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Abstract
Johne's disease (JD) is a chronic, intestinal infection of cattle, caused byMycobacterium
avium subsp. paratuberculosis (MAP). It results in granulomatous inflammation of the intes-

tinal lining, leading to malabsorption, diarrhea, and weight loss. Crohn’s disease (CD), a

chronic, inflammatory gastrointestinal disease of humans, has many clinical and pathologic

similarities to JD. Dysbiosis of the enteric microbiota has been demonstrated in CD patients.

It is speculated that this dysbiosis may contribute to the intestinal inflammation observed in

those patients. The purpose of this study was to investigate the diversity patterns of fecal

bacterial populations in cattle infected with MAP, compared to those of uninfected control

cattle, using phylogenomic analysis. Fecal samples were selected to include samples from

20 MAP-positive cows; 25 MAP-negative herdmates; and 25 MAP-negative cows from a

MAP-free herd. The genomic DNA was extracted; PCR amplified sequenced on a 454

Roche platform, and analyzed using QIIME. Approximately 199,077 reads were analyzed

from 70 bacterial communities (average of 2,843 reads/sample). The composition of bacte-

rial communities differed between the 3 treatment groups (P < 0.001; Permanova test). Tax-

onomic assignment of the operational taxonomic units (OTUs) identified 17 bacterial phyla

across all samples. Bacteroidetes and Firmicutes constituted more than 95% of the bacte-

rial population in the negative and exposed groups. In the positive group, lineages of Acti-
nobacteria and Proteobacteria increased and those of Bacteroidetes and Firmicutes
decreased (P < 0.001). Actinobacteria was highly abundant (30% of the total bacteria) in

the positive group compared to exposed and negative groups (0.1–0.2%). Notably, the

genus Arthrobacter was found to predominate Actinobacteria in the positive group. This

study indicates that MAP-infected cattle have a different composition of their fecal micro-

biota than MAP-negative cattle.
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Introduction
Johne's disease (JD), also known as paratuberculosis, is a chronic, incurable, gastrointestinal
infection of cattle and other domestic and wild ruminants, caused byMycobacterium avium
subsp. paratuberculosis (MAP). The infection results in granulomatous inflammation of the
intestinal lining, leading to malabsorption, chronic diarrhea, and weight loss in clinically
affected animals. Most animals become infected during the neonatal period, but due to MAP’s
long incubation period, clinical signs usually develop much later (2–5 years post-infection) [1].
Although vaccination has been found to reduce the incidence of clinical disease, it is not fully
protective [2], and lifelong treatment with antibiotics to control the disease is not possible in
food-producing animals [3]. Infection with MAP has been reported in ruminants worldwide.
In the United Sates alone, most recent surveys suggest that more than 68% of dairy herds are
infected with MAP, leading to considerable financial losses for producers [4].

Crohn’s disease (CD), a chronic, inflammatory gastrointestinal disease of humans, has many
clinical and pathologic similarities to JD. The definitive cause of CD remains elusive. It is thought
to result from a complex interaction of host susceptibility factors and an abnormally intense
immune response to bacteria or other antigens in the intestines [5, 6]. Numerous studies have
investigated the role of MAP in CD [7–8]. These studies have shown conclusively that MAP can
be isolated from intestinal tissue of Crohn's patients (significantly more than controls), but the
medical community still debates whether MAP causes the intestinal inflammation, or merely is
able to colonize already-compromised intestinal tissues of afflicted individuals [9, 10].

The gastrointestinal microbiome is fundamental to the overall health and production per-
formance of most mammals [11]. This diverse community of gastrointestinal bacteria exists in
a delicate balance with the host- a balance that can be disrupted by changes in diet, antibiotic
treatment, or infection with pathogenic bacteria [11]. Disruption of this balance, termed “dys-
biosis” can result in gastrointestinal dysfunction, including inflammation of the intestinal lin-
ing [12]. In CD patients, studies of the gastrointestinal microbiome have shown evidence of
dysbiosis, including a shift in the species of bacteria present and an overall reduced diversity of
bacterial species [13, 14]. More specifically, those studies have shown a significant reduction in
the proportion of bacteria belonging to the Firmicutes and Bacteroidetes phyla [13, 14]. It is
speculated that this shift in enteric microbiota may contribute to the intestinal inflammation
observed in these patients [14].

