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ABSTRACT This study was conducted to character-
ize and compare the protective effects of various innate
immune stimulants against yolk sac infection (YSI)
caused by an avian pathogenic Escherichia coliin young
chicks. The immune stimulants were administered alone
or in various combinations of unmethylated CpG oligo-
deoxynucleotides (CpG), polyinosinic:polycytidylic
acid (Poly I:C), and avian antimicrobial peptides
(AMPs). Routes included in ovo or in ovo followed by a
subcutaneous (S/C) injection. CpG alone and in combi-
nation with Poly I:C, truncated avian cathelicidin
(CATH)-1(6-26), avian beta defensin (AvBD)1, and
CATH-1(6-26) + AvBD1, were administered in ovo to
18-day-old embryonated eggs for gene expression and
challenge studies. Next, CpG alone and the potentially
effective formulation of CpG + Poly I:C, were adminis-
trated via the in ovo route using 40 embryonated eggs.

At 1 day post-hatch, half of each group also received
their respective treatments via the S/C route. Four
hours later, all chicks were challenged using FE. coli
strain EC317 and mortalities were recorded for 14 d.
The first challenge study revealed that amongst the sin-
gle use and combinations of CpG with different innate
immune stimulants, a higher protection and a lower
clinical score were offered by the combination of
CpG + Poly I:C. The second challenge study showed
that this combination (CpG + Poly I:C) provides an
even higher level of protection when a second dose is
administered via the S/C route at 1 day post-hatch. The
current research highlights the efficacy of a combination
of CpG + Poly I:C administered either in ovo or in ovo
along with a S/C injection and its potential use as an
alternative to antibiotics against yolk sac infection in
young chicks.
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INTRODUCTION

Unmethylated CpG oligodeoxynucleotides (CpG),
polyinosinic-polycytidylic acid (Poly I:C), and avian
antimicrobial peptides (AMPs) are the most common
innate immune stimulants investigated for control of
bacterial and viral diseases in chickens (Zou et al., 2017
Bavananthasivam et al., 2018; Nguyen et al., 2021; Sar-
fraz et al., 2022). Innate immunity is the first line of host
defense and includes rapid responses for instant control
of invading microbes or to instruct adaptive immune
responses (Janeway and Medzhitov, 2002; Kogut, 2009).
Host cellular toll-like receptors (TLRs) play a pivotal
role in pathogen recognition in the innate immune
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system, triggering signal transduction and gene expres-
sion networks (Kogut, 2009). Several TLRs agonists,
including CpG, Poly I:C, lipopolysaccharide (LPS),
Pam3CSK4, and Bacillus subtilis spores, are reported to
be effective against a number of bacterial and viral infec-
tions in birds (Dar et al., 2009; Mackinnon et al., 2009;
Liang et al., 2013; Alkie et al., 2017; Yuan et al., 2017;
Abdul-Cader et al., 2018; Allan et al., 2018; Bavanan-
thasivam et al., 2018; Gunawardana et al., 2019).

CpG, consisting of CpG motifs that are highly preva-
lent in bacterial DNA and recognized by TLR9 (Hemmi
et al., 2000) and TLR21 (Brownlie et al., 2009) in mam-
mals and chickens, respectively, has shown protection
against some common avian pathogens (Abdul-Cader
et al., 2018). For instance, administration of CpG via
subcutaneous (S/C), intramuscular (Gomis et al.,
2003), or in ovo routes (Allan et al., 2018; Gunawardana
et al., 2019; Nguyen et al., 2021) or through intrapulmo-
nary delivery (Goonewardene et al., 2017) has shown
protection against Fscherichia coli infection in chickens.
In addition, following intraperitoneal or in ovo
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administration of CpG, it has exhibited protection
against Salmonella Enteritidis (He et al., 2005; Mackin-
non et al., 2009) and Salmonella Typhimurium infec-
tions (Taghavi et al., 2008). Previous studies reported
that in ovo delivery of CpG resulted in reduced mortal-
ity and morbidity and induced protection from viral
infections including infectious laryngotracheitis virus
(ILTV) (Abdul-Cader et al., 2018) and reticuloendothe-
liosis virus (REV) infections (Yuan et al., 2017). Simi-
larly, application of nanoparticle encapsulated CpG
enhanced immune activity and increased the half-life
and cellular uptake of CpG (Bavananthasivam et al.,
2018). Notably, oral administration of poly D, L-lactic-
co-glycolic acid (PLGA)-encapsulated CpG reduced
colonization of Campylobacter jejuniin cecal contents of
chickens (Taha-Abdelaziz et al., 2018). Likewise, in ovo
delivery of CpG formulated with carbon nanotubes or
liposomes showed protection from E. coli infection in
broiler chickens (Gunawardana et al., 2015). Taken
together, CpG has potential as an alternative to antibi-
otics and as a vaccine adjuvant for induction of protec-
tive immunity against infectious diseases in poultry.

