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Abstract: Helminth infections are among the neglected tropical diseases affecting billions of people
globally, predominantly in developing countries. Helminths’ effects are augmented by coincident
tuberculosis disease, which infects a third of the world’s population. The role of helminth infections
on the pathogenesis and pathology of active tuberculosis (T.B.) remains controversial. Parasite-
induced suppression of the efficacy of Bacille Calmette-Guerin (BCG) has been widely reported
in helminth-endemic areas worldwide. T.B. immune response is predominantly proinflammatory
T-helper type 1 (Th1)-dependent. On the other hand, helminth infections induce an opposing anti-
inflammatory Th2 and Th3 immune-regulatory response. This review summarizes the literature
focusing on host immune response profiles during single-helminth, T.B. and dual infections. It
also aims to necessitate investigations into the complexity of immunity in helminth/T.B. coinfected
patients since the research data are limited and contradictory. Helminths overlap geographically with
T.B., particularly in Sub-Saharan Africa. Each disease elicits a response which may skew the immune
responses. However, these effects are helminth species-dependent, where some parasites have no
impact on the immune responses to concurrent T.B. The implications for the complex immunological
interactions that occur during coinfection are highlighted to inform government treatment policies
and encourage the development of high-efficacy T.B. vaccines in areas where helminths are prevalent.

Keywords: Mycobacterium tuberculosis; helminths; coinfection; immune response; Bacille Calmette-Guerin;
vaccination

1. Introduction

Intestinal helminths are parasitic worms infecting over 1.5 billion people globally [1]
Most helminth cases occur in tropical and sub-tropical areas such as Sub-Saharan Africa,
the Americas, China and East Asia [1]. Humans are infected with helminth parasites
after ingesting eggs or larvae from contaminated water, soil or food or through active
skin penetration by infective hookworm larvae in contaminated soil [2]. Climate change,
malnutrition, overcrowding, poverty and poor sanitary conditions are risk factors associ-
ated with the high helminth prevalence in Africa and other developing countries, making
effective treatment and the eradication of infection challenging [1–4]. The most common
intestinal helminth species infecting humans are Schistosoma mansoni, Trichuris trichuria
(whipworm), Ascaris lumbricoides (roundworm), Necator americanus and Ancylostoma duode-
nale (hookworms) [1,2].
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Tuberculosis (T.B.) is an infectious bacterial disease caused by different strains of
acid-fast bacilli belonging to the Mycobacterium tuberculosis (Mtb) complex [5]. The T.B.
bacteria are airborne, and transmission occurs when a T.B.-infected person coughs, sneezes
or spits, expelling the infected droplets into the air. Inhalation of these aerosols may result
in infection of the next host [6]. T.B. continues to be a public health problem across the
world, with the World Health Organization (WHO) reporting over 10 million T.B. cases in
2020 [7]. Approximately 1.5 million TB-related deaths were reported worldwide in 2020 [7].
Globally, Africa accounts for 50% of cases of T.B. and human immunodeficiency virus (HIV)
coinfection [7]. Furthermore, in Africa, T.B. is commonly observed in HIV-infected patients,
and it is the leading cause of death among them [7].

T.B. exposure results in the initiation of an immune response to fight the infection. The
immune response to T.B. involves the interaction of innate and adaptive immune responses.
It is dependent on the cellular immune response, which is mediated by proinflammatory
T-helper type 1 (Th1) and Th17 cells [8–10]. The Th1 cytokines, which are interferon-γ
(IFN-γ), interleukin 12 (IL12) and tumor necrosis factor-α (TNF-α) and Th17 cytokines
(IL-17, IL-21, IL-22 and IL-23) play a role in combating bacterial and viral infections [8–10].
Helminth exposure, on the other hand, induces an anti-inflammatory Th2 immune response
which is characterized by the production of cytokines such as IL-4, IL-5, IL-9, IL-10 and
IL-13, and increased levels of circulating immunoglobulin E (IgE) antibodies, eosinophils,
and mast cells, regulatory T cells (Tregs) and transforming growth factor-β (TGF-β) [11,12].

T.B. commonly overlaps geographically with soil-transmitted helminths, especially
in developing countries [13–16], and this co-endemicity has implications for public health
and the afflicted hosts. Helminth infection-induced immune responses could promote
the pathogenesis of severe T.B. infections [16–18]; others report that they can also be
beneficial in reducing T.B. severity [19–22]. However, there is no conclusive evidence to
confirm whether helminth-induced immunity modulates T.B.-specific immune responses
or vice-versa, and studies have yielded contradictory results. Therefore, knowledge on the
interaction between T.B. and helminth infections is limited, as are the available data.

Given the current evidence on potential immunologic implications, such as those
that could influence T.B. vaccination, treatment and diagnosis, more research is needed
to determine the influence of helminth coinfection on T.B. control and how to negate any
adverse effects. As a result, this review will summarize what is currently known about T.B.
and helminths’ immune responses in human and experimental studies, both separately and
in the context of coinfection. The review will also elucidate the effects of T.B. and helminth
coinfections on vaccine efficacy and the implications for long-term health care.

