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Abstract

Drug combination therapies can improve drug efficacy, reduce drug dosage, and overcome

drug resistance in cancer treatments. Current research strategies to determine which drug

combinations have a synergistic effect rely mainly on clinical or empirical experience and

screening predefined pools of drugs. Given the number of possible drug combinations, the

speed, and scope to find new drug combinations are very limited using these methods. Due

to the exponential growth in the number of drug combinations, it is difficult to test all possible

combinations in the lab. There are several large-scale public genomic and phenotypic

resources that provide data from single drug-treated cells as well as data from small mole-

cule treated cells. These databases provide a wealth of information regarding cellular

responses to drugs and offer an opportunity to overcome the limitations of the current meth-

ods. Developing a new advanced data processing and analysis strategy is imperative and a

computational prediction algorithm is highly desirable. In this paper, we developed a compu-

tational algorithm for the enrichment of synergistic drug combinations using gene regulatory

network knowledge and an operational module unit (OMU) system which we generate from

single drug genomic and phenotypic data. As a proof of principle, we applied the pipeline to

a group of anticancer drugs and demonstrate how the algorithm could help researchers effi-

ciently find possible synergistic drug combinations using single drug data to evaluate all pos-

sible drug pairs.

Introduction

Drug combination therapy is becoming an important tool in cancer treatment. With the emer-

gence of cancer cell resistance to the front line of anticancer drugs and the slow process of new

drug discoveries via traditional drug developing methods, synergistic drug combinations offer

a potential treatment optimization against drug resistance and side effects. As a result, there is

an increasing interest in screening the expansive combination of both approved drugs and

other potential therapeutic agents. A synergistic drug combination means the overall therapeu-

tic effect of the combination is greater than the simple sum of effects caused by individual

drugs [1].
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To find synergistic drugs, both in vitro and in silico methods have been widely used to

screen potential drug combinations. Most in vitro methods are based on previous knowledge

of the drugs, such as the drug target, drug side effects, and drug chemical structure. This is the

most common method used by many academic laboratories in their drug research. Addition-

ally, high-throughput screening of numerous drug combinations to profile their phenotypic

effects on cell lines or primary patient-derived cells has also been used [2,3]. Many pharmaceu-

tical companies and translational researchers have invested significant resources to screen

thousands of drug combinations. Alternatively, a number of computational approaches have

been developed to help prioritize drug pairs from many candidates in order to minimize cost

and the time of high-throughput screening methods as well as increase the efficiency of the

experimental design. Lezon’s lab uses Probabilistic Matrix Factorization (PMF) to predict the

effects of drug combinations in a full symmetric matrix, in which each row and each column

of the matrix corresponding to a drug, and the elements are the effects of the drug combina-

tion. They successfully predicted the missing values of the rest of the drug pairs by knowing

the effects of only 50% of drug combinations [4]. DECREASE predicts the full dose-response

matrices by measuring only the matrix diagonal of drug combinations [5]. They decrease cost

by either decreasing the number of the tested drug combinations or minimizing the size of the

dose-response matrices.

However, there are two significant issues with these methods that prevent drug combina-

tion research from effectively exploring new products for clinical operation. First, they all rely

heavily on previously known knowledge of the drug. In reality, the effects of most of the drugs

are not fully understood with some of them misguided due to the limitations of the scientific

methods used by the researcher [6,7]. Additionally, due to the limited number of known

drugs, the investigators have been restricted to a small pool of candidates. At the same time,

the current standard for evaluating drug combination synergistic effects requires a multi-dose-

response matrix experiment. The low-throughput nature of this experiment makes screening a

large number of drugs costly and slow. Second, the number of conceivable drug combinations

increases rapidly along with the number of drugs in consideration, even though the high-

throughput screening methods combined with in silico computational algorithms substantially

improved the capacity of the drug combination screening. Considering the number of avail-

able drugs and small molecules, dose ranges, and cell lines for screening, the possible combina-

tions increase exponentially. Thus, it requires extensive resources and instrumentation and

easily exceeds the number of resources in an academic laboratory.

For these reasons, several computational approaches that prioritize the synergistic drug

combinations based on individual drug effects have been published. A community based-com-

petition called the DREAM Challenge was launched to help the development of drug combina-

tion prediction methods [8,9]. Several methodologies show that their predictive ability is

significantly better than random. Additionally, they find that the gene expression profile from

individual drug treatment can be used to predict the effects of drug combinations. At the same

time, the transcriptional and phenotypic responses have been reported to correlate with each

other [10]. Furthermore, Diaz et al observed that the correlation of gene expression of mono-

therapies is associated with the synergy of the combinations in their dataset [11]. So it is rea-

sonable to expect that gene expression profiles can provide the predictive power for drug

combination prediction.

Recently, pharmaceutical companies created a large number of small molecules for screen-

ing. Several consortia have generated large-scale data repositories, such as gene expression

data, to store molecular information about the response of many human cell lines to perturba-

tions from both FDA-approved drugs and small molecules (e.g., LINCS and CTD2) [12,13].

The Library of Integrated Network-based Cellular Signatures (LINCS) project used the L1000
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technology [14], screened more than twenty seven thousand perturbations (e.g. small mole-

cules and drugs), and produced 1.3 million gene expression profiles using a panel of cell lines

[12]. The data generated for this project includes gene expression data before and after treating

multiple human cell lines with these drugs/molecules. Given the scope and size of this data-

base, integrating data from a single drug treatment into an algorithm to prioritize possible syn-

ergistic drug combinations and provide the molecular signatures of many known drugs and

uncharacterized compounds will offer a cost and time-saving strategy to find synergistic drug

combinations in these perturbations. The primary aim of this study is to develop an unbiased,

high-performance enrichment model for drug combinations that uses single drug-treated

data.

