
MethodsX 13 (2024) 102859 

Contents lists available at ScienceDirect 

MethodsX 

journal homepage: www.elsevier.com/locate/methodsx 

TopoGeoFusion: Integrating object topology based feature 

computation methods into geometrical feature analysis to 

enhance classification performance 

✩ 

N. Shobha Rani a , Keshav Shesha Sai b , B.R. Pushpa 

b , Arun Sri Krishna 

b , 
M.A. Sangamesha 

c , K.R. Bhavya 

d , Raghavendra M. Devadas e , ∗ , Vani Hiremani f 

a Department of Artificial Intelligence and Data Science, Gitam School of Technology, Bengaluru, GITAM (Deemed to be University), India 
b Department of Computer Science, School of Computing, Amrita Vishwa Vidyapeetham, Mysuru, India 
c Department of Chemistry, The National Institute of Engineering, Mysuru, India 
d Department of Computer Science and Engineering, Gitam School of Technology, Bengaluru, GITAM (Deemed to be University), India 
e Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, India 
f Department of Computer Science and Engineering, Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University), 

Pune, India 

a r t i c l e i n f o 

Method name: 

TopoGeoFusion 

Keywords: 

Computer vision 
Geometrical features 
Object detection 
Topology based features 
Sustainable technology 
Quality assessment 

a b s t r a c t 

This study used smartphone captured RGB images of gooseberries to automatically sort into stan- 
dard, premium, or rejected categories based on topology. Main challenges addressed include, 
separation of touching or overlapping fruits into individual entities and new method called ’To- 
poGeoFusion’ that combines basic geometrical features with topology aware features computed 
from the fruits to assess the grade or maturity. Quality assessment helps in grading the fruit to de- 
termine market suitability and intelligent camera applications. Computer Vision-based techniques 
have been applied to automatically grade the quality of gooseberries as standard, premium, or re- 
jected according to fruit maturity. Smartphone-captured images of 1697 Indian Star Gooseberries 
are contributed to the study. This work acquired images consisting multiple fruits with overlap- 
ping and non-overlapping boundaries for concurrent quality assessment. Multiple classifiers such 
as Random Forest, SVM, Naive Bayes, Decision Tree, and KNN were applied to grade the goose- 
berry fruit. Random Forest classification with a fusion feature model resulted in an accuracy of 
100 % towards reject, standard, and premium classes for test sets with four training strategies. 
The proposed segmentation model proves reliable in fruit detection & extraction with an average 
mAP of 0.56, resulting in an acceptable model for grade assessment. 

• The study highlights the effectiveness of TopoGeoFusion in automating the grading process 
of gooseberry fruits using topologically computed features. 

• The developed models exhibit high accuracy and reliability, even in challenging scenarios 
such as overlapping and touching fruits. 

• The method provides the technique to detect and extract the occluded objects and compute 
the features based on the partial object’s topology. 
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Specifications table 

Subject area: Computer Science 
More specific subject area: Machine Learning, Computer Vision 
Name of your method: TopoGeoFusion 
Name and reference of original method: Geometrical features [ 33 ] 

Chen, Y. Q., Nixon, M. S., & Thomas, D. W. (1995). Statistical geometrical features for texture classification. 
Pattern recognition, 28(4), 537–552. 

Resource availability: NA 

Background 

The proposed method TopoGeoFusion moves beyond traditional geometric feature analysis by incorporating object topology-based 
methods for feature computation. Object topology refers to the inherent connectivity, shape relationships, and spatial arrangements 
within an object, independent of its size or deformation. By integration of the topological features with traditional geometric features
such as size, area, perimeter etc., a more comprehensive feature set can be created. The comprehensive set of features can significantly
improve the discriminative power when classifying objects. Additional information about how different parts of an object is connected 
and arranged helps in obtaining a more accurate classification compared traditional features set. 

In this study, we use the self-collected datasets of Phyllanthus acidus (Gooseberries) to classify into standard, premium and
reject based on its topology by adapting to proposed method “TopoGeoFusion ”. The proposed method help improve classification
performance by weeding out irrelevant details and focusing on the topology-based features. Gooseberries, similar to many fruits, have 
intricate shapes and unique ways their parts are connected. The proposed method determines the most important geometric features
from the datasets of gooseberries by mainly capturing the overall form, roundness, outline, and how different parts of the gooseberry
are arranged in space. 