2. Article Search Strategy for the Current Review

An electronic search of online databases such as Google Scholar, Google, PubMed, Sci-
ence Direct, online library sources, and Web of Science were utilized to extract research and
review articles using phrases and words: helminth, tuberculosis, helminth and tuberculosis
coinfection, helminth and tuberculosis vaccine and helminth and tuberculosis diagnosis in
humans, animals and in vitro studies. A PRISMA flow diagram of the search strategy and
research design process for this review is presented in Figure 1.
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Figure 1. PRISMA flow diagram of the search strategy and the research design process.

3. The Host Immune Response to Helminths

Helminths are parasitic and multicellular organisms that coevolved with their hosts [23].
These parasitic infections are often asymptomatic, but there are cases of heavy worm burden.
These have been linked to persistent health conditions such as anemia, fatigue, growth
stunting and poor cognitive development [24]. Helminths are the driving force behind how
immunity is initiated and maintained [25]. They typically create long-term infections in
their hosts. They have the power to influence physiological and immunological homeostasis
to ensure their continuing existence [25].

Helminths mature within the infected subject and lay eggs for transfer to another host,
exposing them to multiple stages of parasite development, each of which elicits a unique
immune response [26]. Helminths have evolved to exploit a range of host immunoregula-
tory mechanisms and activate generic suppressive pathways that can suppress bystander
responses to other antigens, allergens, and self-antigens [12]. Helminths have been dubbed
“masters of immunoregulation” because of their capability to control immunity to escape
being eliminated by the host [25,27]. Helminths enter the body through the skin or intesti-
nal epithelium’s barrier surface, where they block the transcription of numerous molecules
that keep the epithelium intact [28].

Tissue injury activates the production of “alarmins” (IL-33 and thymic stromal lym-
phopoietin (TSLP)) and the identification of invaders by pattern recognition receptors
(PPRs) in the host [28]. The Th1 proinflammatory cytokine production is driven by pattern
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recognition receptors (PRRs) such as toll-like receptors (TLRs) or C-type lectin receptors
(CLRs), whereas IL-33 and TSLP initiate a Th2 anti-inflammatory response [28].

Helminths stimulate increased mucin synthesis, smooth muscle contractility and
epithelial cell turnover as a host defense to eliminate the infection. There is also increased
IgE and IgG1 production in mice and IgE and IgG4 production in humans [12,28]. All these
processes work together to drive worm expulsion and wound-healing responses, which
control worm-induced tissue damage [28].

The Th2 immune response induced by helminths includes interleukins (IL-4, IL-5,
IL-9, IL-10, and IL-13), broad or localized eosinophilia and hyperplasia of goblet and
mucosal mast cells [12,28]. The CD4-positive Th2 cells were initially identified as an
essential source of IL-4, IL-5, IL-9, IL-10 and IL-13 cytokines [29]. Eosinophils, basophils
and innate lymphoid cells (ILCs) can also produce some of these cytokines in response
to helminth infections [29]. Although the Th2 immune response induced by helminth
parasites is stereotypical, the initiation, progression and culmination of this response
require interaction with different cell types, most notably: epithelial or stromal cells, ILCs,
antigen-presenting cells, dendritic cells, macrophages, T cells, B cells, eosinophils, mast
cells and basophils [12].

Tregs maintain the Th2 dominance, IL-10 and TGF-β, which mediate the suppression
of competing Th1 and Th17 cell populations [30]. Tregs modulate the immune system
to prevent tissue damage induced by proinflammatory responses, maintain tolerance to
self-antigens and abrogate autoimmune disease [31]. These cells can be divided into two
subsets: natural Tregs that develop in the thymus, and induced Tregs that arise from
conventional CD4 positive T cells in the periphery, which are promoted by chronic antigen
exposure [32]. The forkhead/winged-helix transcription factor (Foxp3) is a crucial marker
for identifying these subsets, but it may be expressed on activated CD4 positive T cells [32].

Helminth-induced suppression of immunopathology also involves CD4+ Tregs (Foxp3+
or Foxp3), CD8+ Tregs, regulatory B cells (Bregs), IL-4-responsive cells, TGF-β, and IL-
10 [33]. Since an increased Th2 response can potentially induce disease, a regulated response
must be generated. This is referred to as the modified Th2 cell response and is characterized
by the downregulation of Th2 cytokines [12].

According to the hygiene hypothesis, in developed countries where sanitation is
good, and helminths have been eliminated, there is an increase in allergic diseases such
as asthma and allergic rhinitis, and autoimmune diseases such as Crohn’s disease [27].
This hypothesis has led to many human and animal studies conducted using live helminth
parasites to determine whether helminths do nullify the effect of allergies and autoimmune
disorders. Human studies conducted in underdeveloped countries where helminths are
still prevalent showed fewer allergies and autoimmune diseases [27,34,35]. Others have
reported evidence of decreased allergies in developing countries [36].