To achieve this goal, we developed an Operational Module Unit (OMU) system and then

use this system to build a linear model to prioritize drug pairs with synergistic effects from all

possible single drug combinations (Fig 1). We use the OMU system to connect the cell gene

network alterations with the phenotype changes. The OMU system will allow us to directly

compare the effect of single-drug therapy to the cell and infer the drug combination effect.

The process of generating the OMU system starts by creating a gene regulatory network

(GRN) for each drug-cell line combination for both treated and non-treated groups. The GRN

is a bipartite graph consisting of two types of nodes: transcription factors (TF) and genes (S1

Fig). The edge between the TF and gene indicates how strong the TF affects the gene in the

GRN. Using the GRN, not only are the differentially expressed genes meaningful but also the

non-altered genes as all the information of the gene expression profile is integrated into the

Fig 1. Schematic of the algorithm pipeline. (a) Re-construction of GRNs. (b) Generation of differential network. (c) Create an

OMU system. (d) Create the drug OMU vector. (e) Linear model (f) Calculate the ILR for combined OMU vector. (g) GIS calculation

(h) DGIS calculation (i) Sorting based on DGIS.

https://doi.org/10.1371/journal.pone.0266382.g001
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GRN. A GRN reflects the complex cellular processes and defines the cellular response to a par-

ticular phenotype. The differences in GRN structures can reflect the altered biological pro-

cesses changed between phenotypes (e.g. drug vs no drug). For example, a GRN analysis

between cell lines and their tissues of origin has uncovered regulatory differences [15]. Net-

work analysis-based approaches have also been used to find sex-specific regulatory features

and differences in regulatory processes involved in drug metabolism between healthy tissues

and disease [16,17]. To generate the GRN for our algorithm, we integrated three types of data

using the PANDA algorithm [18] for each cell-drug combination. We integrated gene expres-

sion profiles, protein-protein interactions (PPI), and gene regulatory relationship datasets to

estimate transcriptional networks that distinguish two cellular states (e.g. with or without a

drug). PANDA generates accurate GRNs as described by Glass et al. [18].

Next, we extrapolated the differential networks between GRNs of drug-treated and non-

treated cell lines. In our algorithm, we are not looking for the individual gene changes or the

individual TF-gene alteration. We are searching for the "module" alteration of the GRN in a

cell after being treated by a drug. Some GRN subnetworks have a higher density of connectiv-

ity than other parts of the network, and these subnetworks are called “modules”. All the genes

in a module work together to carry out cellular functions. In response to an external stimulus,

an individual TF/gene may change its expression level or switch its co-regulated genes to

maintain the dynamic balance of the network. This alteration of the network can be detected

by the changing of modules and reflects the phenotypic changes of the whole cell [19]. In this

step, we identified changes in the modules by calculating the “differential modularity” in com-

parison to the drug-treated GRN with non-treated GRN using the ALPACA (ALtered Parti-

tions Across Community Architectures) algorithm [19]. The ALPACA algorithm compares

the whole structure of two networks to discover differential gene modules.

Those differential gene modules were used to construct the OMU system. Each comparison

from ALPACA generates a differential gene network that contains many differential gene

modules. The similar differential gene modules will correspond to similar phenotypic alter-

ations. We grouped the similar differential gene modules together and refer to them as an

OMU. Subsequently, all the differential gene module-based OMUs were used to establish the

compendium of OMUs that were identified for the drugs assayed. We call this collection of

OMUs an OMU System (Figs 1C and 2B). In order to make the comparisons between different

drug combinations possible, each drug-cell differential GRN was converted to an OMU vector.

The OMU system is used to quantitatively connect the genomic (GRN) alteration with pheno-

type changes in the next step (Fig 1D).

We selected a drug-dose response phenotype (growth rate) to use in our algorithm. The

growth rate is the most popular phenotype being used to study the effect of drugs on a cell.

The growth rate directly reflects the cell’s response to the drug. We used the normalized

growth rate inhibition (GR) algorithm which quantifies the cellular response to the drug [20].

The GR algorithm has shown good results for accessing the effects of a drug in dividing cells

[20]. GRmax measures the maximal drug effect on growth rate and it falls between 1 and -1.

The character of the defined range makes GRmax suitable for mathematical calculations. To

test our algorithm, we selected the breast cancer cell line MCF7 as our model. MCF7 is a well-

studied breast cancer cell line and it has been included in many datasets, including LINC. In

LINC, MCF7 is one of their five core model cell lines and has been examined by gene expres-

sion profiling by L1000 under many perturbations [14]. We randomly selected 57 drugs which

have gene expression data in L1000 as our test dataset. All selected drugs were applied to

MCF7 respectively to calculate the GRmax of the drug. We argue that each differential gene

module in a GRN of a cell proportionally represents the GRmax of the whole cell. Similar differ-

ential modules from various drug treated samples should have similar contributions to the
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growth rate of the cells. To assign the growth rate value to an OMU, we created a new quantity

called “mean GRmax”, which is the sum of the proportional GRmax values of the modules

included in an OMU in the OMU system. (See Materials and Methods). In the OMU system,

each OMU has three elements: 1) the structure: which presents the network of differential

gene modules, 2) the members: indicates which differential gene modules belonged to this

OMU, and 3) the mean GRmax of the OMU. Based on the mean GRmax and using hierarchical

clustering, all OMUs were grouped according to their difference in mean GRmax and would be

used in the next steps to investigate how these OMUs change in each drug treated sample with

respect to GRmax (Figs 1C and 2B).

In order to explore the relationship between the alteration of the GRN (represent by the

OMU vector) and cell phenotype (GRmax) changing, we introduce the concept of balance

trees and the isometric log ratio (ILR) transformation. In the OMU vector, the activity levels of

each individual OMU are not independent from each other and the change in the relative

activity of one OMU could influence the apparent activity of the others. This compositional

character of the data makes it hard to find correlations between a single OMU and GRmax.