Poly I:C is a double-stranded RNA and a TLR3 ligand
that exhibits antiviral and antibacterial activities. In
a previous experiment, administration of Poly I.C
enhanced F. coli phagocytosis in murine microglial cells
through elevated cytokine induction (Ribes et al., 2010).
In addition, enhanced expression of IL-6, IL-8, IL-1«,
and monocyte chemoattractant protein-1 in murine
lungs was reported following intranasal spray of Poly I:
C solution leading to protection against Francisella
tularensis infection (Pyles et al., 2010). Moreover,
administration of Poly I:C in chicken-derived cells has
led to rapid induction of pro-inflammatory cytokines
and nitrite production in chicken spleenocytes and
monocytes (Villanueva et al., 2011; He et al., 2012; St
Paul et al., 2013). Notably, in ovo administration of
Poly I:C protected against an F. coli challenge (Allan
et al., 2018). In addition, Poly I:C has been used as a
vaccine adjuvant for improving humoral and cellular
immune responses. Administration of Poly I:C as an
adjuvant in a HS5N1 influenza vaccine significantly
reduced virus shedding in mice (Ichinohe et al., 2009).
Similarly, the combination of Poly I.C and HIN2 vac-
cine significantly induced higher anti-influenza antibody
titers, reduced virus shedding, and elevated mRNA lev-
els of IFN-«, IFN-y, IL-6, and MHC-II in ducks (Zhang
et al., 2017). In addition, Poly I:C triggered production
of pro-inflammatory cytokines and interferon-8, leading
to restriction of Marek’s disease virus infection in
chicken embryo fibroblasts (CEFs) (Zou et al., 2017).
In another study, Poly I:C combined with gp90 recombi-
nant proteins significantly reduced the viremia and
immunosuppressive effects caused by reticuloendothelio-
sis virus (REV) challenge in chickens (Yuan et al.,
2017). Hence, Poly I:C is not only a potential anti-infec-
tion agent, but also a good adjuvant to enhance immune
responses for its incorporated vaccines.

Antimicrobial peptides are important signaling mole-
cules of the innate immune system and demonstrate

high potency as immunostimulants and antibacterial
agents in birds. Besides being directly bactericidal,
AMPs can modulate host immunity through 1) activa-
tion or recruitment of immunocytes; 2) neutralization of
bacterial products, including lipopolysaccharide (LPS)
or lipoteichoic acid (LTA) to suppress inflammation; or
3) enhancement of nucleic acid recognition to promote
autoinflammation (van Dijk et al., 2011; Zhang and
Gallo, 2016; Nguyen et al., 2021). Regarding antibacte-
rial activity, AMPs have shown in vitro killing effects
against food-borne pathogens including F. coli, C.
jejuni, Clostridium perfringens, S. Typhimurium, and
other important pathogenic bacteria and fungi such as
Staphylococcus aureus, Streptococcus pyogenes, and
Candida albicans (Xiao et al., 2006; van Dijk et al.,
2007, 2009; Zhao et al., 2014; van Dijk et al., 2016;
Nguyen et al., 2021). In ovo administration of Cathelici-
din-2 (D-CATH-2) showed protection against E. coli
infection in chickens by reducing mortality and respira-
tory bacterial load (Cuperus et al., 2016). Furthermore,
recombinant avian CATH and B-defensin (AvBD)
have been produced using an E. coli system and proven
their antimicrobial activities against multiple microor-
ganisms (Zhao et al., 2014; Yu et al., 2015; Tanhaiean
et al., 2018). In our recent study, various peptides,
including CATH-1(6-26), CATH-2(1-15), AvBDI,
AvBD2, AvBD6, AvBD9 were tested in vitro. CATH-1
(6—26) and AvBD1 were determined to have the most
potential as candidates against avian pathogens includ-
ing E. coli strain EC317, Salmonella sp., C. jejuni, C.
perfringens (Nguyen et al., 2021). Notably, in ovo
administration of AvBD1 offered a comparable anti-FE.
coli effect to CpG in young chicks (Nguyen et al., 2021).
Used alone, these immunostimulants have potential for
prevention of bacterial infections in birds; however, the
effects of their combinations are still not fully under-
stood.