Helminths induce various immune and physiologic modifications to survive the hos-
tile immune response directed against them and their general survival. These survival
mechanisms include this modified Th2 response [27]. These parasites also promote an-
giogenesis, which changes tissue vascularity and thus provides a good niche for their
survival [37]. The overall immune modulation of helminths invokes immunosuppression,
immunologic and physiological tolerance and a modified Th2 response [27]. These can
lead to a reduced immune response, thus amplifying susceptibility to infection with other
pathogens, reduced anti-tumor immunity and reduced vaccine efficacy. The host immune
response profile to helminth infection is presented in Figure 2.
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Figure 2. Immune response profiles during helminth infection. Migration of helminths damages
epithelial barrier cells and tissues, triggering an immune response. Helminths produce damage and
pathogen-associated molecular patterns (DAMPS and PAMPS). DAMPS and PAMPS activate various
cells, such as epithelial, which release alarmins such as Thymic stromal lymphopoietin (TSLP), IL-25
and IL-33. Alarmins stimulate innate lymphoid cells (ILCs), aiding collagen deposition and tissue
repair, and are a source of IL-5 required for eosinophil activation. Eosinophils enter tissues during
helminth infection-induced inflammation. Eosinophilia is a crucial feature of the host response to
helminth infection. Alarmins promote B cell activation and induction of alternatively activated
macrophages (AAMs). AAMs stimulate IL-10 and TGF-β, which reduce the host’s immune response
to pathogens to avoid damaging the host and maintain normal tissue homeostasis. Classically
activated macrophages, stimulated by IFN-γ produce proinflammatory cytokines (IL-1β, IL-6, IL-8,
IL-12 and TNF-α).

Figure 2 Footnotes: IL: interleukin; IFN-γ: interferon-gamma; TGFβ: transforming
growth factor beta; TNFα: tumor necrosis factor-alpha; ILCs: innate lymphoid cells; TSLP:
Thymic stromal lymphopoietin; AAMs: alternatively activated macrophages; DAMPS:
damage-associated molecular patterns; PAMPS: pathogen-associated molecular patterns.
Red arrow pointing up indicates cytokines that are upregulated/increased during the early
stages of helminth infection and those that are upregulated during the chronic stages.

4. The Host Immune Response to T.B.

T.B. enters the body via inhaled droplets to the alveoli. It interacts with the alveolar
macrophages, infecting and multiplying inside them, thus making these cells the first line of
defense against infection [6]. In immunocompetent individuals, macrophages are activated,
and they phagocytose and remove T.B.

In some cases, the disease is controlled and kept in an inactive or latent state in distinct
foci known as granulomas bacteria [9,15,38,39]. However, some bacteria can escape this
fate, multiply and eventually cause an active infection. This may be due to the intrinsic
capacity of the macrophage, the immune status of the host or the virulence of the infecting
bacteria [9,15,38,39]. Mtb is, therefore, a pathogen that can cause both latent and active
disease [40].
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4.1. Innate Responses to T.B.

The initial stages of T.B. infection include phagocytosis of the bacteria by macrophages [6].
Receptors that recognize a broad spectrum of mycobacterial ligands cause phagocyto-
sis [9]. Pathogen recognition receptors, TLRs, complement receptors (C.R.), Nucleotide
Oligomerization Domain (NOD)-like receptors and C-type lectins have all been implicated
in recognition of mycobacteria and the initiation of the cytokine response [8].

When phagocytic cells encounter T.B., they get activated and generate cytokines, in-
cluding proinflammatory cytokines such as TNF-, IL-1, IL-6, IL-12 and IFN-γ [8]. Increased
susceptibility to T.B. was reported to be linked to genetic abnormalities in IFN-γ produc-
tion [15,41]. IFN-γ is involved in activating macrophages that fight mycobacteria through
intracellular killing and antigen presentation to T lymphocytes [42]. Vitamin D is also
involved in killing Mtb, which is aided by the creation of peptide cathelicidin [43].

The presentation of T.B. antigens by dendritic cells in lymph nodes, possibly aided
by neutrophils, initiates a local immune response that culminates in pathogen killing by
reactive oxygen species (ROS) and antimicrobial peptides [8].

Cells required in the host’s defense against Mtb include monocytes, macrophages,
neutrophils, natural killer (NK) cells and dendritic cells. Together, these cells form a primary
granuloma, which may allow Mtb growth while containing the infection until T cells are
recruited to the infection site, a response process that takes weeks [8]. Phagolysosomal
fusion, reactive oxygen and nitrogen intermediates, and antimicrobial peptides such as
cathelicidin induced by vitamin D are innate mechanisms against Mtb [43].

NK cells may eliminate intracellular Mtb through the activation of perforin, where
the antimycobacterial factor granulysin binds to the bacterial cell surface and disrupts the
membrane, resulting in bacterial osmotic lysis [44]. Apoptosis is a critical mechanism for
the infected host cell to limit Mtb replication to a minimum. Phagocytic cell apoptosis
may prevent the spread of disease, diminish the viability of intracellular mycobacteria and
reduce the risk of infection [45].

4.2. Adaptive Immune Responses to T.B.

Adaptive immunity develops after exposure to mycobacterial antigens or vaccination
with BCG. This part of the immune system is triggered when the innate immune response
is insufficient to suppress T.B. infection. The control of T.B. requires Th1 immune responses
(IFN-γ, IL-12 and TNF-α) and Th17 responses (IL-17 and IL-23). Th1 responses are proin-
flammatory and develop a cell-mediated reaction [38]. Th1 cells produce IFN-γ through the
T-box transcription factor (TBX21). Both IL-12 and IFN-γ are the leading cytokines in Th1
responses, where IL-12 is secreted by antigen-presenting cells [39,46]. The IL-12 receptor,
which is expressed on the surface of T cells, interacts with IL-12. The increased T-bet
(encoded by TBX21) boosts the signal transducer and activator of transcription 4 (STAT4), a
regulator of Th1 cells [46].