Gooseberries are small, spherical fruits that are native to tropical regions of Southeast Asia and other parts of India [ 1 , 2 ]. Indian
Star Gooseberries, loaded with essential nutrients, are powerful health and energy boosters supplemented with nutrients such as iron,
calcium, phosphorus, vitamin C, and vitamin A with antibacterial, anti-inflammatory, and antioxidant properties [ 3 ]. The fruits are
used to treat various health issues related to immune systems, digestive problems, and other medical ailments. These fruits serve
industries, humankind, and scientists in several ways. The cultivation of gooseberries may bring lots of opportunities to farmers and
the agricultural sector to generate revenue and support in rural development present in tropical regions of India [ 4 , 5 ]. Indian star
gooseberries are usually harvested manually by shaking the tree branches or using Mechanical harvesters resulting in a combination
of grades such as standard, premium, and reject based on size [ 6 , 7 ]. In the continually evolving landscape of agricultural production,
growers, distributors, and consumers all place a high priority on fruit quality. Quality evaluation has typically relied on subjective
techniques that are frequently erratic and prone to human error. Quality assessment is crucial in determining the market suitability
of fruit and has a significant impact on intelligent camera applications Using different grade qualities in packaging would impact the
marketability and increase product waste [ 8 ]. A crucial post-harvest operation is the grade assessment based on the visual features
of the fruit; quality assessment helps in grading the fruit to determine market suitability. Grading involves the measurement of
the physical geometry of fruit for a Computer Vision system. Computer vision-based techniques have revolutionized the fruit grading
industry by providing a high level of accuracy and efficiency in assessing fruit quality based on its physical geometry. These techniques
combined with machine learning attract great benefits for use in industrial food processing. 

Method details 

The goal of the proposed method “TopoGeoFusion ” is to perform the automatic sorting and grading of Indian Star Gooseberries
[ 9 , 10 ] and introduce innovations to control food waste due to quality issues in agricultural products [ 11 , 12 ]. Computer vision systems
can analyze fruit images at a rapid rate and with precision by using advanced image processing and machine learning-based models.
They can extract significant data from the images, including size and volume that was impractical for human assessors to determine
with high accuracy and accurate quality assessment leading to increased revenue generation. In the context of current technologies
employed for grading and sorting fruit, various challenges exist in detecting and extracting fruit with overlapping and touching
contours. The shaking mechanism of fruit in the assembly line may leave the fruit samples with touching and overlapping contours
[ 13 ], leading to challenges in sorting fruit and other challenges exist due to variability in fruit appearance, occlusion, complex contour
extraction issues, lighting conditions, data diversity, and real-time processing requirements. From the perspective of fruit grading, 
the presence of variability in terms of size, shape, color, texture, and surface defects is natural due to data diversity, varying conveyor
belt alignments, and lighting conditions. Developing a robust algorithm that can handle various challenges based on their visual
geometric representation is crucial per current advancements. Further, fruit in real-time industrial processing scenarios are often 
challenging to capture their exclusive visual features due to the partial appearance of fruit samples on conveyor belts and improper
lighting conditions. Thus, the challenges pointed out can significantly affect the appearance of the fruit, making it difficult to extract
reliable visual features for grading. Therefore, addressing these challenges requires advancements in computer vision algorithms, 
image processing techniques, and machine learning models, and it is very crucial to deploy these modules as part of computer vision
systems for fruit grading. 

The proposed study investigates the effectiveness of image processing techniques, fusion feature models, and machine 
learning classifiers to grade Indian Star Gooseberries as standard, premium, and reject. We address the challenges of non-
2
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overlapping/overlapping/touching fruit contours from a single image view of multiple fruit samples. In this work, the primary ob-
jective is to provide an inexpensive, non-destructive, and reliable computer vision system for industrial advantage in quality control
& production process. Thus, the proposed grading system detects and extracts multiple fruits of varying grades from a single image
view and classifies them into standard, premium, and reject. In the proposed study, the following contributions are made toward the
quality assessment of star gooseberries based on the visual geometry of the fruit. 