In cattle, the study of the gastrointestinal microbiota has mainly focused on the rumen,
more specifically on the impact of different diets on its bacterial composition and the repercus-
sion on animal productivity [15–17]. To the authors’ knowledge, the fecal microbial composi-
tion of MAP-infected cattle has not been studied. Given the similarities between the two
syndromes, dysbiosis in cattle with JD, similar to that reported in patients with CD, is a reason-
able expectation.

The objective of the study presented here was to investigate the diversity patterns of fecal
bacterial populations in cattle infected with MAP, compared to those of uninfected control cat-
tle, using phylogenomic analysis. We hypothesized that cattle naturally infected with MAP will
have a reduction in gastrointestinal microbial biodiversity, when compared to the uninfected
controls.

Materials and Methods

Fecal samples
Fecal samples were selected from the University of Pennsylvania Johne’s disease Laboratory’s
fecal repository to include samples from 20 naturally infected, non-clinical MAP-positive cows
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(positive group); 25 MAP-negative herdmates (exposed group); and 25 MAP-negative cows
from a MAP-free herd (negative group). All positive and exposed fecal samples were obtained
from a single herd of 13,000 lactating cows. At the time of fecal sampling, MAP seroprevalence
was 34.6% in the positive herd. All negative fecal samples were obtained from a MAP-negative
herd of 300 lactating cows with no history of JD in the last 12 years. All fecal samples used were
kept at -70°C prior to analysis. The status of the fecal samples selected had been pre-deter-
mined by standard mycobacterial culture on Herrold’s egg yolk medium [18], and confirmed
as MAP using a commercially available RT-PCR kit (Vet Alert; Tetracore, Rockville, MD,
USA).

Sample Processing
Fecal samples were thawed and processed for genomic DNA extraction, using a commercially
available DNA extraction kit (QIAamp DNA Stool Mini Kit; Qiagen, Valencia, CA, USA) as
described elsewhere [19]. The extracted and purified DNA from the fecal samples was ampli-
fied for the V1-V2 hyper-variable regions of the 16S rDNA gene using barcoded 8F and 357R
primers. Primer sequences and PCR conditions were similar to those described previously [20].
The amplicons were then bead purified using 1:1 Agentcourt AmPure XP beads (Beckman-
Colter, Brea, CA, USA). The purified products from the fecal samples were pooled in equal
concentration prior to pyrosequencing (GS FLX Titanium; Roche 454 Life Sciences, Branford,
CT, USA).

Sequence Analysis
The 16S rDNA sequences obtained were decoded and analyzed using the QIIME pipeline [21].
Reads were eliminated if they did not match the sample-specific barcode and amplified
sequences were shorter than 200 bp or longer than 1000 bp, or contained a homopolymer
sequences in excess of 6 bp. Operational taxonomy units (OTUs) were formed at 97% similar-
ity using UCLUST [22] and representative sequences from each OTU were aligned to 16S
rDNA reference sequences with PyNAST [23]. A phylogenetic tree was construed with Fas-
tTree [24]. Taxonomic assignments within the Greengenes taxonomy [25] were generated
using RDP Classifier version 2.2 [26]. Alpha diversity of samples was calculated for each group,
using Observed Species and Shannon diversity matrices. OTUs were rarified at a depth of 232
sequences, and subsampling was performed 10 times. The measured alpha diversities were
compared between each group with a nonparametric two sample t-test using the default num-
ber of Monte Carlo permutations (999) [27]. The extent of relationship between bacterial com-
munities was quantified using weighted and unweighted pairwise UniFrac distances [28].
Representative sequences of OTUs assigned to Arthrobacter were used for phylogenetic analy-
sis. Only OTUs with a relative abundance of at least 0.2% were included for tree construction.
A total of 78 sequences (16s sequences) related to Arthrobacter andMycobacterium genera
were obtained from NCBI nucleotide database [29]. Multiple sequence alignment was per-
formed using Muscle [30]. Phylogenetic tree was reconstructed using FastTree with a general-
ized time-reversible (GTR) model [24].