T-bet binds to and affects the expression of Th1-specific genes and Th1 and Th17 cell
expression [46]. This is important since the control of T.B. requires Th1 responses. STAT4
and T-bet work together to ensure optimal IFN-γ levels, and their depletion eliminates
IFN-γ production [46].

T.B. immunity involves many cells, such as T cells, B cells and natural killer (NK) cells,
with CD4+ T cells being the primary cell type in T.B. control [47]. The CD4+ Th1 cells are
central to the control of T.B.; these cells secrete IFN-γ and TNF-α, which are both critical
in the management of T.B. [38]. IL-12 regulates the induction of IFN-γ, and mutations in
the genes coding for IL-12, IL-12R, IFN-γR or STAT1 or depletion of CD4+ T cells (as seen
in HIV infection) all promote susceptibility to disseminated T.B. [38]. IFN-γ stimulates
phagocytosis, phagosome maturation, the production of reactive oxygen intermediates
(ROS) and antigen presentation in macrophages.

IFN-γ is regarded as the primary cytokine that regulates T.B. infection and eradication.
It works by activating the infected macrophage, resulting in the production of reactive
oxygen and nitrogen species, which have a microbicidal role [48]. In terms of memory
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immune responses, CD4+ Th17 cells and Th1 cells have been identified as enhancing the
host’s resistance to T.B. [49]. Th17 cells are a lineage of CD4+ T helper cells that produce
the cytokine IL-17, IL-17F and IL-22, and they play a role in developing an optimal Th1
response [50].

Th17 was first described as a distinct population of the T helper cells controlled by
the transcription factor RAR-related orphan receptor gamma (RORyt) [51]. They develop
independently of T-bet, STAT4, GATA-3 and STAT6 transcription factors critical for the
development of Th1 and Th2 development, respectively [51]. The central effector cytokines
of Th17 are IL-17; other cytokines are IL-22 and IL-26 [52]. The immune response to T.B.
infection is directed mainly by a Th1 response, with contributions from Th17 and other
cells. A strong proinflammatory milieu also characterizes T.B. infection.

On the other hand, human innate immune responses to Mtb infection are still poorly
understood, owing to the limitations in examining pulmonary-specific immunity.

Therefore, understanding the interaction of innate and adaptive immune cells in hu-
man T.B. is crucial for identifying new immunomodulatory targets and clarifying protective
immunity processes. The immune response profiles to tuberculosis infection are presented
in Figure 3.
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Figure 3. Immune response profiles during tuberculosis infection. Mycobacteria encounter alveolar
macrophages where they are phagocytosed, kept inside phagosomes and exposed to antimicrobial
peptides and degrading lysosomal enzymes (lysozyme). However, pathogenic mycobacteria have
developed strategies to subvert the host’s defenses. Th1-cell activity (IFN-γ, IL-12 and TNF-α) is
required for Mycobacterium tuberculosis immunity. IFN-γ activation of macrophages promotes bacte-
rial killing by forming toxic reactive oxygen intermediates (ROI) and reactive nitrogen intermediates
(RNI). An array of cytokines and chemokines, including tumor necrosis factor (TNF-α), induces a
proinflammatory response and direct immune cells to the infection site. Dendritic cells migrate to
draining lymph nodes, where they encounter many immature T cells. In the presence of proinflam-
matory cytokines such as IFN-γ and IL12, T cells become activated, multiply and differentiate into T
helper (Th)1 cells. IFN-γ stimulates macrophages and triggers the potent antimicrobial activities of
the primed Th1 cells.
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Innate and Th1-dominant adaptive immune responses interact to produce granulomas.
Innate and adaptive immune responses are critical for microorganism eradication.

Figure 3 footnotes: IL: interleukin; IFN-γ: interferon-gamma; TNF-α: tumor necrosis
factor-α; ROI: reactive oxygen intermediates; RNI: reactive nitrogen intermediates. Red
arrow pointing up indicates cytokines that are upregulated/increased during T.B. infection.
Red arrow pointing down indicates cytokines that are downregulated during T.B. infection.

5. Host Immune Response during Helminth Coinfection with T.B.

The geographic distributions of helminths and T.B. overlap substantially, particularly
in underdeveloped countries, resulting in an increased likelihood of coinfection with both
pathogens [15,16]. This coexistence has also led to the hypothesis that helminths can worsen
the effects of T.B. There have been suggestions that the anti-inflammatory response induced
by helminths in cases of coinfection might dampen protective and immunopathological
responses to T.B. [15,16].

An Ethiopian study investigated the association between intestinal helminths and
active T.B. and found that helminth infection increases the likelihood of developing active
T.B. [53]. This and other studies also suggested that patients with coinfection may have
antagonistic effector cell responses in responding to and regulating these diseases [30,54].
This can also imply that the efficacy of the vaccines may be reduced.

One school of thought suggests that helminths create an environment that weakens the
host’s defenses against T.B. By activating the IL-4 receptor pathway, a preexisting helminth
infection inhibits an innate pulmonary anti-T.B. defense [55]. In coinfected mice models,
helminth-induced lung alterations increased susceptibility to T.B. [55]. Macrophages can be
classically or alternatively activated. Classically activated macrophages (CAMs) increase
the activity of nitric oxide synthase (iNOS), which converts L-arginine to nitric oxide and
citrulline. Nitric oxide promotes intracellular Mtb killing.