Yolk sac infection (Y'SI) or omphalitis has emerged as
the most common bacterial infection that leads to high
rates of early chick mortality (ECM) and economic
losses in poultry production (Saskatchewan, 2021).
Avian pathogenic E. coli (APEC) is a frequently iso-
lated pathogen from poultry farms, followed by various
bacteria such as Enterococcus, Staphylococcus, Salmo-
nella, Pseudomonas, Proteus, Streptococcus, and Kleb-
siella (Olsen et al., 2012; Amare et al., 2013; Swelum
et al., 2021). YST induces mortality or low weight gains
and leaky navels in survivor birds (Fasenko and O'Dea,
2008), and increases susceptibility to other infections
(Allan et al., 2018). Currently, YSI is managed by heavy
culling and administration of antibiotics via in ovo injec-
tion or post-hatch (Allan et al., 2018). However, con-
sumer demand for antibiotic-free products and
reduction of antibiotic-resistant bacteria has prompted
the poultry industry to search for alternative products.
Although multiple studies have been performed for
development of vaccines as well as antimicrobial alterna-
tives, there are no commercially available alternatives
for prevention and control of mortalities due to YSI and
other bacterial infections in young chicks (Swelum et al.,
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2021). The goal of the present investigation was to
determine the immune response and protective effects of
CpG alone and in combination with Poly I:C and AMPs
when administered in ovo or in ovo followed by a S/C
injection at one day of age for control of YSI.

MATERIALS AND METHODS
Reagents

CpG ODNs 2007 was purchased from Biospring
(Frankfurt, Germany) with >85% purity and endotoxin
level below 1,000 EU/g. Poly I:C (P1530) was purchased
from Sigma_ Aldrich (MO). AMPs [AvBD1 and CATH-
1(6-26)] were synthesized in linear forms by Genscript
(NJ) using the Fmoc solid-phase peptide synthesis
(SPPS) method with >95% purity assessed by mass
spectrometry (MS). Sequences of CpG ODNs 2007,
AvBD1, and CATH-1(6-26) used in this study are listed
in Table 1. CpG, Poly I:C, and AMPs were suspended in
sterile, endotoxin-free water (Millipore Sigma, MA) as
stock solutions. Working solutions for in ovo experi-

ments were prepared by mixing stock solutions with
phosphate-buffered saline (PBS; Millipore Sigma, MA).

In Vitro Cytotoxicity Assay

Cytotoxicity of CpG, AvBD1, CATH-1(6-26), and
their combinations were evaluated using chicken macro-
phage cells (HD11 cells) following the protocols of van
Dijk et al. (2009) and Nguyen et al. (2021). Briefly,
HD11 cells (confluency 80—90%) harvested from a T75
flask were dispensed into Nunc 96-well fat-bottom plates
(ThermoFisher scientific, OH) at a concentration of
1 x 10° cells/well/100 uL in RPMI-1640-glutaMAX
medium (Gibco, ThermoFisher scientific) supplemented
with 10% fetal bovine serum (FBS; Sigma-Aldrich), 1%
v/v HEPES (ThermoFisher scientific), 1% v/v Na Pyru-
vate (ThermoFisher scientific, OH), and 0.1% gentamy-
cin (v/v) (Sigma-Aldrich). Cells were incubated for 24 h
at 37°C and 5% CO4 in a 3110 Thermo Forma IT humidi-
fied CO5 incubator (Thermo). The following day, the old
medium was replaced with 90 uL of new DMEM/F12
medium (Gibco, ThermoFisher scientific) without phe-
nol red, FBS, and Gentamicin, followed by addition of
10 uL of CpG, AvBD1, CATH-1(6-26), or their combi-
nations including 1) AvBD1 + CATH-1(6-26), 2)
CpG + CATH-1(6-26), 3) CpG + AvBDI, 4)
CpG + Poly I:C, 5) CpG + CATH-1(6-26) + AvBD1 in
respective wells to obtain 30, 15, 7.5, 3.25, and 1.65 ug/
mL as final concentrations of each immune stimulant.
The treated cells were incubated at 37°C in a 5% CO,

Table 1. Sequence and purity of CpG and AMPs used in this study.

incubator. After 24 h incubation, old media were
replaced with 100 pL of new DMEM/F12 medium
(without phenol red, FBS, and Gentamicin) and 10 uL
WST-1 assay reagent (Abcam, MA) was added to each
well and incubated for 60 min at 37°C in a 5% CO, incu-
bator. The absorbance was measured at 440 nm using a
SPECTRAmax 340 PC Microplate Reader (Molecular
Devices, CA). The average OD of 3 replicates was calcu-
lated for the test and control samples. Cytotoxicity
effect (%) was calculated following the formula:

(100 z (Control — Sample))
Control

% Cytotoxicity =

Animal Experiments

Experiment 1 For the investigation of gene expression
following in ovo administration of innate immune stimu-
lants, 185 eighteen-day-old embryonated eggs (from
Lohmann LSL-lite layers) were obtained from the
breeder operation of the Department of Animal and
Poultry Science, University of Saskatchewan, Saska-
toon, Saskatchewan, Canada. Yolk sacs and livers were
collected from 5 embryos and cultured on MacConkey
plates to ensure they were free from FE. coli infection.
The remaining 180 eggs were randomly divided into 6
equal groups as follows: Group A (CpG, 30 ug
/embryo); Group B (CpG + AvBDI1, 15 ug each/
embryo); Group C [CpG + CATH-1(6-26), 15 ug each/
embryo|; Group D [CpG + AvBD1 + CATH-1(6-26), 10
ug each/embryo]; Group E (CpG + Poly I:C, 15 ug
each/embryo); Group F (PBS Control). Each embryo
received 100 uL of treatment via the in ovo route into
the amniotic sac. Following in ovo injection, spleen sam-
ples were collected from 6 embryos/group at 6, 24, 48,
72, and 96 h postadministration.