Statistical analysis
Statistical analysis and graphical presentation of data was performed using R program [31]. A
non-parametric permutational multivariate ANOVA test [32], implemented in the vegan pack-
age for R [33], was conducted for each pair of bacterial communities, as measured by weighted
UniFrac distance. To test for differences in taxon abundance, a generalized linear mixed model
(GLMM) was constructed with the lme4 package for R [33]. The model used a binomial link
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function and included a random effect term for each animal. The input data for the mixed
model consisted of a two-column matrix containing (in column 1) the number of reads
assigned to the taxon, and (in column 2) the number of reads assigned to other taxa. Alpha
diversity indices represented by Observed species and Shannon diversity calculated for each
group were compared pairwise for positive vs. exposed and positive vs. negative using Wil-
coxon rank sum test and the R package.

Results

Sequence information
Bacterial populations were surveyed by pyrosequencing fecal samples from seventy bacterial
communities (70 animals) obtained from three sampling groups [negative = 25, exposed = 25,
positive = 20]. Approximately 199,077 reads were obtained after quality control with an aver-
age of 2,843 reads per sample, three samples each from the positive and negative groups con-
tains less than 1,000 reads per sample. Approximately 34,606 OTUs were produced by
clustering at 97% sequence similarity and were assigned to 17 bacterial phyla and 117 known
genera.

Species richness and diversity
Species richness in the fecal microbiomes of negative, exposed and positive samples were com-
pared using Rarefaction analysis (Fig 1). In the positive group, the majority of the samples had
lower number OTUs compared to negative and exposed groups at different sequencing depths
(Fig 1A). At higher sequencing depth (230 reads per sample), the expected number of OTUs
was lower for positive group compared to negative and exposed groups (P<0.05, Wilcoxon

Fig 1. Richness and diversity metrics for fecal microbial communities of Negative, Exposed and Positive groups. a)
Rarefaction curves showing the expected number of OTUs at different sequencing depth b) Boxplots showing expected number
of OTUs at higher sequencing depth (232 reads per sample) c) Rarefraction curves showing the Shannon diversity values at
different sequencing depth d) Boxplots showing Shannon diversity of OTUs at higher sequencing depth (232 reads per sample).
α,β,γ indicates significant differences between the groups (P < 0.05;Wilcoxon test).

doi:10.1371/journal.pone.0160353.g001
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rank sum; Fig 1B). Similarly, bacterial diversity using the Shannon Index showed marked dif-
ferences between all 3 treatment groups (P<0.05, Wilcoxon rank sum; Fig 1C and 1D). Nota-
bly, a wide range of variation was observed among the positive samples for both richness and
diversity indices. Similarly, bacterial diversity using the Shannon Index showed marked differ-
ences between positive vs. exposed and positive vs. negative groups (P<0.05, Wilcoxon rank
sum; Fig 1C and 1D).

Community Comparison
Weighted and unweighted UniFrac distances were calculated based on relative abundance and
presence/absence information of OTUs in bacterial communities respectively. These distance
matrices were visualized using principal coordinate analysis (PCoA) (Fig 2). Using the PER-
MANOVA test, we found that the bacterial communities were found to be different (P<0.001;
PERMANOVA) among all three treatment groups. Differences among microbial communities
of the three treatments explained 33% of variation in the weighted UniFrac model and 10% of
variation in the unweighted UniFrac model (Table 1). Microbial community composition
between individual treatment pairs (positive vs negative; positive vs exposed and exposed vs
negative) were found to be different (P<0.001; PERMANOVA test; Table 1). However, differ-
ences in microbial community composition between negative and exposed was lower as
explained by low variance in both weighted (10%) and unweighted (6%). Further, betadisper
analysis confirmed that there were significant differences between positive/exposed and posi-
tive/negative treatment pairs (Table 1). To summarize, it was revealed from the unweighted
Unifrac analysis that the MAP-positive group contained certain fecal microbiota which were
not detected in the other two groups, implicating the proliferation of bacterial populations with
incidence of MAP that are otherwise not detected in a healthy situation. Similarly, there were
also substantial differences in the relative abundance of certain microbial populations that
were detected in all three groups as depicted in the weighted Unifrac analysis. Finally, the beta-
disper test confirmed that fecal microbiota in the positive samples were less similar whereas
both exposed and negative samples showed a greater degree of similarity.