On the other hand, alternatively activated macrophages (AAMs) induce arginase,
which competes with iNOS for L-arginine, thereby reducing nitric oxide production for the
intracellular killing of Mtb [48]. Mtb resistance in helminth-infected mice is promoted by
AAMs. This major cellular pathway compromises the helminth-infected host’s ability to
limit Mtb growth [55].

A review in support of this proposed role of the Th2-dominant phenotype on Mtb
control illustrated that AAMs might inhibit the macrophage killing of Mtb [48]. Conversely,
a murine study in South Africa using Nippostrongylus brasiliensis (Nb) revealed that Mtb
colonies were reduced in the lungs of Nb-infected mice. The stimulation of pulmonary
CD4+ T cells and Th1 and Th2 cytokines, neutrophils and alveolar macrophages was
elevated. This suggests that Nb infection triggers a macrophage response, which protects
the host throughout the early phases of mycobacterial disease and subsequent illness [19].

Both helminths and T.B. have independent mechanisms for initiating the host immune
response, with significant consequences for the immunology of each infection [15,16].
The coexistence of helminth infection and active tuberculosis has been demonstrated in
epidemiological, cross-sectional and case-control studies that looked at the prevalence and
correlation of the two diseases. Pulmonary T.B. patients were found to have a significant
rate of intestinal nematode infection, indicating that helminth immunomodulation may
affect the control of T.B. [53,56].

In Ethiopia, some studies reported an increase in the prevalence of helminth coinfection
in T.B. patients, where one study found a higher risk of parasites among active T.B. patients
than in healthy community controls [17,57,58]. Likewise, in Iran, a higher prevalence
of intestinal helminths was found in tuberculosis patients compared to the uninfected
subjects [59]. Taghipour and colleagues also determined that immunocompromised T.B.
patients are more vulnerable to parasitic gastrointestinal infections [60]. It was reported
that Blastocystis subtype 1 was the most common subtype found in T.B. patients; however,
a phylogenetic analysis revealed no distinction between Blastocystis isolates from T.B.
patients and those from the uninfected [59].
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S. mansoni was also a risk factor for T.B. infection, and it altered the clinical presentation
and pathogenesis of T.B. in Tanzania [61]. The authors recommended treatment of this
parasite using praziquantel in T.B. infection management [61].

A systematic review suggested that health education be implemented to help prevent
intestinal helminth infection. It further added that screening for helminths should be
possibly included in the treatment strategies for tuberculosis patients [59]. Another review
suggested an association between Toxoplasma gondii (T. gondii) seropositivity and having
tuberculosis, with T. gondii seropositivity, which indicates chronic infection, being relatively
common among tuberculosis patients [62].

Strongyloides stercoralis coinfection with pulmonary T.B. was implicated in the cause
of the skewed immune response to mycobacterial disease [63]. The proinflammatory
Th1 cytokines were reduced, whereas the anti-inflammatory Th2 and Th3 cytokines were
elevated, thus leading to a conclusion that helminth coinfection may modulate protective
immune responses in latent T.B. [63]. A study of immunological correlates in T.B. coinfection
with S. mansoni in Kenya, on the other hand, discovered that the expression of T.B.-specific
Th1 cytokines was maintained. Individuals with latent tuberculosis and S. mansoni infection
had more CD4+ Th1 cells than those who were only latently T.B.-infected [22]. There were
similar results in a Brazilian study, whose findings revealed that A. lumbricoides infection
had no impact on Th1, Th2 and Th17 responses or the T cell populations [21].

A Th1 immune response observed during persistent filarial infection was characterized
by a reduction in Purified Protein Derivative (PPD)-specific IFN-γ and IL17 responses [64].
The study suggested that filaria infection reduced the PPD-specific IFNγ and IL17 responses.
In addition, it was observed that onchocerciasis patients’ peripheral T cells had a weak
response to Mtb antigens [65]. Elias and colleagues illustrated that compared to dewormed
patients, helminth-infected individuals displayed low Th1 immune response and IFN-γ
production in response to mycobacteria infection [66]. Lastly, it has been suggested that
a robust Th1 response characterizes cell mediated protection against T.B. infection, and
coinfection with helminths could modulate these immune responses by driving Th2 and
Treg cells [17,67].

Furthermore, enhanced Treg function is associated with helminth infection and may
suppress Th1 responses against unrelated antigens [12,67]. This finding was supported by
studies which showed that intestinal helminth coinfection was associated with a reduced
Th1 response in active T.B. [16,68]. Type I immunity and their proinflammatory cytokines
such as IFN-γ, IL-12 and TNF-α have a protective role against Mtb. By contrast, the
induction of type 2 immunity, e.g., Th2 and Treg cells (as seen in helminth infections) and
their anti-inflammatory cytokines, were reported to suppress the efficient immune response
against T.B. [38].

A mouse model study of Schistosoma mansoni showed a reduced protective efficacy of
BCG vaccination against Mtb [66]. Another study demonstrated that concomitant helminth
infections significantly impair the immunogenicity of BCG vaccines, an impairment associ-
ated with increased TGF-β production [30]. During active T.B., asymptomatic helminth
infection has been shown to have a considerable impact on host immunity in a double-blind,
randomized clinical study [17]. In comparison to the placebo group, eosinophils and IL-10
levels decreased after albendazole treatment [17]. Another albendazole treatment study
was conducted to determine the immunological effects of deworming on proinflammatory
cytokine responses to plasmodial antigens. The study demonstrated improvements in
immune hypo responsiveness, where anthelmintic treatment significantly increased proin-
flammatory cytokine responses to Plasmodium falciparum-infected red blood cells [69].