1. A dataset of 1697 samples that are collected in a fixed acquisition setup is contributed for the sake of analysis. The dataset
comprises samples of 1697 fruits with single and multiple fruit images comprising of overlapping and touching fruit challenges. 

2. An improved method “TopoGeoFusion ” utilizing computer vision and machine learning approaches is devised and imple- 
mented to assess the quality of gooseberries. The method is based on the feature computation based on visual appearance
and maturity classification which are crucial in determining the market suitability. A fusion approach is introduced that com-
bines hand-crafted and conventional geometric features for maturity analysis resulting in more precise grading of gooseberry 
fruits. 

3. To address the challenges in the process of fruit quality assessment when dealing with images of multiple fruits with overlapping
and touching boundaries, a method is proposed for the detection, extraction, and classification of fruit quality based on the
images. 

4. As part of the evaluation, the study evaluates the performance of Random Forest, SVM, Naive Bayes, Decision Tree, and KNN,
in grading gooseberry fruits via TopoGeoFusion. The evaluation of the TopoGeoFusion for the grade assessment model is 
performed on both self-built datasets of single and multiple fruit images with overlapping and touching challenges. 

Numerous investigations have been conducted in the past on automated assessment of quality based on the visual characteristics 
of the fruit in RGB images. The review of the significant works related to the classification of fruits or vegetables based on visual
features is briefed as follows. 

Zhou et al. [ 14 ] proposed a technique for different maturity stages classification of strawberry flowers and fruits using YOLO-v3
based on aerial and ground-level digital images, and a Mean Average Precision (MAP) of 0.88 was obtained. Next, using the improved
YOLO-v4 model, grape maturity classification is investigated by Qiu et al. [ 15 ] the method adopts Mobilenetv3 to extract features, and
experiments are carried out to compare various deep learning models that achieve an average precision of 93.52 % with a 10.82 ms
detection speed. Castro et al., [ 16 ] compared the performance of four machine-learning classifiers to categories of Cape gooseberries
based on their ripeness level. The three-color space models such as RGB, HSV, and Lab used to distinguish the seven different levels
of ripeness of fruits, the model based on Lab and SVM provided the best result with an F1 score of 70.14 %. Shahi et al., [ 17 ] applied
mobileNetV2 to extract fruit information and obtained 95.75 %, 96.14 %, and 96.37 % on three datasets with reduced parameters
and improved accuracy. Saranya et al. [ 18 ] proposed Convolution Neural Networks to classify banana fruit ripeness at four stages.
The model was compared with the state of deep learning models and 96.14 % accuracy was achieved. 

Subsequently, Li et al. [ 19 ] explored methods to monitor the growth stages of Blueberries using color component analysis that are
trained on different machine learning classifiers, with the highest accuracy of 86 % achieved with KNN. Pistachios fruit’s color and
texture information is utilized to estimate ripeness level by Kheiralipour et al., [ 20 ] Further, feature selection is used for choosing
the most discriminant features that are trained by LDA, QDA, and ANN with resulting accuracies of 93.75 %, 97.5 %, and 100 %,
respectively. In another study, Behera et al., [ 21 ] applied a combination of machine-learning approaches to extract features and
classify Papaya fruit based on its maturity stage. Also, various deep learning models are trained to estimate the three maturity stages.
Later, Ohali et al., [ 22 ] designed a computer vision system to perform Date fruit grading and sorting using RGB color space and
BPNN classifier with an accuracy of 80 % achieved. Zhang et al. [ 23 ] performed fruit classification based on color, texture, and
shape features. The PCA is used to reduce the dimensionality and lastly, versions of SVM are utilized for classification. Hossain
et al. [ 24 ] proposed six convolution neural network lightweight models for fruit classification with average accuracies in the range
of 85–90 %. 

