA) at specific positions, small RNA fragments with consistent characteristics are generated. Each of the small RNA could be detected (with certain
probability) by sequencing. After mapping sequencing reads back to the tRNA transcripts, most of the reads are distribute within similar regions with
significantly higher frequencies at the tRF-5, tRF-3 and tRF-1 regions. (B) Random degradation of tRNA transcripts produces small RNA fragments.
When mapped to the tRNA transcripts, it is expected that these random fragments are uniformly distributed across the entire length of source tRNA, and

that features of these fragments (such as sites of origin and frequencies of distribution) are inconsistent with those of bona fide tRFs.

nificant enrichment of small RNAs (with 99% confidence,
by default). Thus, this site is defined as a significant site. If
a region in the tRNA sequence contains more than m con-
secutive significant sites, the region is considered a tRF re-
gion, where m is the shortest tRF length set by users (16 by
default). After the tRF region is obtained, all the reads in
the tRF region compose a stack of reads. The total count
of reads in a stack was calculated and is represented by C.
The largest read count is represented by ¢. We then calcu-
lated the coverage rate as ¢/C, if the value is greater than
0.6, the read with the highest count will be chosen as the
main tRF and presented in red in the result page (Figure
4C). In addition to the main tRF, we also provide the se-
quence and the abundance of other reads to the users, since
the less abundant tRFs may also have functions (35,59). In
the result page, users can sort the reads mappable to tRNA
based on start positions, lengths or abundance.

Classifying tRFs based on sites of origin in tRNA

The types of tRFs are classified by their sites of origin in pre-
tRNA or mature tRNA. tRF2Cancer adopts a 4-category
system similar to that of tRFdb (60) with some modifica-
tions (Figure 3), as follows: (i) tRF-5, which originates from
the first or second base of mature tRNAs; (ii) tRF-3, which
originates from the 3’ end of mature tRNA with CCA trinu-
cleotide at 3’-end; (iii) tRF-1, which originates from the be-
ginning of the 3’ end flanking sequences (sequences that are
cleaved before maturation of tRNA) with poly-U residues at
3’-end; and (iv) tRF-novel, which does not belong to tRF-
5,tRF-3 or tRF-1 and is typically derived from the internal
region of the mature tRNA sequence (Figure 3).

Evaluating tRFs expression in different cancers types

We developed tRFinCancer to provide an integrated view of
the expression of one selected tRF among 32 types of can-
cers. We retrieved raw data of small RNA deep-sequencing
from public TCGA repositories, and the raw data under-
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Figure 3. Demonstration of the biogenesis of different types of tRFs. tRF-1 is generated from the 3'-trailer of primary tRNA. tRF-5, -novel and -3 are

produced from the 5'-end, internal and 3’-end of mature tRNA, respectively.

went a series of processing steps, including clipping of 3'-
adapters using FASTX-toolkit software (http://hannonlab.
cshl.edu/fastx_toolkit/), removal of low-complexity reads
and collapsing identical reads together (Figure 1). Then, the
remaining reads were used for the identification of tRFs in
all of the cancer samples. When users obtain a tRF of inter-
est either by tRFfinder or from literature, tR FinCancer can
be used to inspect the expression of this particular tRF in
32 types of cancers. For cancers with multiple samples, we
provide the value of mean reads per million (RPM) of all
the samples to represent the tRF expression.

The abundance of tRFs is evaluated using their sequenc-
ing counts and is normalized to the total count of all reads
that mapped to tRNAs to obtain RPM values:

6
RPM— 10°C

(€)

where C is the sum of reads mapped onto the tRF region,
and N is the total number of reads mapped onto all of the
tRNA genes.

Evaluation of different types of mismatches/indels and dis-
playing chemical modification sites on tRFs

tRNAs undergo extensive modifications. Researchers are
concerned that the pausing of reverse transcriptase at chem-
ically modified sites in tRNA contributes to the reads de-
tected in deep-sequencing data (61). To avoid this type
of error, tRFfinder excluded the tRF candidates whose
3’ ends match exactly to the chemical modification sites
on the pre-tRNA. In addition, chemical modifications
can lead to reverse transcriptase pausing, which often re-
sults in misincorporation of nucleotides, or indels (61—
63). tRFfinder uses a scoring scheme to handle different

types of mismatches/indels. When the reads are mapped to
the tRNA gene sequences and a tRF region is obtained,
tRFfinder scores each site of the tRF region according to
the following rules (Supplementary Table S1 and Figure
S1).

After each site of the tRF region is scored, tRFfinder
sums the scores to obtain a total score. To eliminate the ef-
fect of length on the total score (the longer the region, usu-
ally the higher the total score), the total score is divided by
the length of the tRF region to obtain the alignment score
for this region. By default, tRFfinder outputs only regions
with alignment scores greater than 100 (this threshold can
be set by users in the parameter option lists).