Experiment 2 This experiment aimed at studying pro-
tective efficacy of the combinations of innate immune
stimulants described in Experiment 1. A total of 240
eighteen-day-old embryonated eggs were randomly
divided into 6 groups (A-F, n = 40 eggs/group) and
received the same formulations as described in Experi-
ment 1 via the in ovo route. The hatching rate was
recorded, and yolk sacs and livers from 3 birds/group
were collected for FE. coli isolation using MacConkey
plates. Twenty-four hours post-hatch all groups were
subjected to E. coli 317 challenge.

Experiment 3 In order to enhance the protection
achieved by administration of the combination
CpG + Poly L:C, we designed an experiment using a
total of 145 eighteen-day-old embryonated eggs. Prior to
innate immune stimulant administration, 5 eggs were

Immunostimulant Sequence Purity
CpG ODNs 2007 5-TCGTCGTTGTCGTTTTGTCGTT-3’ >85%
CATH-1(6-26) WPLVIRTVIAGYNLYRAIKKK-NH2 >95%
AvBD1 GRKSDCFRKSGFCAFLKCPSLTLISGKCSRFYLCCKRIW >95%

Abbreviations: AMPs, avian antimicrobial peptides; CpG, unmethylated CpG oligodeoxynucleotides.
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Table 2. Target genes and primer sequences used for quantitative RT-PCR in this study.

Target gene Primer name

Primer sequence (5-3")

Reference

B-actin B-actin-F CAACACAGTGCTGTCTGGTGGTA (St Paul et al., 2011)
B-actin-R ATCGTACTCCTGCTTGCTGATCC

1L-8 Ch-IL8-F CAGCTGCTCTGTCGCAAG (Dar et al., 2009)
Ch-IL8-R GTGGTGCATCAGAATTGAGCT

IL-18 Ch-IL18-R GTTGGAGCGGGCAGTCAG (Dar et al., 2009)
Ch-IL1B-F GGCATCAAGGGCTACAAGC

IFN-y Ch-IFEN-y-F CCAAGAAGATGACTTGCCAGA (Dar et al., 2014)
Ch-IFN-y-R ACCTTCTTCACGCCATCAGG

Abbreviations: IL, chicken interleukin; /FN-y, chicken interferon-gamma.

checked for E. coli contamination as described above.
The remaining 140 embryos were randomly divided into
3 groups (A, B, and C) with n = 40 embryos/group and
group D with 20 embryos. Each in ovo treatment was
100 pL of the respective stimulant or sham solution/
embryo. Group A was treated with CpG, 30 ug/embryo,
whereas group B received CpG + Poly I:C, 15 ug each/
embryo. Group C was given PBS in ovo as a control,
while group D received no in ovo injection. One day
post-hatch, all birds in groups A, B, and C were further
divided into 2 subgroups with 20 birds per group. Birds
in one of the subgroups from treatments A, B, and C
received a second dose (same dosages as in ovo injection)
via the S/C route. Birds in Group D were injected with
the combination (CpG + Poly I:C, 15 ug each/embryo)
via the S/C route only. Four hours after S/C injection,
all birds were challenged with APEC E. coli strain
EC317 as described below.

E. coli Challenge

Prior to challenge, birds were tagged individually and
placed into an isolation room in the animal care unit of
VIDO, University of Saskatchewan. Liver and yolk sac
samples from 3 birds per group were collected for isola-
tion of E. coli as described previously. Each bird was
challenged with 35 CFU/100 uL of E. coli strain EC317
into the yolk sac via the intranavel route. For first
6 days postchallenge (dpc), the birds were checked and
clinically scored 4 times daily while later clinical obser-
vations and scoring was done twice daily up to 14 dpc as
reported previously (Allan et al., 2018; Nguyen et al.,
2021). Dead and euthanatized birds were necropsied,
and livers and yolk sacs were swabbed for E. coli isola-
tion using MacConkey plates. The cumulative clinical
scores (CCS) were determined as a sum of the clinical
scores over the 14 dpc observational period. All animal
experiments were approved by the University of Sas-
katchewan’s Animal Research Ethics Board (proto-
col#20160079) following the Canadian Council on
Animal Care guidelines for animal use.

