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Abstract: Nonsteroidal anti-inflammatory drugs (NSAIDs) are used to treat inflammation and
pain and even to prevent the progression of cardiovascular disease. They have become widely
used because of their effectiveness, especially among athletes performing high-intensity training.
Indomethacin is used for pain management in sports medicine and is highly effective and versatile.
However, several clinical studies have reported that indomethacin induces acute renal damage. In the
present study, we determined that indomethacin reduced human embryonic kidney 293 (HEK293) cell
viability in a concentration-dependent manner by triggering apoptosis. In addition, we demonstrated
the effect of quercetin on indomethacin-treated HEK293 cells by inactivating the caspase-3 and
caspase-9 signals. Furthermore, quercetin reduced ROS production and increased mitochondrial
membrane potential (∆Ψm) in indomethacin-treated HEK293 cells. Our results indicate that quercetin
can interrupt the activated caspase and mitochondrial pathway induced by indomethacin in HEK293
cells and affect apoptotic mRNA expression. Quercetin can protect against indomethacin-induced
HEK293 cell apoptosis by regulating abnormal ∆Ψm and apoptotic mRNA expression.

Keywords: apoptosis; antioxidant; human embryonic kidney 293 (HEK293) cells; indomethacin;
quercetin; mitochondrial membrane potential (∆Ψm)

1. Introduction

Indomethacin, a nonsteroidal anti-inflammatory drug (NSAID), is a powerful prostaglandin
synthesis inhibitor [1]. Its effectiveness has made it popular for pain relief [2,3] and for
the prevention of pancreatitis after endoscopic retrograde cholangiopancreatography; in-
domethacin is also used for pain reduction in delayed-onset muscle soreness and for
clinical treatment of rheumatoid arthritis [4–7]. However, researchers have reported ad-
verse reactions to indomethacin, such as fluid retention, blood clots, myocardial infarction,
hypertension, ulceration of the stomach or intestine, and impaired renal function [8–13].

Through regular, high-intensity training, athletes can easily experience sports injuries
and are likely to use medications and supplements [14,15]. Athletes also usually experience
muscle fatigue and fasciitis caused by long-term training. Furthermore, daily NSAID use
is prevalent despite package inserts cautioning against chronic NSAID use [16,17]. No
particular restrictions on nonsteroidal analgesics or anti-inflammatory drugs have been
implemented. Therefore, painkillers and anti-inflammatory drugs are commonly used, and
even abused, for treating sports injuries [18,19].

Excessive exercise increases myoglobin and creatine kinase, which can induce exercise-
induced rhabdomyolysis and even acute renal failure [20–22]. Indomethacin reduces
blood flow to the kidneys; such reduced blood flow easily changes the permeability of
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the glomerular basement membrane and causes acute damage to the kidney [13]. During
exercise, renal hemodynamics, including electrolyte and protein excretion, may cause renal
blood flow to decrease to one-quarter of the normal level [23]. Because of the changes in
renal function during exercise, indomethacin intake can compromise kidney function and
increase acute renal failure incidence [13].

NSAIDs are commonly consumed as a fever reducers and analgesics, and because of
their versatile effects, their daily use has become common [24]. Because athletes frequently
experience physical stress and injuries, they might use painkillers to relieve discomfort [25].
Nevertheless, the adverse consequences and side effects of most of these drugs are under-
estimated [24,25]. NSAID intake can increase the chronic kidney disease (CKD) risk, and
this risk may be greater than previously estimated. In a retrospective study of American
military servicepeople, those using NSAIDs had 20% greater risks of acute kidney injury
(AKI) and CKD [24]. However, although basic NSAIDs are versatile medications that are
available over the counter (OTC), NSAIDs can induce adverse drug reactions that can
result in hospitalization and death [26].

Flavonoids have been reported to be potential antioxidant chemopreventive agents [27–29].
In particular, quercetin has shown protective in vitro and in vivo abilities against chemi-
cally induced acute kidney damage by inducing antioxidant, inflammatory, and glomerular
ultrastructural effects [30–34].