Fig 2. Comparison of bacterial community composition for negative, exposed and positive samples using principal coordinate analysis. a)
Weighted UniFrac distances based on relative abundance of bacterial OTUs and b) Unweighted UniFrac distances based on presence/absence
information of bacterial OTUs.

doi:10.1371/journal.pone.0160353.g002
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Taxonomic comparisons
Taxonomic assignment of the OTUs identified a total of 17 bacterial phyla across all samples.
Bacteroidetes and Firmicutes constituted more than 95% of the total bacterial population in
negative and exposed groups. However, in the positive group, lineages of Bacteroidetes and Fir-
micutes decreased with a concomitant increase in Actinobacteria and Proteobacteria (Fig 3).
Further, the percent abundance of these bacterial phyla varied significantly (P< 0.001) among
the individual samples in the positive group when compared to negative and exposed groups
(Table 2; S1 Fig). For example, the phylum Actinobacteria was highly abundant (30% of the
total bacteria) in the positive group compared to exposed and negative groups (0.1–0.2%; Fig
4). The extent of variation among the individual samples at the phylum level (Fig 5) demon-
strates that the abundance of Actinobacteria and Proteobacteria increased at the expense of
Bacteriodetes and Firmicutes. It appears that Bacteroidetes is the most vulnerable and was sig-
nificantly reduced in all positive samples whereas reductions in Firmicutes depended on the
abundance of Actinobacteria.

Table 1. Permanova and betadisper analysis for the bacterial communities of bovine fecal samples collected from negative, exposed and positive
groups.

Permanova Betadisper

Weighted Unweighted Weighted Unweighted

R2 p value R2 p value p value p value

Overall 0.32917 0.001 0.10048 0.001 1.051e-10 2.415e-06

Positive vs. Negative 0.33809 0.001 0.09458 0.001 0.0000000a 0.0261055a

Positive vs. Exposed 0.30875 0.001 0.07507 0.001 0.0000000a 0.0000013a

Negative vs. Exposed 0.10226 0.001 0.06325 0.001 0.9921091a 0.0076192a

a Quantified by Tukey post hoc test from betadisper output

doi:10.1371/journal.pone.0160353.t001

Fig 3. Stack bar plot showing the most abundant bacterial phyla in the bovine fecal samples collected
from negative, exposed and positive groups.

doi:10.1371/journal.pone.0160353.g003
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At the family level (S1 Table), Ruminococcaceae, Lachnospiraceae, Christenallaceae
decreased whereas Enterococcaceae, Staphylococcaeae and Bacillaceae (Firmicutes) increased in
positive samples when compared to exposed and negative samples. Among the Bacteroidetes
lineages, Rikenellaceae, Prophyromonadaceae, Prevotellaceae were greatly reduced (P< 0.001,
GLMM) in positive samples. The predominance ofMicrococcaceae of Actinobacteria lineage
among the positive samples was noteworthy, as it was not detected in either the exposed or
negative samples. The familyMoraxellaceae, from the Proteobacteria group was found to be
abundant in a few positive samples (P< 0.001, GLMM) while it was not detected in negative
and exposed samples. On the contrary, there were several families (Enterobacteriaceae, Succini-
vibrionaceae, Desulfovibrionaceae and several unclassified members) among the Proteobacteria
phylum, although contributing a very low abundance, were found to be higher (P< 0.01,
GLMM) in the exposed and negative samples over positive samples.