Gene Expression Study

RNA Isolation and cDNA Synthesis Spleen samples
collected from embryos were directly placed into 1 mL
Trizol tubes, homogenized and kept at —80°C until fur-
ther processing for RNA isolation, which was performed

as per manufacturer’s instruction. The NanoDrop-
ND1000 Spectrophotometer (Thermo Scientific, Can-
ada) was used to determine RNA quality and quantity.
Genomic DNA contamination was removed from the iso-
lated RNA samples using DNase I (Thermo Scientific,
Canada). cDNA synthesis was carried out using iScript
cDNA Synthesis Kit (Bio-Rad Laboratories, Inc.) as
described previously (Nguyen et al., 2021).

Quantitative Reverse Transcription Polymerase
Chain Reaction Quantitative reverse transcription
polymerase chain reaction (QRT-PCR) was performed
using SsoAdvanced Universal SYBR Green Supermix
(ThermoFisher scientific) and the primers listed in
Table 2. The reaction was performed in a CFX96 System
thermocycler (Bio-Rad Laboratories, Inc.) and condi-
tions were as follows: 95°C for 3 min; then 40 cycles of
95°C for 15 s, 60°C for 30 s, and 72°C for 30 s. Target
gene expression was normalized to the expression of
B-actin using the 272" method as previously described
(Livak and Schmittgen, 2001).

Statistical Analysis

Data was analyzed and graphs were generated using
the Prism 8 software (GraphPad Software Inc., San
Diego, CA). The survival proportions were compared
between treated and control groups at all time-points
using the Gehan-Breslow-Wilcoxon test. Cumulative
clinical scoring (CCS) data was analyzed by Kruskal-
Wallis nonparametric analysis of variance in Prism 8.
Significant differences of gene expression in spleen sam-
ples at each time point among groups were analyzed
using one-way ANOVA (and nonparametric or mixed)
with Tukey’s post-hoc test. P value < 0.05 represents
significance difference.

RESULTS

Cytotoxicity of Inmunostimulants and Their
Combinations to HD11 Cells

The cellular toxicity of stand-alone and combinations
of CpG, AvBD1, CATH-1(6-26), and Poly I:C with a
dosage ranging from 1.56 to 30 ug/mL was tested in
HD11 cells. Twenty-four hours post exposure, 2 to 36%
of treated cells showed effects when treated with pepti-
des, however, enhanced cytotoxicity to HD11 cells (32
to 81%) was observed in cells treated with CpG and its
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Figure 1. In vitro toxicity of studied immunostimulants and their combinations to HD11 cells. Cytotoxicity to HD11 cells was determined by
WST-1 assays. Cells were exposed to stimulants with dosages ranging from 1.56 to 30 pg/mL for 24 h. The graph represents data from three inde-
pendent experiments on different days with each experiment carried out using three replicates for each group.

combinations. Stand-alone use of CpG showed a dose
dependent increase in cell toxicity. For instance, CpG at
a dose of 1.56 ug/mL caused ~32% cell death, whereas,
this percentage was increased to 74% at the highest dose
of 30 pug/mL. The combinations of CpG with peptides
or with Poly I:C also induced toxicity to HD11 cells with
an average mortality of 50 to 81% with a dose ranging
from 1.56 to 30 ug/mL (Figure 1).

Experiment 1: Cytokine Expression
Following In Ovo Injection

To understand effects of innate immune stimulants on
cytokine gene expression, spleen samples were collected
at 6, 24, 48, 72, and 96 h post in ovo administration.
Transcriptional changes in 3 pro-inflammatory cytokine
genes, namely IL-18, IL-8, and IFN-y were investigated
(Figure 2). In most of the treatment groups, upregulation
of the IL-18 gene was noticed at various time points. Sig-
nificantly higher up-regulation of IL-18 was observed in
CpG treated birds at 72 h postinjection (PI) compared
to the PBS group (1.06-fold vs. 3.6-fold respectively),
whereas, CpG + AvBD1 + CATH-1(6-26) treated groups
showed expression similar to the PBS group. At 96 h post
administration of the immunostimulants, IL-18 gene
expression was significantly higher in birds treated with
CpG + AvBD1 (2.4-fold) compared to those treated with
CpG + CATH-1(6-26) (1.24-fold), CpG + Poly I.C
(1.27-fold), and PBS (1.03-fold). Upregulation of the IL8
gene occurred at the early time points post in ovo injec-
tion (PI) in birds treated with CpG (6-fold and 3.3-fold
at 6 h and 24 h, respectively) and CpG + Poly I:C (2.1-
fold at 6h PI). The IFN-y gene showed higher gene
expressions in CpG and CpG + Poly I:C treated groups
at 6 h (6.9-fold and 2.96-fold, respectively), 48 h (9.1-fold
and 3.1-fold, respectively), and 72 h PI (4.5-fold and 2.8-
fold, respectively). However, statistically significant
expression of IFN-y compared to the control group was
only noticed at 48 h PI.