Later, Liu et al., [ 25 ] worked on measuring the freshness of fruits based on machine learning and deep learning approaches on
public datasets consisting of 10 classes. In a couple of investigations by Taner et al., [ 9 ] proposed a CNN model to classify seventeen
varieties of hazelnuts. The experiments are conducted to evaluate the performance of the proposed model with the existing pre-trained
deep learning models. In subsequent investigations, Kaur et al., [ 26 ] analyzed the color, size, and texture features to determine the
different maturity stages of plum fruits. Sarkar et al., [ 10 ] worked on the freshness classification of Indian gooseberry by employing
image-processing techniques to extract shape and geometric features. In a study, Sarkar et al., [ 27 ] used color histogram analysis of
RGB and HSV color space combined with other features to determine the freshness of gooseberry fruit. Next, Gai et al., [ 28 ] proposed
an improved YOLO V4 model to categorize cherry fruit based on ripeness level; the study proved that improved YOLO V4 gives 94 %
accuracy compared to other versions of YOLO models. In work on ripeness and spoilage detection of Green Apples by Cárdenas et al.,
[ 29 ], color features and machine learning classifiers are used. A CNN-based method based on RGB channel processing is proposed
by Chen et al., [ 30 ] for Citrus fruit ripeness evaluation and reported 95.07 % accuracy. Mukherjee et al., [ 31 ] texture features are
used to measure surface irregularities on the Amla fruits using thresholding segmentation. Arunachalaeshwaran et al., [ 32 ] worked 
on freshness classification on hog Plum fruit using pre-trained deep-learning models. Mehta et al., [ 33 ] proposed a classification
model to predict the freshness of multiple fruits. VGG16 model adapted to extract features which are further classified using machine
learning methods. 

From the survey, the following observations are made from the existing works that contributed towards the development of
automated fruit quality based on visual features of the fruit images. 
3
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1. The majority of works focus on applying conventional features by approximating the overall shape using traditional image 
processing techniques, works specifically focusing on feature computation precisely as per the shape of the fruit are not devised.

2. Implications of estimating the shape of the fruit along with the outer area of the fruit shape may lead to lower precision in
terms of estimation of size or volume. 

3. Challenges related to multiple fruit quality classification containing touching fruits samples and partial views are not considered 
in any of the work. 

4. Though works related to infield detection exist in the literature, the techniques for quality assessment based on infield images
may not be apt for industrial post-harvest processing needs. It is highly recommended to consider the constrained approach of
acquiring RGB images, especially in the case of classification of fruits based on the fruit size and visual properties. 

Description 

In this study, Indian Star Gooseberries of varying sizes/maturities were harvested from orchards in Chandravana, Bogadi, India. 
First, the harvested fruit is graded by experts into standard, premium, and reject. In total, 706 standard, 481 premium, and 510 reject
fruit were available from multi-fruit image samples and 832 of single-fruit sample images. The image acquisition system is made
with cardboard as a base covered with black tissue paper. A mobile digital camera of 12 megapixels Android phone is fixed onto a
stand 15 cm from the ground to capture the images in natural daylight. As grade assessment is mainly based on visual geometry for
Indian Star Gooseberries, no additional light sources are considered to emphasize the texture. The image acquisition setup is depicted
in Fig. 1 . Multiple challenges are considered to capture the multiple fruit samples with/without overlapping/touching contours in a
Fig. 1. Samples of Indian Star Gooseberries (A) Multi-fruit samples: Bounding box-Green: Premium, Blue: Standard, Red: Reject (B) Image acquisition 
setup for Indian Star Gooseberry dataset collection (C) Multiple fruit: isolated boundaries (i) & (ii), single fruit samples (iii) & (iv), multiple fruit 
touching boundaries (v) & (vi), multiple fruit overlapping boundaries (vii) & (viii). 

4
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Fig. 2. Block diagram of TopoGeoFusion for grading of gooseberries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

single frame, processing of multiple fruit samples in one iteration, and time spent in sorting and grading processes will be optimized.
Challenges in additional labor requirements to monitor the fruit flow in industrial processing operations can be eliminated. Therefore, 
multiple fruits in a single image frame of varying grades were obtained for analysis. 

Flow of method 

The steps in extracting fruit samples from single/multiple fruit images by addressing overlapping/touching fruit boundary chal- 
lenges are described in subsequent sections. Fig. 2 shows the block diagram of the workflow of the proposed algorithm. 