Additionally, the OMU vectors are sparse vectors (Fig 2D), meaning there are few OMUs pre-

sented in all vectors which make it problematic for statistically detecting relationships between

an OMU and GRmax. To solve the compositionality problem, J.J Egozcue et al introduced the

balance concept as an exploratory technique in geology [21]. Further, Morton et al used it in

their research of the soil microbiome. They applied the balance and balance tree concept to

study the relationship between soil microbiomes and soil pH, which infers the relative changes

of microbial sub-communities along with the pH change [22]. We adapted their concept and

Fig 2. Flow chart to construct the OMU system and drug OMU vectors. (a) Modules of the drug (b) Structure of the

OMU system (c) Drug OMU vector (d) Combine two drug OMU vector.

https://doi.org/10.1371/journal.pone.0266382.g002

PLOS ONE Model for prioritization of drug combination

PLOS ONE | https://doi.org/10.1371/journal.pone.0266382 April 5, 2022 5 / 22

https://doi.org/10.1371/journal.pone.0266382.g002
https://doi.org/10.1371/journal.pone.0266382


extended it to the OMU system. Based on the hierarchical clustering of the OMU system, we

were looking for the balance (ILR) between the OMUs of the left branch (associated with cell

death) and the OMUs of the right branch (associated with partial inhibition) at various points

(triangles) (S2 Fig). Balance is the concept we use to show the dynamic changing of the OMU

vector. ILR transformation is the mathematical method for calculating the value of the balance.

ILR transformations work on compositional data and can transform high dimensional data to

1 dimension, allowing us to apply a linear regression. Based on which point is used to calculate

the ILR, different subgroups of the OMUs would be included in the calculation. For instance,

the balance using the black triangle only assesses the blue and orange subgroups while the bal-

ance calculated using the red triangle includes all subgroups (S2 Fig). Since our OMU vectors

are sparse vectors and we wanted to include all the OMUs in our analysis, we used the root

point in order to include all the OMUs in our study. The point at the red triangle had been

used to obtain the balance between the high mean GRmax and the low mean GRmax modules.

The balance from all drug treated samples was calculated using an ILR transformation and

then used to fit a linear regression model with GRmax. This transformation and linear regres-

sion allowed us to not rely on the correlation between differentially expressed genes and

GRmax, but instead inferring the correlation between GRmax and the change in OMUs (a

change in the balance). This helps us capture the dynamic changes of all OMUs under the

branch. The balance between the high mean GRmax and the low mean GRmax modules are cal-

culated using the ILR transformation.

To find the linear relationship between GRmax and the changing of the OMUs in each

OMU vector, we first calculated the ILR for each drug OMU vector. Then we used the

GRmax−phenotype of the cell and ILR–genotype of the drug to fit a linear model (Fig 1E). This

linear model illustrated the relationship between ILR and GRmax which came from a single

drug treatment data and would be used to predict two-drug combination effects via computer

simulation.

Finally, based on the OMU system and linear model, we created a scoring system to priori-

tize the two-drug synergistic combinations (Fig 1F–1H). First, we used all the single-drug

OMU vectors to create the simulated two-drug OMU vector for all pairwise combinations

(Figs 1F and 2D). Second, we calculated the ILR for each simulated two-drug OMU vector.

Third, we assessed the “simulated GRmax” based on the previously derived linear equation. We

called this “simulated GRmax” the Growth Impact Score (GIS) to prevent confusion. We now

have the GIS for all pairwise two-drug combinations (e.g. Epirubicin/Vemurafenib) as well as

each combination from the single drug paired against itself (e.g. Epirubicin/Epirubicin,

Vemurafenib/Vemurafenib). Since our goal was to investigate synergistic drug combinations,

we expect the effect of two different drugs to be greater than the sum of their individual effects.

We want to find the drug pairs which decrease the GIS. By comparing the GIS from two dis-

tinct drug combinations with the GIS from their corresponding single drug combinations, we

could estimate their predicted growth change. We call this the differential growth impact score

(DGIS) (Materials and Methods). The DGIS is inferred from the GRmax with the more negative

the value, the higher effect of the drug on growth (cell death). We ranked the two-drug combi-

nations based on their DGIS score with lower scores having a higher ranking. To evaluate how

well the algorithm enriched for synergistic drug combinations, we picked the top 30 ranked

drug combinations in the DGIS list and used the zero interaction potency (ZIP) model to iden-

tify true synergistic combination [23]. The ZIP model is a gold standard and captures the

change in the dose-response curves between individual drugs and their combinations to give

an estimate of synergy or antagonistic effect. In order to assess our algorithm relative to ran-

dom chance, we randomly selected 10% (160) of all possible pairwise drug combinations

(1596) from the data and tested these combinations using the same ZIP model. These
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randomly selected drug pairs were used to calculate an enrichment score corresponding to the

list of top synergistic drug combinations.

Materials and methods

Cell line and tissue culture

Frozen MCF7 cells were obtained from the ATCC and grown according to ATCC recommen-

dations. The cell lines were maintained in DMEM media (Gibco) with 10% serum (Gibco) at

37˚C with 5% CO2 in a humidified incubator. Before the experiment, the cell line was passed

twice after thawing.

Measure drug response in MCF7

MCF7 cells were seeded in 96 well plates at 3000 cells per well and grown overnight allowing

them to adhere and recovered from trypsin treatment. Cells were treated with a dilution series

of the indicated drugs. After 72 hours of incubation, cell viability was measured using the

CCK8 assay [20]. Briefly, after removing the medium from the 96 well plate, fresh medium

with 5% CCK8 was added to the wells and incubated for 4 hours. Absorbance at 450 nm was

measured using a BioTek Synergy H1 microplate reader. The drug growth rate inhibition was

calculated following the GR metrics algorithms [20]. The formula to assess growth rate metrics

(1) calculates the ratio between growth rates under treated and untreated conditions normal-

ized to a single cell division.