For users who want to investigate the chemical mod-
ifications on tRFs, we provide ‘tRFBrowser’ for brows-
ing and visualizing the profiling of tRFs and the modi-
fication sites distribution on the source tRNAs. We col-
lected modification sites including 5-methylcytosines (m>c),
2’-O-methylations (2'-O-Me), pseudouridine (¥) and N6-
methyladenosine (m®A). The profiling of tRFs from the 32
types of cancers are also embedded in tRFBrowser. Because
there are 10 991 samples in total, tR FBrowser randomly se-
lects 10 samples in each cancer to show at one time. There-
fore, users can simultaneously inspect tRF profiling and dis-
tribution of modification sites on tRNAs.

IMPLEMENTATION

tRF2Cancer was developed under the
Apache/PHP/MySQL environment on the Linux sys-
tem. The backend was implemented in Perl. The server
was equipped with 64 bit 8-core 2.00 GHz Intel Xeon and
12 GB of RAM. The web application was designed for
multiple platforms, and is able to run in Google Chrome
(17 and later), Firefox (10 and later), Apple Safari (6 and
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(F) The genome browser for tRF profiling and modification site distribution on source tRNA.

later) and Internet Explorer (9 and later). The method that
tRF2Cancer adopts is time efficient. During a test with 11
641 sRNA sequences, running times of approximately 0
m:48 s and 4 m:18 s are required with the loosest filtering
criteria and the strictest filtering criteria, respectively.

DATA INPUT

tRF2Cancer offers a user-friendly interface for convenient
manipulation. The main input to tRF2Cancer is small
RNA deep-sequencing data in the FASTA format. The
identical reads must be collapsed together. This should be
done by the users before they upload the file to tR F2Cancer.
Actually, most of the sequencing company will generate
the small RNA sequencing results in the FASTA format,
with the identical reads collapsed together. Users can input
the sequence data either from a local file or by direct past-
ing, and tRF2Cancer also supports compressed file (in ZIP,
tar.gz or RAR format) as inputs. tRF2Cancer provides ad-
ditional options for fine-tuning parameters. Users can set
the number of allowed mismatches, the mode of mapping

(with or without indels), the range of tRFs length and the
P-value cutoff before submitting a job. Depending on the
number of SRNAs and the size of samples, a typical run may
take several minutes to finish after data submission. For no-
tification of job completion, users can provide tRF2Cancer
a valid email address.

DATA OUTPUT

A summary table with eight fields is provided in the re-
sult page for inspection of predicted tRFs (Figure 4). The
fieldsinclude tRF type (tRF-5, tRF-3, tRF-1 or tRF-novel),
RPM, tRF length, the name of the source tRNA and the
positions on source tRNA from which the tRF is derived
(Figure 4A). In addition, each button on the result table
will lead the users to a special tRF visualization page, which
includes visualization of sequencing-read distribution on
source tRNA (Figure 4C); the structure of source tRNA,
with the highlighted sequence representing the origin of
tRFs (Figure 4D); the expression of tRFs in 32 types of
cancers (Figure 4E); and the distribution of both tRFs and



possible chemical modification sites on the corresponding
source tRNA (Figure 4F).

To export the results, users can either copy to clipboard
or download the file in Excel format or CSV format. For
further retrieval of results, users can bookmark the result
page. Each result is assigned a random and unique ID by
the server.

EVALUATING tRF2Cancer PERFORMANCE WITH
EXPERIMENTALLY VALIDATED DATA AND OTHER
TOOLS/ PIPELINES

To evaluate the performance of tRF2Cancer, we collected
known tRFs from previous studies. Lee et al. detected 135
tRFsin deep-sequencing data from prostate cancer cell lines
(LNCaP and C4-2), 17 of which were validated by Northern
hybridization, quantitative RT-PCR and splinted ligation
assays (2). We applied tRFfinder on an independent data
set downloaded from GEO (GSE79365), which contains 5
samples of prostate cancer cell lines (P69, M12, M2182).
Of the 17 known tRF sequences, 15 were present in at least
one of the 5 samples. Of these, 13 (86.67%) were success-
fully recovered by tRFfinder (Supplementary Table S2). To
examine the usefulness of the alignment score parameter,
we ran tRFfinder with increasing alignment score thresh-
olds to provide insight into the number of validated tRFs
retained along with the number of other tRFs reported in
relation to the increasing threshold (Supplementary Table
S2). Note that an alignment score cut-oft of 0 captures all
possible predictions.

Next, we performed a comparison between the results of
tRFfinder and tDRmapper (45), a tool to identify tRNA-
derived RNAs from human small RNA-sequencing data.
To avoid system error, we set the same parameters for both
tools as much as possible (the same version of GtRNAdb,
expression thresholds: 100; and allow for 2 deletions). The
result indicated that 46.67% (7 in 15) of the validated tRFs
were recaptured by both tRFfinder and tDRmapper (Sup-
plementary Table S3).