Experiment 2: Effects of In Ovo
Administration of CpG Alone and in
Combination With Different
Immunostimulants

Hatching Rate The lowest hatching rate was noticed in
the PBS group with 82.05%, while higher rates were
found in all treatment groups including 89.47% (CpG),
84.62% (CpG + CATH-1(6-26) and CpG + AvBD1),
89.47% (CpG + CATH-1(6-26) + AvBD1), and 94.87%
(CpG + Poly I.C) (Figure 3A).

Survival Rate Following administration of CpG alone
or in combination with other immunostimulants, the
CpG + Poly I:C combination provided a significant dif-
ference in protection represented by 72.41% survival
rate after 14 dpc. This was followed by CpG alone and
CpG + CATH-1(6-26) injected groups which showed
65.38% and 60% survival, respectively. Birds receiving
CpG + AvBDI1 (52% survival) and CpG + AvBDI1 +
CATH-1(6-26) (50% survival) showed similar mortality
proportions to the control group (50% survival;
Figure 3B).

Clinical Score Means of CCS for Group F (PBS Con-
trol) was 18.71, whereas, these values in the CpG alone,
CpG + AvBD1, CpG + CATH-1(6-26), CpG -+
AvBD1 + CATH-1(6-26), and CpG + Poly I.C groups
were 11.96, 15.6, 13.32, 14.54, and 10.07, respectively.
Similar to survival rate, CpG + Poly I:C had the lowest
CCS in comparison with the remaining groups
(Figure 3C).

Experiment 3: Enhancement of Protection
Following In Ovo and a Subcutaneous
Administration of CpG + Poly I:C
Combination

The combination of CpG (15ug) + Poly I:C (15 ug)
was chosen to be administered via different routes
including in ovo only, in ovo plus S/C, and S/C only.
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Figure 2. Cytokine expression in spleen tissues at 6, 24, 48, 72, and 96 h post in ovo administration of immunostimulants. Six embryos from each
group per time point were randomly collected for RNA isolation and gRT-PCR. Data represents mean + SEM. Asterisks (*), (**) mean significant
differences with P < 0.05 and P < 0.01, respectively, using one-way ANOVA analysis for comparing data at each time point.

In addition, administration of CpG alone (30 pg) in ovo
and in ovo + S/C in two different groups was included
as standard controls. Following 14 dpc with E. coli via
the intra-navel route, birds in the group treated with
CpG + Poly I:C via the in ovo plus S/C route showed
the highest protection (100% survival rate), followed by
CpG alone (93.33%) and CpG + Poly L:C (89.47%)
injected in ovo only. Similar survival rates were found
in birds receiving CpG via in ovo + S/C (67%),
CpG + Poly I:C S/C only (65%) and those receiving
PBS (53 and 64% for in ovo and in ovo + S/C, respec-
tively; Figure 4).

DISCUSSION

Antibiotics have played a pivotal role in prevention
and treatment of infectious diseases worldwide, how-
ever, their overuse and inappropriate application have
led to progressively increasing antibiotic resistance.
Emergence of various antibiotic-resistant microorgan-
isms has resulted in multiple setbacks for disease treat-
ment, leading to health and economic burdens on
health care systems (Li and Webster, 2018). Recently,
innate immune stimulants have been evaluated and
proven efficacious as alternatives to antibiotics in

several human and animal trials. Immunostimulants
including CpG, Poly I:C, and AMPs have shown many
benefits including antimicrobial activity, wound recov-
ery efficacy, and ability to reduce sepsis (Ichinohe et al.,
2009; Ribes et al., 2010; Allan et al., 2018; Nguyen
et al., 2021). In chickens, stand-alone use of these stimu-
lants has produced positive effects against various
bacterial pathogens such as avian pathogen FE. coli
(APEC), Campylobacter sp., and Salmonella sp. and
shown good adjuvant potential against viral diseases
(Ichinohe et al., 2009; Ribes et al., 2010; van Dijk et al.,
2016; Zhang et al., 2017; Allan et al., 2018; Nguyen
et al., 2021). In this study, we aimed to characterize the
protective efficacies of combinations of these immunos-
timulants using different administrated approaches for
control of YSI in young chicks.