GR c; tð Þ ¼ 2
kðc;tÞ
kð0Þ � 1 ð1Þ

Where GR(c, t) is the GR value at time t in the presence of the drug at concentration c and

k(c, t) is the growth rate of drug-treated cells and k(0) is the growth rate of untreated control

cells.

Synergy scoring and detection

In this study we used a total of 57 cancer drugs to assess the algorithm. A list of the tested

drugs with their concentration ranges is shown in S1 Table. The drug-specific concentration

ranges were selected based on the single-drug cell response curve in MCF 7 cell line, which

were used for defining a range of active and inactive concentrations for these drugs. The drug

combinations were tested in a 6 X 6 matrix in MCF 7 cells as described in Bhagwan’s paper

[23]. The dose-response matrix data was used to calculate the synergy score, which were calcu-

lated using SynergyFinder R package [23,24]. SynergyFinder fit the data in a zero-interaction

potency (ZIP) model allowing us to calculate a delta score to assess the drug combinations syn-

ergy effect. The summary delta score (ZIP score) is between -1 (antagonist) and 1 (synergy),

indicating the percentage of the extra effect of a drug combination compared to the expected

effect.

Network and Operational Module Unit (OMU) system

Regulatory gene network reconstruction. We used the PANDA algorithms to construct

gene regulatory networks for each drug treated and non-treated cell [18]. The analysis was

accomplished in R using the panda function in the pandaR package. The parameters of panda

were set as their default value except “mode” was set to “intersection”. The networks were gen-

erated from integrating three types of data: 1) TF/target gene regulatory database; 2) protein-

protein interaction data; and 3) gene expression data. The TF/target gene regulatory database
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was combined from three literature curated data bases: Transcriptional regulatory relation-

ships unraveled by sentence-based text-mining (TRRUST) [25], the Open Regulatory Annota-

tion (ORegAnno) database [26], and the Human Transcriptional Regulation Interactions

database (HTRIdb) [27]. Protein-protein interaction data was from StringDb v10. To mini-

mize the effect of the false-positive data generated, we only keep the interactions derived from

experimental data. The gene expression profiles of the drugs were downloaded from the public

LINCS L1000 dataset website (lincscloud.org) [14]. After running the panda function, we

extracted the gene regulatory network from the “panda” object for the next step.

Differential network generation and module discovery. To assess the altered gene regu-

latory networks between the drug treated and non-treated cell, the ALPACA (Altered Parti-

tions Across Community Architectures) algorithm was used [19]. ALPACA compares the full

network structures active in each condition-specific network to find differential gene modules.

ALPACA is comprised of three steps: 1) Finding the modules in the baseline condition using

methods based on maximizing the modularity. 2) Calculating the “differential modularity”

score. This score compares the number of edges in a module from the drug treated cell to the

expected number of edges based on the pre-computed community structure of the base line

network from step 1. 3) Apply the Louvain optimization algorithm to iteratively aggregate the

nodes into modules [28]. Here, we compared each drug treated cell with the non-treated one,

respectively. In each comparison, there were 15 to 19 differential gene modules found. These

differential gene modules contained dense communities of genes that carryout cellular func-

tions corresponding to the effects of the drug on the whole gene regulatory network. The edge

weight in the module is the differential modularity score, which presents the contribution of

the edge to the alteration of the module, and will be used in the next step.

Construct the Operational Module Unit (OMU) system and drug OMU vector. Mod-

ule-based analyses aim to incorporate information about gene connectivity. Under the

assumption that genes within modules are cross-correlated, the same gene network should

perform similar cellular functions and will contribute to the same cellular phenotype. We

applied the Jaccard Index to detect similar edges between the modules. A similar edge is

defined as a link in the module with the same nodes on both ends. In Eq 2, J is the Jaccard

index which lies between 0 and 1 where 0 represents complete difference and 1 represents the

exact same.

J A;Bð Þ ¼
jA \ Bj
jA [ Bj

¼
jA \ Bj

jAj þ jBj � jA \ Bj
ð2Þ

A and B are two modules, which are generated from the comparisons between drug treated

GRN and non-treated GRN. Union of A and B, which is a group of shared edges between

modules A and B, is a subnetwork in both modules. We defined these similar gene subnet-

works as an operational module unit (OMU). Each module can have multiple OMUs, which

reflect the different cellular functions of these modules. At the same time, each differential net-

work contains multiple modules and hence contains multiple OMUs (Fig 2A). All OMUs gen-

erated from the data form an OMU system (Fig 2B). In each OMU, they contain three pieces

of information: 1) Structure: this represents the network that contains all similar edges of dif-

ferential gene modules, 2) Member: this stores all differential gene modules containing the

edges in the structure parts of this OMU, from various samples, and 3) Mean GRmax of this

OMU.

Once the OMU system has been built, the OMU vectors for each drug treated sample will

be generated according to the location of its modules in the OMU system. (Fig 2C) The drug

OMU vector is a sparse vector: an OMU which contains the differential gene modules in the
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differential network has a non-zero value, which is the sum of differential modularity scores of

all edges in the module; the OMU which does not contain a differential gene module has been

assigned a zero value.

Calculating the mean GRmax for each OMU. The mean GRmax of each OMU used in this

study was calculated as follows: (Eq 3)

mean GRmax OMUð Þ ¼
Xn

i¼1

GRi
Xi

Pm
j¼1

Yj
ð3Þ

There are n numbers of modules in the OMU. Module Xi is a member in the OMU. GRi is

the GRmax of the sample i which contains module Xi. In this sample, there are m numbers of

modules. Xi and Yi is the sum of differential modularity score of all edges in modules i and j.