Indomethacin can reduce glomerular filtration and renal blood flow [13]. In the
present study, we investigated the indomethacin-induced mitochondrial membrane po-
tential (∆Ψm). Indomethacin-induced apoptosis involves the intrinsic apoptosis pathway
and altered expression of caspase family proteins. To reduce or prevent adverse reac-
tions and guide safe medication use in clinical settings, we investigated the pathway of
indomethacin to understand how indomethacin induces kidney injury. In addition, we in-
vestigated quercetin as a potential preventive agent against indomethacin-induced kidney
mitochondrial malfunction.

2. Results
2.1. Effect of Quercetin on Viability of Human Embryonic Kidney 293 Cells Treated with Indomethacin

Figure 1 presents the viability results for human embryonic kidney 293 (HEK293)
cells after treatment with indomethacin at 0, 125, 250, 500, or 1000 µM. The viability of the
HEK293 cells treated with indomethacin was significantly lower at higher indomethacin
concentrations (Figure 1A).

We treated the HEK293 cells with 0, 25, 50, 75, or 100 µM quercetin (Figure 1B).
At 25, 50, and 75 µM, quercetin increased the viability of the HEK293 cells treated with
indomethacin (Figure 1C). In particular, the cells treated with 50 and 75 µM quercetin
exhibited significant differences from the untreated cells. The trend in apoptotic cells was
the reverse; quercetin treatment protected against apoptosis in indomethacin-treated cells
in a concentration-dependent manner, as determined through transferase-mediated d-UTP
nick end labeling (TUNEL) assay (Figure 1D, Table S1). Therefore, quercetin can protect
against indomethacin-induced renal injury.

2.2. Effect of Quercetin on Caspase-Dependent Apoptosis in HEK293 Cells Treated with Indomethacin

To identify the intrinsic apoptosis pathway triggered by indomethacin in HEK293
cells, we measured the fold change in caspase levels versus the control cells. The addition
of indomethacin significantly increased caspase-3 protein in HEK293 cells compared with
the untreated cells (Figure 2A). Therefore, the caspase cascade pathway is associated
with the mechanism through which indomethacin induces apoptosis in HEK293 cells. An
increase in caspase-9 dependent on the indomethacin concentration occurred in the HEK293
cells, suggesting that indomethacin-induced apoptosis is related to increases in caspase-
3 and caspase-9 levels (Figure 2B). Quercetin at 50 and 75 µM resulted in significantly
lower caspase-3 activity than was observed in the cells treated with indomethacin alone
(Figure 2C). A similar trend in caspase-9 activity occurred (Figure 2D, Table S1). Therefore,
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quercetin treatment reduces the increased caspase-3 and caspase-9 activity in indomethacin-
treated HEK293 cells.

Figure 1. Viability of HEK293 cells treated with (A) indomethacin (0, 125, 250, 500, or 1000 µM) or
(B) quercetin (0, 25, 50, 75, or 100 µM). (C) Viability of indomethacin−treated HEK293 cells exposed
to 25, 50, or 75 µM quercetin. (D) TUNEL−positive cells without quercetin or treated with 50 or
75 µM quercetin and 500 µM indomethacin were considered apoptotic. Values are expressed as
means ± standard errors (n = 8). Dunnett’s test was used to identify significant differences (* p < 0.05
vs. untreated cells; # p < 0.05 vs. cells with indomethacin treatment).
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Figure 2. Effect of indomethacin on caspase activity in HEK293 cells. Fold changes in (A) caspase-3
and (B) caspase-9 activity in HEK293 cells after incubation with 125, 250, 500, or 1000 µM in-
domethacin for 24 h (vs. 0 µM). (C) Caspase-3 and (D) caspase-9 activity in indomethacin−treated
HEK293 cells in the presence of 50 or 75 µM quercetin. Values are expressed as means ± standard
errors (n = 8). Dunnett’s test was used to determine significant differences (* p < 0.05 vs. untreated
cells; # p < 0.05 vs. indomethacin treatment only).