At the genus level, approximately 117 genera were identified with 15 genera from Bacteroi-
detes and 20 genera from Firmicutes, with a proportion exceeding 1% in at least one sample.
However, we found the predominance of a single genus, Arthrobacter from Actinobacteria
across all positive samples, however this genus was not detected in exposed and negative
groups. Among the Bacteroidetes, Alistipes, Paraprevotella and Bacteroides were reduced in
abundance across all positive samples. Similarly, in phylum Firmicutes, genera Clostridium and
Ruminococcus showed low abundance whereas Bacillus and Enterococcus were highly abundant
in the positive group (Fig 6). Genera such as Camobacterium, Desemzia and Trichococcus
(Camobacteriaceae) were only detected in positive group. Members of Planococcaceae (Plano-
microbium, Soilbacillus) were in abundance in few samples of positive group, but were not
detected in negative and exposed group.

To understand the extent of relationship between Arthrobacter partial 16S sequences identi-
fied in this study to that of cultured representative species from both Arthrobacter and MAP, a
tree was constructed (Fig 7). A majority of Arthrobacter OTUs were closely related to A. phe-
nanthrenivorans Sphe3, and a small proportion aligned to other species of Arthrobacter such as
A. globiformis, A. gangotriensis and A. nictonivorans.

Discussion
While the gastrointestinal tract hosts a wide range of bacterial species, four phyla are found to
predominate in human and animal gut: Firmicutes, Bacteroidetes, Proteobacteria and

Table 2. Mean abundance (%) of bacterial phyla in the bovine fecal samples collected from negative, exposed and positive groups.

Phylum Mean ± SEMa (%) Negative vs. Exposedb Negative vs. Positiveb

Positive Exposed Negative

Actinobacteria 30.321 ± 5.016 0.232 ± 0.030 0.109 ± 0.023 * ***

Bacteroidetes 13.358 ± 2.138 33.116 ± 1.065 31.024 ± 0.941 N.S.c ***

Cyanobacteria 0.240 ± 0.064 0.200 ± 0.061 0.414 ± 0.064 *** *

Firmicutes 46.738 ± 3.761 60.688 ± 1.063 65.877 ± 0.922 N.S. ***

Proteobacteria 5.604 ± 2.863 0.292 ± 0.039 0.409 ± 0.051 N.S. N.S.

Spirochaetes 1.285 ± 0.277 3.197 ± 0.412 0.243 ± 0.032 *** ***

Tenericutes 0.495 ± 0.075 0.690 ± 0.074 0.793 ± 0.074 N.S. *

TM7 1.362 ± 0.302 1.296 ± 0.144 0.621 ± 0.097 *** **

a Standard error of the mean
b p values for the effect of study group ***: P<0.001; **: P<0.01; *: P<0.05
c Not significant

doi:10.1371/journal.pone.0160353.t002
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Actinobacteria [34–35]. Among these four groups, Firmicutes alone account for nearly 64%,
whereas Bacteroidetes account for approximately 23% of the normal human microbiota [36].
In healthy human subjects, the Firmicutes phylum is dominated by Lachnospiraceaemembers,
whereas Bacteroidalesmembers constitute the majority of the Bacteroidetes phylum [37]. How-
ever, in diseased conditions such as IBD and CD, commensal bacteria represented by Bacteroi-
dales and Lachnospiraceae lineages decrease; while the Bacillus subgroup of Firmicutes, and
members of Proteobacteria phylum increase [36]. The nature and extent of dysbiosis in enteric
microbiota is variable with different clinical phenotypes of CD and IBD as one or more factors
including disease location, environmental exposures, diets and host genetics can trigger the
onset of these diseases [11]. And although the precise microbial species or metabolites involved

Fig 4. Box plot showing the abundance of Actinobacteria (%) detected in the bovine fecal samples collected from
negative, exposed and positive groups. The top and bottom edges of each box correspond to the first and third
quartiles of the data, respectively (25th and 75th percentiles). The lines extend across the entire range of the data.

doi:10.1371/journal.pone.0160353.g004
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are not completely understood, the endogenous intestinal microbiota is considered a major
trigger of inflammation [38–40]. The first demonstrations of the involvement of intestinal
microbiota in inflammatory bowel disease came from experiments showing that diversion of
the fecal stream improved symptoms of CD, and that restoration of the fecal stream resulted in
the induction of intestinal inflammation in those patients [41, 42]. It is now understood that
this shift in fecal microbiota is associated with a decrease in bacteria with anti-inflammatory
properties and an increase in bacteria with pro-inflammatory properties, all of which are
believed to play a role in disease progression and maintenance [11].