Isometric log ratio (ILR) transformation and linear regression. The core data analysis

is to transform compositional data from multiple dimensions into one dimension where stan-

dard statistical tools can be applied [21]. The ILR transformation is a method which trans-

forms compositional data into one dimension. We calculated the ILR using the OMU

hierarchical clustering based on mean GRmax using the following formula:

bi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jiLjjiRj
jiLj þ jiRj

s

log½
gðiLÞ
gðiRÞ

� ð4Þ

where bi is the balance at internal point i, iL is the set of all OMU proportions contained in the

left subtree at internal point i, iR is the set of all OMU proportions contained in the right sub-

tree, g(x) is the geometric mean of all the proportions contained in this vector, |iR| is the num-

ber of OMUs contained in iR, and |iL| is the number of OMUs contained in iL. For each drug

OMU vector, we calculated their ILR at the selected point of the OMU vector. The correlation

between ILR and GRmax from all samples was calculated. The linear regression between ILR

and GRmax was performed with lm function in R and a fitted linear model was used to predict

the effect of the two-drug combinations.

Two drug combinations and Differential Growth Impact score (DGIS)

The task of estimating the effect of the drug combinations was implemented using the linear

function calculated from the previous step. To accomplish this, we performed the following

steps: 1) Single drug OMU vectors were combined pairwise to generate two-drug combination

vectors through vector addition in which common OMU elements would take the larger value

of the two OMUs from each vector (Fig 2). The new two-drug combination OMU vector had

the same length as each single OMU vector. The value of each OMU in the vector was normal-

ized to percentage values of each OMU over the total OMUs in the vector. In addition to creat-

ing the two-drug OMU vector, we also calculated a vector combination for each of the single

drug OMU vectors with itself (Fig 1F), which was mathematically the same as the single drug

OMU vector; 2) We calculated the simulated ILR for all two-drug OMU vectors; 3) By using

the linear model from the single drug data, we calculated the Growth Impact Score (GIS) for

each two-drug combination OMU vectors based on the simulated ILR; and 4) The differential

growth impact score (DGIS) was calculated using the GIS from the two drug combinations

compared with the GIS of the two individual single drug vectors (Fig 1F–1I).

An example of how we calculated the DGIS for the two-drug combinations is shown in Fig

3. The calculated two-drug combination DGIS is based on the regression line calculated previ-

ously. In this example, we compare where the calculated GIS from the two-drug combination

(Drug1/2) is on the regression line relative to the individual single-drug combinations from
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the same drugs (Drug1/1 and Drug2/2). In this example, single Drug1 has a more negative

impact on cell growth than single Drug2. Based on where the calculated GIS for the two-drug

combination (Drug 1/2) is relative to the single drugs we can estimate the two-drug combina-

tion’s effect on growth. There are three possible locations for the GIS of the two-drug combi-

nation (Drug1/2): 1) it can be less than Drug1/1, which indicates the combination of Drug 1/2

tends to have more negative effects on cell growth (i.e. Drug 1 had a more negative effect on

growth than Drug 2). The difference of the GIS between Drug 1/2 and Drug1/1 is called the

differential growth impact score (DGIS) and will be negative; 2) if the Drug 1/2 location is

between Drug1/1 and Drug2/2 on the regression line, this indicates that Drug1/1 and Drug2/2

affect the cell growth independently, the DGIS is set to zero; 3) if the Drug 1/2 location is more

than Drug2/2, this suggests that the Drug1/2 combination will have a less negative effect on

cell growth and the DGIS will be positive. The DGIS of all pairwise drug combinations was cal-

culated based on the effect of the two-drug combinations on growth rate relative to the indi-

vidual single drugs.

Results

The GRmax of anticancer drugs show heterogeneity in their cellular

response

We selected the GRmax from the growth rate (GR) inhibition algorithm as an indication of the

cellular response to anticancer drugs (20). GRmax captures the maximal drug effect on growth

rate and has a defined range of -1 to 1. It can easily be integrated into our algorithm in order to

calculate the mean GRmax of the OMUs and has an interpretable meaning on cell growth. A

total of 57 randomly selected anticancer drugs were applied to the breast cancer cell line

MCF7. Fig 4 presents the GRmax of each drug used in the study. The distribution of the calcu-

lated GRmax on MCF7 cells indicates that most drugs either inhibit cellular growth (0 < GRmax

<1) or kill the cells (-1< GRmax < 0). A number of drugs had GRmax close to 1, suggesting

they do not substantially affect cellular growth of MCF7. Including these drugs in the analysis

Fig 3. Schematic diagram of how to calculate the DGIS.

https://doi.org/10.1371/journal.pone.0266382.g003
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could potentially expand the number of possible candidate drug pairs. Our data showed no

bias in the range of GRmax.

Reconstruct single drug treated cell gene regulatory networks and generate differential

networks. We performed a gene regulatory network (GRN) analysis using PANDA in order

to construct gene regulatory networks for each individual drug-cell combination and deter-

mined the differential networks between the single drug-cell combination and their non-

treated counterparts using ALPACA [18,29]. In the cell, genes interact with each other to form

a network in order to maintain normal cellular functions. Cellular gene networks would be

altered in response to external environmental changes (i.e. a drug) in order to maintain cellular

continuity. These alternate networks include not only the differential gene expression changes

but also the gene regulatory changes, which contained translational factors switching their

partners instead of changing their expression level as well as the translational factors changing

their targeted genes. Gene regulatory network analysis can detect these alterations and dis-

cover the relationship between biological phenotype and genotype.

PANDA uses a message-passing algorithm that utilizes a non-weighted TF-GRN and inte-

grates protein-protein interaction data and gene expression data to form a weighted TF-GRN.

Fig 4. GRmax distribution of the 57 drugs sorted by GRmax value.

https://doi.org/10.1371/journal.pone.0266382.g004
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In the weighted TF-GRN, each edge connects a TF to a target gene, and the edge weight reflects

the strength of the regulatory relationship (S1 Fig). In our data, each GRN contained 833

genes and TFs and total 167620 edges. We determined 57 GRNs from drug treated cells and 1

GRN from non-treated cell. The weight of the edges was a z-score calculated by setting param-

eter “zScale = TRUE” when we ran PANDA in R.