2.3. Effects of Quercetin on Superoxide Anion, Mitochondrial Superoxide, and Reactive Oxygen
Species Production in HEK293 Cells Treated with Indomethacin

We demonstrated that indomethacin-induced apoptosis involves an active caspase-
3/9-dependent pathway; in addition, quercetin can play a crucial role in suppressing
caspase-dependent protein expression. To determine the effects of indomethacin and
quercetin on upstream molecular signaling in HEK293 cells, we measured reactive oxygen
species (ROS) production and mitochondrial membrane potential, as shown in Figure 3.
To investigate indomethacin-induced apoptosis, a flow cytometric assay was used to
determine ∆Ψm, which was significantly lower in the HEK293 cells treated with higher
concentrations of indomethacin (p < 0.05; Figure 3A), indicating that indomethacin triggers
mitochondrial malfunction. We also detected ROS production; in indomethacin-treated
cells, the ROS level significantly increased; however, quercetin cotreatment resulted in
significant decrease in the indomethacin-induced elevated ROS production (Figure 3B).
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Similar results were obtained for superoxide anion and mitochondrial superoxide levels
(Figure 3C,D). Indomethacin significantly induced ROS production, explaining its ability
to cause mitochondrial malfunction and subsequent apoptosis. In addition, quercetin
exposure exerted an ostensible antioxidant effect on indomethacin-reduced peroxidation.

Figure 3. (A) Results for ∆Ψm in HEK293 cells incubated with indomethacin (0, 125, 250, 500, or
1000 µM) for 24 h. (B) ROS production results in HEK293 cells treated with 500 µM indomethacin and
50 or 75 µM quercetin. (C) Superoxide anion production results in HEK293 cells treated with 50 or
75 µM quercetin and 500 µM indomethacin. (D) Mitochondrial superoxide levels in HEK293 cells
treated with 50 or 75 µM quercetin and 500 µM indomethacin. Indomethacin treatment was confirmed
using DiOC6(3) fluorescent dye in flow cytometry analysis. ROS levels, superoxide anion production,
and mitochondrial superoxide were respectively assessed using H2DCFDA, dihydroethidium, and
MitoSOX fluorescent dye staining in flow cytometry. Values are expressed as means ± standard
errors (n = 8). Dunnett’s test was used to determine significant differences (* p < 0.05 vs. untreated
cells; # p < 0.05 vs. indomethacin treatment only).
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2.4. Effects of Pan-Caspase Inhibitor Z-VAD-FMK on Apoptosis in HEK293 Cells Treated
with Indomethacin

To show how protein expression regulates apoptosis in indomethacin-treated HEK293
cells, we used Z-VAD-FMK, which is a pan-caspase inhibitor, to block caspase-3 and
caspase-9 activity. After exposure to Z-VAD-FMK, apoptosis in the indomethacin-treated
and untreated HEK293 cells did not differ significantly (Figure 4).

Figure 4. Apoptosis in indomethacin−treated HEK293 cells treated or untreated with the pan-
caspase inhibitor Z−VAD−FMK. Treated cells were exposed to 10 µM Z−VAD−FMK for 24 h before
indomethacin treatment. Values are expressed as means ± standard errors (n = 8). Dunnett’s test was
used to determine significant differences (* p < 0.05 vs. untreated cells; * p < 0.05 vs. indomethacin
treatment only).

2.5. Effects of Quercetin on Apoptotic mRNA Expression in HEK293 Cells Treated with Indomethacin

To identify the caspase-dependent pathway and the effect of mRNA expression
in indomethacin-treated HEK293 cells with or without quercetin cotreatment, we used
caspase-3, caspase-9, AIF, and EndoG mRNA expression to represent mitochondrial func-
tion. We determined that quercetin has the potential to reduce apoptotic mRNA expression,
including that of caspase-3, caspase-9, AIF, and EndoG (Figure 5).
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Figure 5. Effects of quercetin on apoptotic mRNA expression in HEK293 cells treated with in-
domethacin (500 µM) and with or without quercetin (75 µM) for 24 h. Total mRNA was extracted
to determine expression of caspase-3, caspase-9, AIF, and EndoG mRNA. Values are expressed
as means ± standard errors (n = 3). Dunnett’s test was used to determine significant differences
(* p < 0.05 vs. untreated cells; # p < 0.05 vs. indomethacin treatment only).