In Egypt, it was determined that hookworm infection was one of the risk factors
for the failure of T.B. therapy [70]. However, a human study in the United Kingdom
(U.K.), where the authors studied migrants from Nepal, found that hookworm infection
reduced T.B. growth and may reduce the risk of infection [20]. According to the evidence
presented above, some studies demonstrated that helminthiasis has a negative impact on
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T.B. diseases, while others showed a beneficial effect. Table 1 summarizes some of the
studies investigating helminth and T.B. coinfections.

Although HIV is not covered in this review, there is evidence of a concurrent distri-
bution of triple disease burden involving tuberculosis, helminths and HIV, particularly in
Sub-Saharan Africa. This necessitates a greater focus on disease management strategies by
various policymakers [71].

Table 1. Summary of experimental and human studies focusing on helminth and tuberculosis coinfections.

References Study Type, Location and
Helminth(s) Study Aim Major Findings

[72]
Human study in Kenya.
Wuchereria bancrofti and
Schistosoma haematobium

To investigate whether
prenatal immunity to
helminths persists in

childhood and if it alters the
immune response to BCG

Compared to patients who had prenatal
sensitization 10–14 months after BCG

immunization, T cell IFN-γ production
was 26-fold higher in infants who were
not sensitized to filariae or schistosomes

in utero.

[73]
Human study in South Africa.

Ascaris lumbricoides and
Trichuris trichiura

To determine total serum IgE
before and after

tuberculosis therapy

T.B. therapy resulted in reduced serum
Ascaris-specific IgE levels. Tuberculin
induration was found to be inversely

related to IgE in patients but not
in controls.

[65]
Human study in West

Cameroon.
Onchocerca volvulus

To determine total serum IgE
before and after

tuberculosis therapy

T.B. therapy resulted in reduced serum
Ascaris-specific IgE levels. Tuberculin
induration was found to be inversely

related to IgE in patients but not
in controls.

[64]

Human study in East Ethiopia.
Ascaris lumbricoides,

hookworms, Trichuris trichiura,
Strongyloides stercoralis,
Hymenolepis nana and

Taenia spp.

To investigate the effect of
intestinal helminths on the

immune response to PPD in
naturally immunized or

BCG-vaccinated individuals

Individuals who received BCG
vaccination and were infected with

helminths had reduced T cell and PPD
skin test responses. Increased T cell

proliferation and IFN were associated
with improved BCG efficacy following

anthelmintic therapy.

[66]
An experimental study in

Ethiopia.
Schistosoma mansoni

To investigate whether
chronic helminth-infected
individuals have reduced
efficacy of BCG vaccine

compared to
uninfected persons

Possibly through attenuation of
protective immune responses to

mycobacterial antigens and/or by
polarizing the general immune responses

to the Th2 profile, S. mansoni infection
reduced the protective efficacy of BCG

vaccination against Mtb.

[53]

Human study in Ethiopia.
Ascaris lumbricoides, Hookworm,

Strongloides stercoralis,
Trichuris trichiura, S. mansoni
and Enterobius vermicularis

To study the prevalence of
intestinal helminth infections

and their association with
active T.B. in T.B. patients and

healthy household contacts

In addition to HIV infection, intestinal
helminth infection may be a risk factor

for the development of active pulmonary
T.B. This discovery could have significant

consequences for the control of
tuberculosis in helminth-endemic areas

around the world.

[30]

Human study in Ethiopia.
Trichuris trichiura, Ascaris

lumbricoides, hookworms, Taenia
spp., Hymenolepis nana and

Enterobius vermicularis

This study tested
anti-helminthic medication
before BCG vaccination to

determine if it could improve
BCG vaccination

immunogenicity in
helminth-infected patients

Chronic worm infection reduced BCG
immunogenicity in humans. This was

linked to increased TGF-β production but
not a better Th2 immune response.
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Table 1. Cont.

References Study Type, Location and
Helminth(s) Study Aim Major Findings

[74]
Human study in South Africa.

Ascaris lumbricoides and
Trichuris trichiura

To investigate whether
helminth infection could affect
a child’s ability to generate a

proper Th1 immune response,
which was defined by a
positive tuberculin skin

test (TST)

Helminth infection/exposure may reduce
the immune response to Mtb infection. In

younger children, being Ascaris
IgE-positive significantly reduced the

likelihood of being TST-positive, but this
effect faded as they grew older.

[75]
Human study in Venezuela.

Ascaris lumbricoides and
Trichuris trichiura

To investigate the effects of
parasite infections,

malnutrition and plasma
cytokine profiles on tuberculin

skin test (TST) positivity

TST positivity was associated with low
plasma Th1 cytokine levels in indigenous

Venezuelan children with T.B. contacts
and helminth infections.

[19]
Animal study in South Africa.

Nippostrongylus
brasiliensis (Nb)

To investigate the impact of
acute Nb-induced lung
damage and long-term

parasite lung conditioning on
the host’s ability to control

mycobacterial infection

The findings show that early stage Nb
infection induces a macrophage response

that protects against subsequent
mycobacterial infection.