In the study presented here, MAP-infected cattle had significant changes in their fecal
microbiota when compared to MAP-negative herd-mates (exposed group), as well as MAP-
negative cattle from a MAP-negative herd (negative group). Fecal samples of MAP-positive
cattle had a significant reduction in phylum Firmicutes and Bacteroidetes when compared to
cattle from the exposed and negative groups. The reduced proportion of healthy commensals
such as Lachnospiraceae subgroup of Firmicutes and Bacteroidetesmembers was compensated

Fig 5. Thermal double dendogram showing abundance of phylum Proteobacteria and Actinobacteria compared to phylum
Firmicutes and Bacteroidetes in fecal samples from the positive group.

doi:10.1371/journal.pone.0160353.g005
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by a higher representation of members of the Proteobacteria and Actinobacteria phyla, consis-
tent with the dysbiosis observed in CD patients [13, 14]. Notably, Arthrobacter was found to be
the predominant Actinobacteria in the positive group.

Fig 6. Thermal double dendrogram of the most abundant bacterial genera detected in the bovine fecal samples collected from negative, exposed
and positive groups

doi:10.1371/journal.pone.0160353.g006
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Fig 7. Phylogenetic tree of Arthrobacter. Phylogenetic tree of OTUs assigned to the genus Arthrobacter.
The accession numbers are noted in parenthesis for each reference species.

doi:10.1371/journal.pone.0160353.g007
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Actinobacteria include plant commensals (Leifsonia spp.), soil dwellers (Streptomyces spp.)
and pathogens (Corynebacterium andMycobacterium). The presence of genus Arthrobacter in
anerobic environments such as the digestive tract of mammals has been reported, albeit in very
low abundance (<0.1%) [43]. This is probably the first study reporting the prevalence of
Arthrobacter in cattle feces infected with MAP. In the study reported here, the partial 16S
sequences of Arthrobacter clustered with cultured A. phenanthrenivorans (Sphe 3). However,
the similarity between Arthrobacter OTUs and A. phenanthrenivorans was variable, suggesting
that these sequences may be novel. The relationship between Arthrobacter and MAP is
unknown except for few earlier publications, suggesting that both bacteria require mycobactin
for their growth [44, 45]. It was also reported that ISMap04, an insertion sequence that is
found only in the genome of MAP strain K-10 has some similarity to Arthrobacter genus [46].
These evidences indicate an associative pattern between MAP and Arthrobacter and require
further investigations to define the extent and role of such synergistic interactions and their
role in the progression of Johne’s disease.

Conclusions
In the study presented here, we investigated the intestinal microbiome of MAP-infected cattle,
to determine if dysbiosis can be found in those animals. We demonstrated that fecal bacterial
communities of MAP-positive cows varied significantly from those of cows from the exposed
and negative groups. Furthermore, we demonstrated that bacterial communities within the
exposed and negative groups were mostly homologous, whereas there was statistically signifi-
cant greater variation between fecal samples in the MAP-positive cows. These findings are sim-
ilar to the gastrointestinal dysbiosis demonstrated in patients suffering from various types of
inflammatory bowel disease, including CD. Although the biological significance of the dysbio-
sis observed in the study presented here remains unclear, it is reasonable to speculate that it
may play a role in the intestinal inflammation observed in the affected animals. A functional
analysis of the bacterial communities within the positive samples would help understand the
impact of such shifts on intestinal inflammation but is not included in this report.

These findings may provide potential targets for the treatment of MAP through probiotic
agents designed to restore the microbiome to its proper balance and provide fodder for future
longitudinal studies on the development of dysbiosis following experimental MAP infection,
correlating these changes with parameters of intestinal inflammation.
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