We then applied ALPACA to compare each of the drug treated GRNs with the non-treated

GRN. ALPACA compares the full network structures active in each condition, computes a dif-

ferential modularity matrix Dij for the treated network relative to the non-treated network and

determines differential gene modules through a Louvain algorithm [19]. A total of 57 compari-

sons were done and each comparison generated 15 to 18 differential gene modules with a total

of 866 modules determined for all the drug-cell combination data. Each differential gene mod-

ule comprised various nodes (genes) and edges that contributed to the altered cellular response

of the MCF7 cell under each drug treatment.

Creating the Operational Module Unit (OMU) system, OMU vector, and

calculating the mean GRmax

We created the OMU system based on the similarity of the differential gene modules (Fig 5).

Similar edges are the edges in the differential gene network which link the same TF and gene.

The OMU is defined as a sub network which includes a group of similar edges. We started

with the similarity matrix of the differential gene module and sorted the module pairs based

Fig 5. Heat map showing the similarity of the differential gene modules. Both x and y axis are individual modules.

https://doi.org/10.1371/journal.pone.0266382.g005

PLOS ONE Model for prioritization of drug combination

PLOS ONE | https://doi.org/10.1371/journal.pone.0266382 April 5, 2022 12 / 22

https://doi.org/10.1371/journal.pone.0266382.g005
https://doi.org/10.1371/journal.pone.0266382


on the similarity score from highest to lowest. In this way, we could increase the specificity of

the OMU. The pseudocode of construction of the OMU system is shown in S2 Table. After

building the OMU system, the mean GRmax of each OMU was calculated based on Eq 3. We

performed hierarchical clustering of all OMUs based on their mean GRmax in order to under-

stand the OMUs relationship to their mean GRmax value (Fig 6).

Once the OMU system was built, we next generated single drug-cell OMU vectors. Briefly,

each differential gene network had multiple modules and these modules belong to different

OMUs in the OMU system (Fig 2). The location of the modules in the OMU system indicated

which OMUs had value. Finally, all 57 drug-cell differential networks were transferred to 57

OMU vectors. Since all OMU vectors contained zero values, they were all sparse vectors. All

OMU vectors were plotted together based on mean GRmax of the OMU and GRmax of the drug

(Fig 7). We noticed that some OMUs were common and found in most OMU vectors while

several OMUs were unique and appeared only in one combination. A clear trend could also be

observed in Fig 7, namely that the OMU vectors of the drugs with negative GRmax (negative

growth) tended to have more OMUs correlated with negative mean GRmax. To further investi-

gate this tendency and relationship between OMU and GRmax, we performed an ILR transfor-

mation of the OMU vector.

Isometric log ratio (ILR) transformation and linear model

The weighted regulatory gene network built by PANDA used data from three different data-

bases, including gene expression data. The gene expression data quantifies the relative abun-

dance of individual gene activity and reflects how genes change in response to a drug. The

compositional nature of the data inherent in the OMU system provides a challenge for directly

applying statistical methods on them. As mentioned before, ILR transformation of the OMU

system can transform high dimensional data to a one dimensional form and be analyzed by

standard statistical methods [19].

Fig 6. Hierarchical clustering of the OMUs in the OMU system based on mean GRmax.

https://doi.org/10.1371/journal.pone.0266382.g006
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In order to accomplish the ILR transformation, we need to pick a balance point on the

mean GRmax hierarchical cluster of the OMU vectors that allows us to assess the modules that

inhibit growth relative to the modules that don’t. From Fig 6, we determined that some OMU

vectors in the range of mean GRmax less than -0.5 or greater than 0.5 do not have non-zero

OMUs. Since ILR transformation requires non-zero values on both sides of the balance point,

we picked all points which had mean GRmax between -0.5 and +0.5 to calculate the ILR for all

drugs and determine the optimum balance point for this OMU cluster. At each point, the ILR

was calculated for all 57 drug OMU vectors. To identify the optimal balance point, each set of

ILRs generated at each cut point was used to calculate the correlation between ILR and GRmax

of the drug. The optimal balance point was determined to be at OMU92, which had mean

GRmax, of -0.140 and is negatively correlated with the overall GRmax (r = -0.714). (Fig 8).

Finally, this optimal balance point was used to calculate the ILR of each drug-cell combination

and fit a linear model (Fig 7). Through ordinary least-squares analysis on the ILR, the GRmax

could be predicted via ILR alone with an R2 of 0.51, which suggested that ILR alone explained

Fig 7. The OMU vectors for all 57 drugs.

https://doi.org/10.1371/journal.pone.0266382.g007
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over 51% of the total variation in the entire differential network. This linear model was used to

predict the effect of the two-drug combinations.

Generate the differential growth inhibition score (DGIS)

From the previous section, we determined the linear model that reflects the relationship

between the gene network (ILR) and phenotype (GRmax) from the single drug treated cells.

Next, we used this model to calculate the DGIS for the two-drug combinations using the fol-

lowing steps. 1) We calculated all pairwise single drug OMU vectors (two drug combinations)

and updated the values for each OMU element in the vector by using the max value between

the two single drug OMUs in the combined OMU vector (Fig 2). We assumed that each drug

individually affected the OMU when combining the two drugs. If an OMU was found in only

one drug, the combined value would be the value from this drug. If an OMU was found in

both drugs, we used the value with the larger affect. All 1596 two-drug pairwise combined

OMU vectors were generated as well as 57 OMU vectors for the samples treated with a single

drug for a total of 1652 OMU vectors that represent all possible combinations. 2) The ILR for

all two-drug pairwise combinations was calculated using Eq 4 at the optimal balance point on

Fig 8. Linear regression of ILR of a drug OMU vector against GRmax of the same drug.

https://doi.org/10.1371/journal.pone.0266382.g008
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the OMU cluster determined previously. 3) Based on the linear equation (Fig 8) and ILR, we

calculated the GIS of all the pairwise drug combinations. Since we combined two drug-cell

OMU vectors, the predicted GRmax value was no longer limited to -1 to +1. Therefore, this cal-

culated value was designated as the growth inhibition score (GIS), which indicates how much

impact the two drugs would have on MCF7 growth when treated together. 4) Our goal is to

find the synergistic drug combinations in the drug pairs. A synergistic effect means the inhib-

ited growth rate of the combined drugs is greater than what is expected from the single drugs.