[76]

Human study in Ethiopia.
Giardia lamblia, Ascaris

lumbricoides, Hookworm spp.,
Strongyloides stercoralis,

Trichuris trichuria, Enterobius
vermicularis, Taenia spp.,

Hymenolepis nana, Schistosoma
mansoni or trophozoite stage

of Entamoeba histolytica.

To diagnose latent Mtb
infection using the tuberculin
skin test (TST) and the IFN-γ

release assays in helminth
infected school children

The tuberculin skin test should be used
with caution in areas where parasitic

intestinal infections are common.

[77]

Human study in Uganda.
Hookworm, Trichuris trichiura,
Hymenolepis nana, Schistosoma
mansoni, Ascaris lumbricoides,

Hymenolepis nana and
Schistosoma mansoni

To determine whether
coinfections such as

helminths, malaria and HIV
modulate the immune system
and increase susceptibility to
latent tuberculosis infection

(LTBI), leading to the
persistence of the

tuberculosis epidemic

Concurrent helminth, malaria and HIV
infections did not affect cytokine
responses profile in individuals

with LTBI.

[78] Human study in Ethiopia.
Schistosoma mansoni

To investigate whether
maternal helminth infection

affects maternal and neonatal
immunological function and

T.B. immunity

The combination of early secretory
antigenic target 6 (ESAT-6) and culture

filtrate protein 10 (CFP-10) elicited a
significantly lower IFN-γ response in

helminth-positive than in
helminth-negative participants. Cord

blood mononuclear cells’ (CBMCs) IFN-γ
response, total IgE and cross-placental

transfer of T.B.-specific IgG were all
negatively correlated with maternal

helminth infection.

[17]

Human study in Ethiopia.
Ascaris lumbricoides Hookworm

spp.
Strongyloides stercoralis

Trichuris trichiura
Hymenolepis nana

Taenia spp.

To examine the clinical and
immunological effects of

helminth infection on T.B.

Asymptomatic helminth infection had a
profound influence on the immunological

profile of individuals with T.B. This
favored Th2 immune responses such as

increased regulatory T cells and IL-5 and
IL-10 secreting cells.
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Table 1. Cont.

References Study Type, Location and
Helminth(s) Study Aim Major Findings

[79] Human study in Ethiopia.
Ascaris lumbricoides

To investigate the clinical and
immunological outcomes of

patients coinfected with
helminths and T.B. after
albendazole treatment

The decrease in eosinophil counts and
IL-10 demonstrated that asymptomatic

helminth infection considerably impacts
host immunity during tuberculosis and

can be efficiently reversed with
albendazole treatment. Helminth

infection has clinical effects on chronic
infectious diseases such as tuberculosis,

and these effects should be
further explored.

[80] An animal study in the USA.
Schistosoma mansoni

To investigate whether
Mtb-specific T cell responses

can be reversibly impaired by
treatment of S. mansoni

coinfection, without
impacting

arginase-1-expressing
macrophage-mediated

T.B. control

Anthelminthic treatment improved
Mtb-specific T cell responses. In

T.B.-infected mice, arginase-1-expressing
macrophages in the lung formed

granulomas and
exacerbated inflammation.

[81]
An experimental animal study

in USA.
Heligmosomoides polygyrus

To investigate whether Mtb
infection would be modulated

in mice with chronic H.
polygyrus infection

Despite a systemic increase in FoxP3+ T
regulatory cells, neither primary nor

memory immunity conferred by
Mycobacterium bovis BCG vaccination

were affected in mice with chronic enteric
helminth infection.

[82] Human study in India.
Strongyloides stercoralis

To investigate whether
helminth modulation of

cytokine responses in latent
T.B. coinfection is reversible
after anthelminthic therapy

In Strongyloides stercoralis-latent T.B.
coinfection, anthelmintic therapy

reversed the modulation of systematic
and T.B. antigen-stimulated

cytokine responses.

6. Effect of Helminth Infection on T.B. Vaccine

BCG is currently the only T.B. vaccine available; it celebrated its 100th anniversary
in 2021. Alternative vaccines are being developed [83]. The BCG vaccine is still the only
option for protection against human T.B., and it is inexpensive, safe and widely available.
BCG effectiveness against T.B., however, varies in the high helminth-burden areas of the
world [83]. Children are typically given the BCG vaccine. A review reported that BCG
could provide protection against severe forms of T.B., including meningitis and miliary [84].

The BCG vaccine is administered to more than 80% of all newborns and babies in
countries where it is included in the national childhood immunization program; however,
it does not prevent the development of latent tuberculosis or the reactivation of pulmonary
disease in adults [85]. BCG has been reported to be less effective in T.B.-coinfected individ-
uals living in helminth-endemic areas [64]. However, another study reported no difference
in BCG vaccination status and tuberculin skin testing (TST) responses in patients with or
without T.B. and helminth coinfection [67].

An Ethiopian study found that helminth infection influenced BCG vaccination out-
comes, and PPD-specific cellular immune responses improved in helminth-treated indi-
viduals compared to untreated controls [64]. Deworming was shown to boost the efficacy
of BCG immunization in this randomized experiment [64]. In addition, it was found that
the BCG vaccination of PPD-negative individuals in a helminth-infected population in
Ethiopia had poor immunogenicity, and they concluded that this was due to a high Th2
bias in immunological responses caused by chronic helminth infection [64].
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Furthermore, in another study, S. mansoni was found to reduce the protective efficacy
of BCG vaccination against Mtb, possibly by attenuating protective immune responses to
mycobacterial antigens and polarizing general immune responses to a Th2 profile [66].