Although the antimicrobial and immunostimulatory
effects of CpG, Poly I:C, and AMPs have been investi-
gated in multiple in vitro as well as in vivo experiments,
the potential toxicity of these immunostimulators has
not been fully understood. In a previous study, we found
that among 6 tested antimicrobial peptides, CATH-1(6-
26) showed the highest in vitro antibacterial activities
and the highest toxicity to chicken macrophage cells
(HD11) at concentrations of 7.5 to 30 ug/mL (Nguyen
et al., 2021). In the current study, AMPs showed lower
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Figure 3. Hatching, cumulative clinical scores and survival rates of the experiment 2. (A) Hatching rates of birds after receiving in ovo treat-
ments of CpG and its combinations. Hatching percent was identified by division of number of healthy hatched birds to total embryonated eggs
in each group. (B) Survival proportions following the challenge with 35 CFU E. coli/bird via the intra-navel route at one-day post hatch (n = 30).
Survival rates were compared at all time-points between treated and control groups using the Gehan-Breslow-Wilcoxon test. (*) means a significant
difference with P < 0.05. (C) Cumulative clinical scores during 14-d post E. coli challenge. Each bird was assigned a daily clinical score as follows:
0 = normal; 0.5 = slow to move; 1 = ruffled feathers, sitting, reluctant to stand, and mouth breathing; 2 = unable to stand or walk, unable to reach
feed or water, wings extended, and difficult breathing; and 3 = found dead. Birds with clinical score of 2 were euthanized for bacterial isolation
and recorded lesion score. Clinical scoring was performed four times a day for the first 6 d postchallenge, and then twice a day until the experiment

termination.

toxic effects to HD11 cells compared to CpG and its
combinations. HD11 cells treated with AvBD1, CATH-
1(6-26), or AvBD1 + CATH-1(6-26) showed up to 36%
cell mortality, however, cells receiving CpG and CpG
combined with Poly I.C, AvBD1, CATH-1(6-26), or
AvBD1 + CATH-1(6-26) had 32% to 81% cell death at
1.56 to 30 pg/mL. In contrast, in ovo administration of
these immune stimulants indicated no or very low toxic
effects to the chicken embryos as indicated by the
improved hatching rates. For instance, the lowest hatch-
ing rate (82.05%) was found in the control chicks receiv-
ing PBS, whereas these rates were higher in the treated
groups (84.62—94.87%). These results are in agreement
with our previous report which showed non-significant
differences in weights and hatchability of chicks treated
with AMPs at a dose of 30 ug/embryo (Nguyen et al.,
2021). Therefore, despite in vitro toxicity shown in an
HD11 cell line, CpG, Poly I:C, AMPs, and their

combinations were shown to be safe for in ovo adminis-
tration in chicken embryos within the tested dose ranges
in the current study.

Previous reports suggest that CpG could promote
strong immune responses against pathogens due to the
enhanced expression of cytokines and chemokines. CpG
administrated via the in ovo route promoted inflamma-
tory responses through enhanced expressions of pro-
inflammatory cytokines such as IL-18, IL-6, IL-18, and
lipopolysaccharide induced tumor necrosis factor
(LITAF) (mainly produced by macrophages when
stimulated by bacterial products) in lungs and spleen
and it was suggested that it could stimulate both Thl
and Th2 types of cytokines (Gunawardana et al., 2019).
In addition, the induction of Th1 type responses follow-
ing intramuscular administration of CpG ODNs in
chicken was also reported (Patel et al., 2008). In our
study, we evaluated the effects of in ovo administration
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Figure 4. Survival proportions of birds receiving CpG or CpG + Poly I:C via different routes. Survival proportions between treated and control
groups were compared at all time-points using the Gehan-Breslow-Wilcoxon test in the Prism 8 sofware (GraphPad Sofware Inc., San Diego, CA).
(*), (**) mean differences with P < 0.05 and P < 0.01, respectively. CpG vs. PBS in ovo (P = 0.0115); CpG + Poly I.C vs. PBS in ovo (P = 0.0126);

CpG + Poly I:C vs. PBS in ovo + S/C (P = 0.0041).

of CpG and its combinations on the expression of three
important cytokines (IL-18, IL-8, IFN-y) in spleen cells.
In agreement with previous reports, our data showed
that CpG alone could stimulate higher expression levels
of all the examined genes than in combination with
AMPs and Poly I:C. In addition, we found that the
expression levels of these cytokines in the CpG group
decreased from 6 h to 96 h postadministration (PA).
Due to the variations in expression among the individual
embryos, CpG injected birds showed only significant dif-
ferences in expression of IL-18 at 72 h PA and IFN-y at
48 h PA. Co-administrations of CpG with other immune
stimulants induced upregulation of these cytokines in a
different manner. For instance, CpG + AvBD1 caused
an increase in IL-18 gene expression at 6 h PA, however,
a statistically significant difference was only noticed at
96 h PA. Two combinations including CpG + CATH-1
(6-26) and CpG + AvBD1 + CATH-1(6-26) showed
increasing expressions of IL-18 and IFN-y, although no
statistical difference was observed. The CpG + Poly I:C
combination also elicited increased expression of these
genes; however, relatively lower expression levels were
observed compared to embryos that received CpG alone.
This difference in gene expression might be a result of
the distinct amounts of each delivered TLR agonists or
the interaction between them. During a bacterial infec-
tion, multiple nonspecific immune responses are involved
such as the recruitment of neutrophils, dendritic cells,
and macrophages and the activation of complement and
cytokine production to eliminate pathogens (Tosi,
2005). Pro-inflammatory cytokines and chemokines
such as IL-18 and IL-8 rapidly induce pro-inflammatory
mediators that play pivotal roles in the first line of host
defenses (Tosi, 2005). IFN-y, a type II interferon, has
both antiviral activity and immunoregulatory functions
(Lee and Ashkar, 2018). Therefore, we assume that
induction of these cytokines and chemokines following in
ovo injection might have led to reduced FE. coli infection
in the experimentally challenged birds.