We compared the GIS of the two-drug pair combinations with their corresponding single

drug pairs (Fig 3) and calculated the DGIS for each two drug pair combination. The distribu-

tion of the DGIS from 1596 drug pair showed an approximately normal distribution (Fig 9). It

was not surprising that most of the DGIS fell in the zero bin which indicated that most of the

drug combinations did not have any synergistic effect. A negative DGIS suggests the two drug

combinations will tend to have a greater effect on cell growth compared with the single drugs

alone. To verify the true synergistic drug combination, we selected the top 30 drug combina-

tions (2% of the total combinations) with the most negative DGIS scores to check if they had a

synergistic effect on cell death using the ZIP model to calculate the synergistic score (Table 1).

Zero interaction potency (ZIP) test and data analysis

To evaluate the top 30 drug pairs, we used the ZIP model to test their combinatorial effect. The

ZIP model is the most popular model for testing drug synergy and it is easy to convert the ZIP

score to other synergy scores for comparisons [23]. All drug combinations were tested in 6 x 6

dose-response matrix experiments. The raw data was used to fit the ZIP model in order to cal-

culate the synergy score (ZIP score). A positive ZIP score represents a cell response above

expectations. For example, when Epirubicin and Sorafenib were combined together, they had

a 24% (ZIP score = 24.24) increase above the expected effect suggesting they have a synergistic

effect (Fig 10). Using the ZIP model, drug combinations were considered to have a synergistic

Fig 9. Distribution of DGIS for all pair wise drug combinations.

https://doi.org/10.1371/journal.pone.0266382.g009
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effect when the ZIP score was greater than 5 [23]. From 30 drug combinations candidates,

there were 8 (27%) with a true a synergistic effect (Table 1). Previous experiments and research

told us that finding synergistic drug combinations in a randomly selected dataset was rare

[6,30]. To determine if our algorithm successfully prioritizes synergistic drug combinations,

we compare it with a randomly selected group of pairwise drug combinations from the pool of

all possible pairwise combinations.

Since the number of drug combinations in our dataset with true synergistic effect are

unknown, we randomly selected 10 percent (160) of all possible pairwise drug combinations

(1596) from the list of 57 drugs and determined the ZIP score for all 160 random two-drug

combinations. Fig 9B provides the DGIS distribution of this randomly selected cohort. The

distribution of this randomly selected subset reflects the distribution of the whole dataset (Fig

9A) and exhibited no bias to any side of the distribution and can be utilized to infer the distri-

bution of the whole dataset. From these select 160 drug combinations, we found two drug

combinations that exhibited a synergistic effect (S3 Table). Interestingly, these two drug

Table 1. The top 30 drug combination candidates.

drug_1 GRmax_1 drug_2 GRmax_2 DGIS ZIP

Irinotecan 0.55 Selumetinib 0.85 -1.19 -4.355

PD-184352 0.04 Sorafenib -0.94 -1.18 -2.113

Bosutinib 0.11 Niclosamide -0.22 -1.05 1.531

Vemurafenib -0.66 Vorinostat 0.03 -1.04 -0.932

Epirubicin -0.31 Vemurafenib -0.66 -0.99 9.855

Bortezomib -0.49 Foretinib -0.59 -0.98 -0.807

Alectinib 0 Irinotecan 0.55 -0.91 160

Foretinib -0.59 Vorinostat 0.03 -0.9 2.107

Bortezomib -0.49 Epirubicin -0.31 -0.89 -2.129

Bortezomib -0.49 Vorinostat 0.03 -0.87 3.605

3-Bromopyruvic acid -0.64 Vemurafenib -0.66 -0.85 24.096

Purvalanol-A -0.62 Tozasertib -0.56 -0.84 1.198

Bortezomib -0.49 AG-1478 -0.63 -0.81 9.904

Afatinib -0.77 Crizotinib -0.53 -0.8 -0.154

Sorafenib -0.94 Topotecan -0.37 -0.78 -3.851

Bortezomib -0.49 Trametinib 0.69 -0.76 -2.344

Epirubicin -0.31 Sorafenib -0.94 -0.72 24.209

MG-132 -0.41 Tozasertib -0.56 -0.7 4.404

Roscovitine -0.33 Vorinostat 0.03 -0.69 0.066

Afatinib -0.77 Niclosamide -0.22 -0.69 0.057

Niclosamide -0.22 Nvp-Bez235 -0.26 -0.68 1.459

Imatinib -0.53 PD-184352 0.04 -0.67 0.796

Epirubicin -0.31 Temsirolimus -0.66 -0.67 0.572

Epirubicin -0.31 AG-1478 -0.63 -0.65 6.617

3-Bromopyruvic acid -0.64 MG-132 -0.41 -0.64 2.356

Etoposide 0.12 Selumetinib 0.85 -0.64 1.07

Paclitaxel -0.54 Vemurafenib -0.66 -0.6 -1.369

Epirubicin -0.31 Vorinostat 0.03 -0.59 10.066

AG-1478 -0.63 Vorinostat 0.03 -0.59 8.697

Afatinib -0.77 Mk-1775 -0.42 -0.59 0.063

GIS, growth inhibition score; DGIS, differential growth inhibition score; ZIP, ZIP score.

https://doi.org/10.1371/journal.pone.0266382.t001
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combinations also appeared in our top 30 list. Since we don’t know the exact number of the

real synergistic drug combinations in our drug pair pool, we want to test the null hypothesis

that our algorithm will produce the same results as random sampling. The value of M (the true

proportion of the synergistic drug combination in the population) that maximizes the joint

probability of drawing k = 8 hits in s = 30 samples in one trial and drawing k = 2 hits in s = 160

samples in a second trial is 0.052, with a joint probability of 4.43e-07, under the null hypothe-

sis. That means even though we don’t know the exact value of M, under the null hypothesis,

the highest probability of the observed data is 4.43e-7 when M equals 0.052 (83 synergistic

drug pairs of out 1596 pairs). Therefore, we determined that using our algorithm to identify

synergistic drug combinations is significantly better than randomly picking from the candidate

pool and can successfully prioritize synergistic drug combinations.