3. Discussion

NSAIDs contribute to AKI by reducing renal blood flow, which induces renal tubule
obstruction through crystal deposition; NSAIDs causes cytotoxicity to renal cells, cell-
mediated immune impairment, and acute interstitial nephritis [35]. CKD incidence was
observed to be greater in patients who were administered NSAIDs [36]. In addition, al-
though NSAIDs pose a risk of adverse drug reactions, they are still commonly used by
patients with CKD [37]. Therefore, improving risk for patients with CKD is clinically
desirable [26,38–40]. AKI is growing in global prevalence, resulting in significant sub-
stantial mortality and morbidity in which is requiring considerable medical resources.
NSAIDs and various other nephrotoxic drugs are crucial causes of AKI, while exposure to
such drugs is influenced by factors such as CKD status and age [41]. Older patients with
renal disease are more likely than the general population to develop AKI from NSAID
exposure; however, using evidence of the renal harm due to NSAIDs on complex inter-
ventions may be effective in reducing inappropriate NSAID prescriptions for high-risk
populations [42,43]. Other studies have provided evidence for clinicians to use to minimize
the risk of AKI when administering NSAIDs [26,41,44]. Approximately 13% to 18% of
older adults and patients in hospitals develop end-stage renal disease; furthermore, older
adults using NSAIDs at high doses have a 26% greater risk of acute renal failure. People
with moderate to severe kidney disease who regularly use OTC NSAIDs typically also
have NSAID prescriptions [36,45–47]. In clinical practice, commonly used NSAIDs such
as aspirin and indomethacin can cause various forms of kidney damage, including acute
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interstitial nephritis, acute tubular necrosis, chronic renal tubular interstitial disease, renal
tubular acidosis, and glomerular disease [23,48–52].

On the other hand, cyclooxygenase (COX) is the enzyme, involved in oxidizing
arachidonic acid (AA), also known as the index of information and pain. COX contributes
to inflammation processes in organs. The development, perfusion, water handling, and
renin release in the kidney can be regulated by COX-2 in a normal or paraphysiological
situation. Thus, patients are facing the risk of renal ischemia on NSAIDs, which reduce
vasodilatory prostaglandins synthesis [53–55]. COX-2 plays a metabolites regulator in the
kidney, in addition, NSAIDs long-term used could imbalance the renal homeostasis of
COXs and bring the risk of renal injury [56,57].

Indomethacin induces renal epithelial cell injury by downregulating the Akt- and STAT-
3-related pathways [58,59]. In the present study, indomethacin upregulated caspase path-
ways. Specifically, indomethacin increased caspase-3 and -9 expression to induce apoptosis
(Figure 2A,B and Figure 4). By contrast, cotreatment with quercetin resulted in significantly
lower caspase-3/-9 activity in indomethacin-treated cells (Figure 2C,D). Mitochondria depend
on the apoptosis pathway and caspase-3 and -9 for morphological changes, and ROS cleaving
can indicate mitochondrial malfunction and result in insufficient energy reserves and intracel-
lular signaling pathway activation [60,61]. In this study, we demonstrated the potential of
quercetin to counteract indomethacin-induced caspase overexpression.

Long-term use of NSAIDs could cause a specific form of kidney disease which is
characterized by papillary necrosis and interstitial scarring. COX2 inhibition may contribute
to injury of the renal medulla [62]. In rat renal papilla cells, indomethacin (1 µg/mL)
produced large inhibition of prostaglandin output from the renal papilla which provided
the potential for renal injury [63]. Previous study has demonstrated indomethacin showed
toxicity starting from concentrations of 10 µM to 100 µM in HEK293T cells in a dose-
dependent manner [64]. Indomethacin also provided the promotion of extracellular signal-
regulated kinase (ERK), p38 MAPK, and c-Jun N-terminal kinase (JNK) in 786-O renal cell
carcinoma cells [59].