It is of note that the differences in administration
routes and ages of animals may contribute to differences
in antimicrobial responses of toll-like receptor ligands
(TLR-Ls). In a previous study, antiviral effects of Poly
I:C against avian influenza virus H4N6 LPAIV strain
was observed following in ovo and in vitro administra-
tion, whereas this antiviral effect was absent when Poly
I:C was administered in post-hatched chicks (Ahmed-
Hassan et al., 2018). Administration of CpG in chickens
via a single route such as in ovo, S/C, intramuscular, or
intrapulmonary was previously reported (Gomis et al.,
2003;Goonewardene et al., 2017; Allan et al., 2018;
Nguyen et al., 2021). However, the combination of these
administration methods has not yet been studied. In the
present, study, we investigated the protective efficacies
of these immune stimulants and their combinations
administered in ovo and in ovo followed by a S/C injec-
tion at hatch. Our results from the second in ovo treat-
ments demonstrated that administration of CpG + Poly
I:C (15 pg each/embryo) provided the highest protec-
tive efficacy among various combinations of CpG with
AMPs and Poly I:C. The CpG + Poly I:C treatment
resulted in 72.41% survival rate compared to 50% sur-
vival rate in the control group (PBS) at 14 dpc with FE.
coli via the intra-navel route. In addition, the third
experiment showed that CpG + Poly I:C injected in ovo
and then again S/C at hatch induced a significantly
higher protection (100% survival rate) than when given
in ovo alone (89.47% survival proportion). Interestingly,
we also found that CpG in ovo + S/C and CpG + Poly
I:C only via the S/C route proved to be poorly protec-
tive in the treated chicks (67% and 65% survival rates,
respectively). Thus, CpG treatment was more effective
via in ovo injection than in ovo 4+ S/C, whereas the com-
bination of CpG + Poly I:C resulted in the highest pro-
tection when given both in ovo + S/C, and was only
moderate efficacy when delivered by in ovo only.

Poly I:C has been well characterized as an antiviral
agent by activation of both innate and adaptive immune
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responses in animals. However, Poly I:C has also shown
protection against multiple bacterial infections. For
instance, Ribes et al., 2020 demonstrated that adminis-
tration of Poly I:C induced protection of immunocom-
promised mice against E. coli meningitis (Ribes et al.,
2020). Poly I:C increased expression of RANTES (Regu-
lated upon Activation, Normal T cell Expressed, and
Secreted, also known as CCL5), IFN-y, recruitment of
natural killer (NK) cells, and also increased microglial
numbers, resulting in a more effective clearance of the
pathogen (Ribes et al., 2020). Similarly, feeding turbot
(Scophthalmus mazimus) a low-dose of 0.00125% Poly I:
C for 4 wk induced a stronger inflammatory response,
long-term protection against Fdwardsiella piscicida, and
alleviated white feces syndrome after 3 to 7 wk resting
period (He et al., 2021). In chickens, recent reports
showed that chicks receiving Poly I:C via in ovo injec-
tion had higher survival rates than those in the control
group after an E. coli infection (Allan et al., 2018; Sar-
fraz et al., 2022). A previous study in chickens showed
that after Poly I:C treatment, AvBD2, 11, 12, 18,
CATH2, CATHB1, and LEAP2 (liver-expressed antimi-
crobial peptide 2) significantly increased in bone mar-
row-derived cells (BMCs), and AvBD2, 3, 6, 9, 11, 12,
13, 14, CATHI1, CATH3, CATHB1, GNLY (chicken
NK-lysin), and LEAPZ2 increased in chicken embryonic
fibroblasts (CEF's) (Jang et al., 2020). Moreover, Poly
I.C stimulates the activity of various immune cells,
including macrophages (Reimer et al., 2008), dendritic
cells (DCs; Pulko et al., 2009), natural killer (NK) cells
(Akazawa et al., 2007), and y8T lymphocytes (Shojaei
et al., 2009). Therefore, a combination of Poly I:C and
CpG could enhance the protection against F. coli chal-
lenge in day-old chicks. Moreover, we believe this is the
first report showing that repeated CpG + Poly I:C injec-
tion after in ovo administration was more effective than
a single dose. These results will facilitate further studies
to evaluate protective efficacy of the combination of
CpG + Poly I:C for control of other bacterial and viral
pathogens in the poultry industry. In addition, this com-
bination may be useful as a vaccine adjuvant for chick-
ens as well as other animals.
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