Itis not possible to assess the false positive results of these
tRFs predicted by tRFfinder and tDRmapper, given that
no experimentally validated database currently available for
use as the true positive result; although there is a relational
database of tRNA-related fragments called tRFdb, it is also
a collection of tRF's predicted from sequencing data. There-
fore, tRFdb can only be treated as the data sets with poten-
tially positive tRF records. So we compared the prediction
results of tR Ffinder and tDRmapper from tRFdb as well as
experimentally validated data sets provided by Lee et al. (2).
In total, 155 tRF candidates were detected by tRFfinder,
95 of which are not supported by the potentially positive
tRF data set. There are 149 tRF candidates detected by
tDRmapper, and 110 are not supported by the potentially
positive tRF data set. Therefore, the potential false pos-
itive rates of tRFfinder and tDRmapper are 61.29% and
73.83%, respectively (Supplementary Table S4). We believe
that numerous unsupported sequences will be validated as
true tRFs in the future.

Several studies provided strategies for tRF identifica-
tion (35,45,59,60). We compared our tool with three other
studies (Supplementary Table S5). Our pipeline provides
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more selectable parameters, which makes it flexible for the
users to identify and visualize tRFs. Most importantly,
tRF2Cancer firstly uses a statistical model to distinguish
tRFs from random degradation fragments.

DISCUSSION AND CONCLUSIONS

tRF2Cancer facilitates the identification of tRFs to study
their expression in cancers from deep-sequencing data
with user-friendly interfaces and time-efficient algorithms.
tRF2Cancer provides three useful tools for researchers to
investigate tRFs. ‘tRFfinder’ is developed to identify gen-
uine tRF signals from random degradation RNA frag-
ments. One statistical method, the binomial test, is intro-
duced to evaluate the significance of the abundance of se-
quenced sRNAs distributed on each tRNA. A classifica-
tion method is subsequently used to annotate the types of
tRFs based on their position of origin in pre-tRNA or ma-
ture tRNA; the four types of tRFs are tRF-5, tRF-3, tRF-1
and tRF-novel. ‘tRFinCancer’ enables users to inspect the
expression of any tRFs in different types of cancers. ‘tRF-
Browser’ presents both the sites of origin and the distribu-
tion of modification sites of tRFs, including m>C, 2'-O-Me,
W and m°A., on their corresponding source tRNA. In ad-
dition to cancer samples, tRFfinder can be applied to many
samples from different kind of tissue/disease context. How-
ever, users may be interested in inspecting the expression of
tRFsin multiple types of cancers, even though their samples
are obtained from normal tissues or other disease. There-
fore, we believed that it will be very useful to combine the
three tools and we gave it an integrated name, tR F2Cancer.
In conclusion, by integrating 10 991 small RNA sequenc-
ing data from 32 types of cancers, we hope our tRF2Cancer
will help researchers to investigate the features and func-
tions of tRFs in different types of cancers and discover po-
tential medical applications, such as cancer biomarkers.

In addition to tRFs, tRNA halves are another important
type of small RNAs derived from tRNAs, that are typi-
cally greater than 32 nt in length. tR Ffinder focuses on tRF's
identification for the following reasons: First, current small
RNA sequencing experiments typically contain reads rang-
ing from 18-30 nt. This is the major length range of tRFs.
Although some tRNA halves may exist in the data set, they
may not be completely detected. Second, we believe that the
detection of tRF’s in a single deep sequencing run is not suf-
ficient, so it is very important to inspect their expression in
other independent laboratories. The TCGA database is a
valuable source that contains approximately 3T raw small
RNA reads from 10 991 samples, and these data serve as
evidence to support the existence and functionality of tRFs.
The small RNAs in the TCGA database are less than 36 nt,
which contains abundant tRFs and is very suitable for tRF
identification. Therefore, we provided a link from tR Ffinder
to tRFinCancer, to allow users to easily inspect their results
in the TCGA database.

Although deep-sequencing technology can detect almost
all RNAs in cells, some fragments may be unobserved in
small RNA-seq data sets, due to chemical modifications on
some parts of the tRNA. This phenomenon is a known
limitation in the field of small RNA investigation, espe-
cially of tRF identification. Researchers have made efforts
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to develop special experimental methods to overcome this
limitation. For example, the ARM-seq method developed
by Cozen et al. requires the samples to be treated with a
dealkylating enzyme during library preparation to remove
the tRNAs modifications (61). This will eliminate the in-
terference caused by modifications. Therefore, with the de-
velopment of experimental methods, we believe tRNA frag-
ments will be sequenced more frequently and be detected by
our tRFfinder as well as other tRFs finding tools.
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