However, HEK293 cells have their own limitations on application. Researchers have
discovered HEK293 cells have an unexpected relationship of neurons and begun to recog-
nize which cannot be used as a normal model for renal function. In this study, we prefer
to demonstrate the feasible potential of indomethacin and quercetin combo in cell lines.
Accordingly, we selected HEK293 cells as an experimental model [65–67]. The toxicity of
active drug components causes various types of kidney damage including cytotoxic dam-
age to kidney mitochondrial and organelles; direct damage to the structure and function of
mitochondria or mitochondrial death can lead to cell apoptosis. Mitochondrial apoptosis
crucially regulates cell and death [68,69]. Indomethacin has been reported to instigate
the endoplasmic reticulum (ER) stress response and ER Ca2+ mobilization, both of which
increase oxidative stress and induce mitochondrial dysfunction, regardless of oxygenation
conditions [70–72]. We investigated the oxidation conditions and ∆Ψm in HEK293 cells.
Indomethacin reduced ∆Ψm levels by inducing mitochondrial malfunction; conversely,
with quercetin cotreatment, the level exhibited a significant reduction (Figure 3A). Mito-
chondrial membrane permeability is enhanced by the inhibition of ADP/ATP transportase
in the mitochondrial membrane, causing mitochondrial disruption, or by the induction of
calcium release in the ER and intracellular calcium flow, causing the ER stress reaction and
activating phospholipase A2 for renal tubular epithelial cell apoptosis and toxicity [73].
Quercetin exposure ostensibly increased antioxidant activity in cells with indomethacin-
reduced peroxidation (Figure 3B–D). Quercetin can reduce oxidation levels in renal cells to
inhibit the macrophage chemotaxis induced by ferroptosis in AKI and balance macrophage
polarization [74,75]. Oxidative stress is a mechanism through which various drugs cause
kidney damage. Quercetin can reverse ∆Ψm imbalance because of its antioxidant and
free radical scavenging abilities [27,76]. In the clinic, the maximum daily recommended
dose of indomethacin is 200 mg. The cell exposure in this study is higher than the situ-
ation of forecast from oral administration pharmacokinetics in the maximum daily dose
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(MDD) [77]. For studying the preventive effect of quercetin from indomethacin-induced
injury we selected a higher concentration than the maximum daily dose. We demonstrated
that quercetin has significant protection even in high concentration indomethacin treated
(500 µM) situation in HEK293 cells.

Mitochondria depend on apoptosis pathways that involve ROS production, DNA
damage, ∆Ψm imbalance, and the release of the signal transporters Apaf-1, cytochrome c,
procaspase-9, and AIF [78–80]. When ROSs induce DNA damage, the kinase that acts
upstream of p53 autophosphorylation ataxia-telangiectasia mutates; after serial phosphory-
lation, downstream apoptotic factors such as Fas, CD95, DR4, DR5, and TNFR are expressed
to induce apoptosis [81,82]. When ROS-induced DNA damage occurs, active autophagy
in the cell continues, inducing the release of a DNase from mitochondria [83–86]. We
demonstrated that with quercetin exposure, the level of apoptosis- and autophagy-related
factors was lower in indomethacin-treated HEK-293 cells (Figure 5). AIF and EndoG are
redox sensors in the metabolic pathways for apoptosis [83,87]. In the experiment, we
found that quercetin had the potential to regulate ROS production and apoptosis- and
autophagy-related factors.