Th2-like IL-10 responses elicited by intestinal helminths may interfere with Th1-
like IFN responses induced by BCG, altering the protective immune response to BCG
vaccination [86]. The impact of helminth infection is due to the antigen-specific modification
of cell-mediated immunity, and the diminished efficacy could be owing to impaired immune
responses to recall antigens [87].

Furthermore, helminth infection during pregnancy has been shown to persist into
childhood and shift immunity away from Th1 responses, which are required in T.B. infection
and vaccination [72]. Chronic helminth infections increase susceptibility to T.B. infections
requiring Th1 responses and also lead to impaired efficacy of the BCG vaccine [30,88].

While there is mounting evidence that helminth prophylaxis could have a role in
combating the HIV/AIDS and T.B. pandemics [89], observational research and randomized
controlled trials have not revealed a uniform clinical picture. Deworming programs may
help to enhance community-based health measures such as proper sanitation, access to clean
water and adequate education [90]. More intervention research is required to demonstrate
the impact of deworming on tuberculosis disease progression.

7. Helminth and T.B. Coinfection-Immune Mediated Pathology

The typical immune response to helminths, characterized by decreased IFN-γ, reduced
T cell proliferation and IL-2 as a result of increased Th2/Treg cytokines, attenuates a potent
anti-tuberculosis IFN-γ immune response and therefore uncontrolled T.B. pathology [15].
Furthermore, the helminth-induced expansion of AAMs and nitric oxide synthase sup-
pression could also contribute to the impaired intracellular killing of T.B. in macrophages,
thereby enhancing T.B. disease process [15]. In addition, the helminth-induced anergy of
cognate and bystander T cells and increased apoptosis further impair T.B. responses and
increase the pathogenesis [88].

8. Effect of Deworming during T.B.-Helminth Coinfection

The effects of deworming can be used to determine the impact of helminth infections.
It was shown that the use of anthelminthic drugs to treat patients with helminths resulted
in increased T cell proliferation and IFN-γ production of PBMC stimulated with PPD. The
study showed that T cell responses to PPD were improved in filarial-infected patients
treated with diethylcarbamazine [55,65].

The treatment of helminth-infected patients with albendazole during BCG vaccination
increased proliferative and IFN-γ responses to PPD, suggesting that persistent helminth
infection during BCG vaccination may contribute to a decreased T cell response to my-
cobacterial antigens. This meant that removing helminths via anthelminthic treatment
would reduce Th2 cell and cytokine inhibitory effects on Th1 responses [91].

Toulza et al. found that anthelminthic therapy altered antimycobacterial immune
responses in U.K. migrants. Patients with helminth infection had a higher frequency of
CD4 + Fox P3 + T cells (Tregs) and a lower frequency of CD4 + IFN-γ + T cells, but these
effects were reversed after treatment [68].

Another study in Gabon found that anti-helminth treatment with praziquantel against
Schistosoma infection resulted in a significant decrease in CD4 + Fox P3 + T cells after
treatment [92]. Since helminth infections cause widespread immunological alterations
that revert to normal after the helminth infection is eradicated, their role in the interaction
between their host and other pathogens could be substantial [93].

From the above, it is apparent that concurrent helminth and T.B. infections have
demonstrated various effects on the host. These reactions could be due to different helminth
species, their location in the body, different life cycles, variable (excretory/secretory) E/S
products and Mtb infection. The virulence and infection route of the mycobacterial strain
may also contribute.
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Some in vitro studies have been reported to have shown that helminth infection
affects Mtb infection in terms of immune response and disease severity, but the clinical
and treatment outcome is unknown, possibly due to underpowered studies, the type or
intensity of the infecting helminth and the various methodologies used to detect helminth
infection [15].

9. Concluding Remarks

Concurrent helminth infection and T.B. both produce antagonistic immune responses.
Helminths have the potential to impair the host’s ability to respond to bystander infections
such as T.B. Helminth and T.B.’s spatial overlap may impair the host’s ability to respond to
mycobacterial conditions. Th1 responses are required for T.B. immunity, whereas helminths
mount an opposing Th2 response, which tends to dominate and thus skew the immune
response. Furthermore, chronic helminth infections impair innate and adaptive immune
responses to T.B. and induce immunoregulatory responses, lowering T.B. immunity even
further. However, whether these opposing immune responses in helminth and T.B. coinfec-
tion affect pathological outcomes is unclear.

In helminth-endemic areas, it is suggested that chronic helminth infections reduce
the efficacy of BCG, the currently available T.B. vaccine. There is conflicting evidence
regarding the effectiveness of regular anti-helminth medication in the treatment of T.B., and
this requires further investigation. Clarification of the effect of deworming in concurrent
helminth-T.B. infections may aid in the development of government treatment policies.
Since vaccines can prevent T.B. infection, the co-occurrence of helminths and T.B. must be
considered when developing new vaccines and conducting research on them. Finally, more
research is needed to understand better the effects of multicellular coinfecting pathogens
on immune responses.
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