Discussion

Cancer is a complex disease where treatment using anticancer drugs often leads to drug resis-

tance. As a result, there is a rising demand for more effective therapies. Using synergistic drug

combinations of two or more drugs can overcome toxicity and side effects which can be associ-

ated with high doses of single drug therapies. In recent years, several drug combination thera-

pies show promising synergistic effects and have been approval by the FDA [31,32]. Here, we

developed a gene network-based algorithm, using both lab data and public data, to successfully

prioritize and enrich for synergistic two-drug combinations from a group of candidate drugs

and presented opportunities for further exploring multiple drug combinations.

In this study, we have developed an efficient computational-experimental approach to help

us study the synergistic drug combinations and use 57 single drug dose-response measure-

ments as a proof of principle. We have illustrated this approach with a randomly selected drug

Fig 10. The synergistic drug combinations of Epirubicin and Sorafenib.

https://doi.org/10.1371/journal.pone.0266382.g010
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panel treating the MCF7 cancer line. From the top 30 drug combination candidates prioritized

by our algorithm (2% of the total possible pairwise combinations), 8 of them were confirmed

to have true synergistic effects using the ZIP model. This is significantly better when compared

with randomly selecting the drug combinations. Although we cannot claim that this algorithm

will find all possible synergistic combinations in a drug panel, it does help us dramatically

decrease the cost and time of drug combinatorial screening. Our pipeline showed that combin-

ing the individual drug-induced gene expression profiles using GRN structures can infer the

effects of the drug pair, which is in agreement with previous studies [8,9]. However, our pipe-

line differs from previous gene expression based algorithms in that we do not filter the genes.

Instead, we use all the genes in our pipeline. Since the differently expressed gene (DEG) profile

in a drug combination therapy are distinct from the DEGs observed in a monotherapy, our

pipeline has the advantage of using the full set of gene expression profiles integrated into

GRNs and contains a large proportion of the information for the drug effect [11]. Notably,

researchers can use our algorithm with publicly available molecular profiles of the cancer cell

and in house single drug dose-response data to capture the most probable synergistic combi-

nations in their drug panel, and avoid testing all pairwise multiple-doses using a combinatorial

matrix hence decreasing cost.

Another advantage of our algorithm is the possibility to increase the number of drug candi-

dates in a drug combination screening. With the aim of less time consuming and cost effective-

ness for high-throughput combinatorial screening, several computational approaches have

been described. Lanevski et al. [5] developed a computational mode to predict drug combina-

tions using a submatrix of the multiple-dose matrix instead of the full matrix, but this will not

solve the problem of the exponential increased number of drug combinations as new drugs are

assessed. The submatrix design still requires assessing all pairwise experiments and very exten-

sive experimental work. These extensive requirements of resources usually lead the researchers

to include a pre-selecting step to narrow down the drug candidates to a relatively small num-

ber. The only input needed for our algorithm is single drug dose-response data to calculate

GRmax, because the protein-protein interaction database, TF-gene database, and molecular

profiles of the single drug database are publicly available and updated regularly. That means all

information needed in this pipeline is based on the cell and cell response to a drug. Without

the need for structural or target information of the compounds, the potential candidates of the

combination are not limited to the well-studied compounds. Furthermore, there are a few

drugs in our test drug panel that have a flat dose-response curve which implies that these

drugs have no effect on the growth of MCF7 cells alone. In traditional screening methods,

those compounds usually are filtered out from the list for drug combinations due to no effect

of the phenotype at single drug format, but they still can be integrated to our model and

directly tested for combinatorial effects with other drugs. While we did not find these synergis-

tic combinations with those drugs in our panel, considering our drug panel is small, there is

still a possibility these drugs may have synergistic effects with other drugs. Our algorithm can

avoid the pre-selecting step for most traditional high-throughput methods and greatly extends

the number of candidates for drug combination screening.

Additionally, our algorithm allows researchers to easily share and reuse the data in the sci-

ence community for future drug combination searching. Since our algorithm relays only on

experimentally derived single drug-cell response matrix, all the data is capable of being stored

and reused for running our algorithm again with new data. If a researcher wants to screen

their own group of compounds along with the compounds in the database, they can download

the data for the previously analyzed compounds and only provide the single drug-cell response

experiment and gene expression profile for the new compound in the lab. After that, all they

need is to combine the data and run the pipeline. Due to adding any new compound to the
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drug panel only requires the GRmax and molecular profiles from this compound, the additional

required resources for extending the screening drug panel increases linearly instead of expo-

nentially. It is much cheaper and faster to screen a large panel of compounds. At the same

time, the new compound data generated from different labs can be added to the database and

shared with other researchers. Furthermore, once the database extends by including more

drugs and cell lines, the future combination screening will become quick and powerful. Each

researcher can investigate the combinatorial effect of their interested compounds with all pre-

viously studied compounds.

Lastly, our algorithm connected the GRN (genotype) and GRmax (phenotype) directly, it is

therefore independent from the cell type and the method to measure phenotype. Thus, this

algorithm will be robust and compatible with various experimental designs, making it applica-

ble to other biomedical problems, such as antibacterial, antifungal, and antiviral drug combi-

nations synergies. Also, this study solely focused on pairwise combinations on one cell line,

but in the future, we will consider higher-order combination prediction and multiple cell lines

as well.
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