The adverse consequences and side effects of NSAIDs are often underestimated [24,25].
They pose a high risk of AKI in people who use them without professional consulta-
tion, including athletes and older adults, as well as in long-term users [15,16,26,88]. In
conclusion, indomethacin poses a substantial risk of renal damage; the present find-
ings that indomethacin increased ROS production and ∆Ψm imbalance and upregulated
caspase-3 and -9 as well as caspase-3/-9, AIF, and EndoG mRNA expression indicate that
indomethacin induces renal injury. Knowledge of the risks of NSAID use can reduce the inci-
dence of nephrotoxicity. Traditional and complementary medicine has grown in popularity
because of its natural appeal and availability. Thus, research has targeted safe ingredients
from Chinese medicine for use as complementary medicine to reduce the side effects of
the pain and anti-inflammatory drugs taken by athletes, older adults, and patients on
long-term pain medication [29,89,90]. Quercetin has therapeutic potential in cases of renal
damage [91,92]. Previous studies have concluded that quercetin may effectively treat renal
injury caused by chemical compounds that induce hypoxia [30,32,93,94]. In the present
study, we used quercetin as a natural agent to reduce indomethacin-induced renal injury.

4. Materials and Methods
4.1. Materials

We obtained an In Situ Cell Death Detection Kit (Fluorescein), thiazolyl blue tetrazolium
bromide (MTT), indomethacin, quercetin, Dulbecco’s modified Eagle’s medium (DMEM),
DNase, and other reagents and chemicals from Sigma–Aldrich, Merck KGaA (Darmstadt,
Germany). We obtained Muse Caspase-3/9 Assay Kits and the pan-caspase inhibitor Z-VAD-
FMK from Millipore, Merck KGaA (Darmstadt, Germany). We obtained dihydroethidium,
2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA), 3,3′-dihexyloxacarbocyanine iodide
[DiOC6(3)], and MitoSOX from Molecular Probes, Thermo Fisher Scientific (Waltham,
MA, USA). We purchased L-glutamine, fetal bovine serum (FBS), trypsin-EDTA, and
penicillin/streptomycin from HyClone, GE Healthcare Life Sciences (Logan, UT, USA).

4.2. Cell Culture

We purchased HEK293 cells from the American Type Culture Collection (Manassas,
VA, USA). We cultured the cells in DMEM with 20% FBS, 2 mM L-glutamine, and antibi-
otics (penicillin/streptomycin) in a 5% CO2 humidified atmosphere at 37 ◦C until 100%
confluence was reached; we replaced the medium every 48–72 h. The cells were collected
for cell viability testing; ROS, superoxide anion, and mitochondrial superoxide production
assays; caspase-3 and -9 assays, and TUNEL assay.
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4.3. Cell Viability Assay

The HEK293 cells (2.5 × 104 cells/well) were placed into 96-well plates with quercetin
(0, 25, 50, 75, or 100 µM) and subsequently exposed to indomethacin at concentrations of
125, 250, 500, or 1000 µM for 24 h to induce apoptosis before 1 h with or without treatment
with 10 µM Z-VAD-FMK; the cells were subsequently subjected to 2 h of treatment with
0.5 mg/mL MTT solution. Finally, 100 µL of dimethyl sulfoxide was added to the wells
to dissolve formazan crystals and replace the culture medium. The optical density was
measured at 570 nm by using a spectrophotometer as previously described [29,95].

4.4. TUNEL Assay for Apoptosis Analysis

With 50 or 75 µM quercetin, 2.5 × 105 cells/mL were plated into 24-well plates and
treated with 500 µM indomethacin for 24 h. Before harvest, the cells were rinsed in
phosphate-buffered saline. To detect apoptosis, flow cytometry was performed using a BD
FACSCalibur Flow Cytometer (BD Biosciences, San Jose, CA, USA), and the In Situ Cell
Death Detection Kit (Fluorescein; Sigma–Aldrich, Merck KGaA) was used in accordance
with manufacturer instructions to stain the cells. BD Cell Quest Pro Software version 5.1
(BD Biosciences) was used in accordance with a previously described procedure [96] to
quantify the cells testing positive in the TUNEL assay.

4.5. Determination of Caspase-3 and -9 Activity

Cells (1 × 106 cells/mL) were cultured in a 10-cm dish with 50 or 75 µM quercetin
and then treated with 500 µM indomethacin for 24 h for the measurement of caspase
protein expression. Before being harvested through centrifugation (400× g; Caspase-3 and
Caspase-9 Colorimetric Assay Kits, R&D Systems Inc., Minneapolis, MN, USA), the cells
were cultured in the working solution from the Muse Caspase-3/9 Assay Kits (Millipore;
Merck KGaA) in accordance with manufacturer protocols [95,97].

4.6. Determination of ROS and Mitochondrial Superoxide Production through Flow Cytometry

HEK293 cells (2.5 × 105 cells/mL) were cultured with 50 or 75 µM quercetin and
then treated with 500 µM indomethacin for 24 h. They were subsequently centrifuged
for 5 min at 400× g. The cell pellets were harvested and suspended in a 500-µL staining
solution of 10 µM H2DCF-DA, dihydroethidium, or MitoSOX for ROS, superoxide anion,
or mitochondrial superoxide detection, respectively, and subsequently incubated for 30 min
at 37 ◦C. ROS, superoxide anion, and mitochondrial superoxide production was detected
as previously described through flow cytometry [98,99].

4.7. Detection of ∆Ψm

HEK293 cells (2.5 × 105 cells/mL) were cultured with 50 or 75 µM quercetin and then
treated with 500 µM indomethacin for 24 h. The cells were subsequently collected and labeled
for 30 min at 37 ◦C with 500 nM DiOC6(3). Flow cytometry was used to analyze the fluorescence
intensity corresponding to ∆Ψm in accordance with previously described methods [96,100,101].

4.8. Apoptotic mRNA Level Analysis

Cells (1 × 106 cells/total) were exposed for 24 h to 500 µM indomethacin with or
without 75 µM quercetin. The assay proceeded in accordance with the protocol of the
Qiagen RNeasy Mini Kit as described previously [102]. RNA samples were processed with
kit reagent in accordance with the manufacturer’s protocol (Applied Biosystems, Foster
City, CA, USA) for 30 min at 42 ◦C. The following protocol was used in the subsequent
quantitative polymerase chain reaction: 2 min at 50 ◦C, 10 min at 95 ◦C, 40 cycles of 15 s
each at 95 ◦C, and 1 min at 60 ◦C with 1 µL of complementary DNA that was reverse-
transcribed as described previously, 2X SYBR Green PCR Master Mix (Applied Biosystems),
and the forward and reverse primers (200 nM; Table 1). All assays were performed three
times on an Applied Biosystems 7300 Real-Time PCR System, and the comparative CT
method was used to calculate the fold changes in mRNA level.
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Table 1. Primers used for apoptotic mRNA level analysis.

Primers Sequences

homo caspase-3 5′-CAGTGGAGGCCGACTTCTTG-3′

3′-TGGCACAAAGCGACTGGAT-5′

homo caspase-9 5′-TGTCCTACTCTACTTTCCCAGGTTTT-3′

3′-GTGAGCCCACTGCTCAAAGAT-5′

homo AIF 5′-GGGAGGACTACGGCAAAGGT-3′

3′-CTTCCTTGCTATTGGCATTCG-5′

homo Endo G 5′-GTACCAGGTCATCGGCAAGAA-3′

3′-CGTAGGTGCGGAGCTCAATT-5′

4.9. Statistical Analysis

Dunnett’s test and one-way analysis of variance were performed in SPSS version 16.0
(SPSS, Chicago, IL, USA). All values are the means± standard errors of the triplicate assays.
A p of <0.05 was considered to indicate statistical significance.

5. Conclusions

NSAID abuse is prevalent among athletes. The present study demonstrated that
indomethacin reduces mitochondrial malfunction in HEK293 cells by affecting ROS pro-
duction and ∆Ψm imbalance. NSAIDs have adverse effects on the kidneys. Because no
restrictions have been enacted on nonsteroidal analgesics or anti-inflammatory drugs in
athletes, athletes are susceptible to NSAID abuse. Herein, we report the risk of indomethacin-
induced renal malfunction; the results can provide professionals with insight for medication
prescription among athletes. In addition, we identified quercetin as a natural reagent that
can prevent mitochondrial malfunction and even apoptosis in indomethacin-treated HEK293
cells. The results suggest that combined quercetin and indomethacin therapy is feasible.
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