The proposed system for grading gooseberries begins with acquiring images using a fixed image acquisition setup to ensure that
the images are appropriately captured to facilitate subsequent analysis. Next, preprocessing techniques are applied to remove noise 
that occurs during image acquisition. Consequently, fruit detection is performed to detect and locate each fruit using computer vision-
based methods. Following this, each fruit is subjected to feature analysis, where a set of conventional and hand-crafted features are
computed to quantify the visual properties of the fruit. Finally, extracted features are combined and employed for predicting fruit
grade using Machine learning classifiers. 

Region of interest - Single/multiple fruit extraction with isolated boundaries 

The harvested fruit scattered on a dark background is the region of interest. To extract the fruit from RGB image 𝐼𝑐 , initially, 𝐼𝑐 is
converted to grayscale image 𝐼𝑔 . As images are captured in natural daylight in an indoor environment, there will be impulse noise
that resembles salt and pepper noise in a dark background. Therefore, a linear filtering method is applied using Gaussian filter 𝐺𝑓 on
grayscale image 𝐼𝑔 with 11 × 11 rectangular kernel and standard deviation 𝜎 = 0 along both 𝑋 & 𝑌 directions. Filter 𝐺𝑓 convolves
the image 𝐼𝑔 , pixel by pixel with the center pixel 𝑐 of the kernel as the origin. The target pixel 𝑝 in the image where the response is
stored is overlayed by 𝑐. As noise resembles maximal gray levels in the dark background the responses obtained by 𝐺𝑓 with maximal
gray levels are repainted to minimal gray levels resulting in noise removal producing a noise-filtered image with a blurry effect.
The Canny edge detector is known for its exceptional precision in edge detection. In the fruit detection task, where precise contour
segmentation is necessary for further processing stages, this precision is very vital. By precisely determining the borders of fruits,
the Canny technique improves the precision of our detection system. Also, the Gaussian filtering prior to the edge detection helps to
reduce the influence of noise on the edge detection process. This is important in real-world situations where there may be different
levels of noise in the input images. It’s possible that noise cannot be adequately handled by morphological procedures alone, which
could result in less precise contour recognition. 

The first step in contour-based image processing tasks is edge detection. We generate a binary edge map that emphasises the fruit
contours by utilising the Canny edge detector. Applying morphological techniques like dilation to this edge map is an ideal starting
point. Accurately identifying and segmenting the fruits may be difficult if morphological techniques are used alone as they may not
yield a clear contour map. 

A processed pixel 𝑝 with spatial coordinates (𝑥, 𝑦 ) of filtered image 𝐼𝑓 is obtained by convolving 𝐺𝑓 concerning kernel spatial 
locations (𝑥′, 𝑦′) with 𝐼𝑓 (𝑥, 𝑦 ) as given by (1) . 

𝐺𝑓 =
( 

1 
2 𝜋𝜎2 

) 

𝑒
−

(
𝑥2 +𝑦2 

)
2𝜎2 (1) 

𝐼𝑓 ( 𝑥, 𝑦 ) =
∑

𝑖 = 𝑥 ∈𝐼𝑔 

∑
𝑗= 𝑦 ∈𝐼𝑔 

𝐼𝑔 
(
𝑥′, 𝑦′

)
∗ 𝐺𝑓 

(
𝑥 − 𝑥′, 𝑦 − 𝑦′

)
(2) 

𝐺𝑓 (𝑥 − 𝑥′, 𝑦 − 𝑦′) is the value of the filter, 𝐺𝑓 relative to the location (𝑥 − 𝑥′, 𝑦 − 𝑦′) . Subsequently, edge detection is performed 
using the canny edge operator 𝑜𝑝𝐶𝑎𝑛𝑛𝑦 on filtered image 𝐼𝑓 . 

Based on the gradient magnitude and directions of pixels, 𝑜𝑝𝐶𝑎𝑛𝑛𝑦 marks the pixels as background and edge pixels (boundary) by
eliminating weak gradient pixels by hysteresis thresholding. Thus 𝑜𝑝𝐶𝑎𝑛𝑛𝑦 produces edge-detected binary image 𝐼𝐵 as given by (3) . 

𝐼𝐵 ← 𝑜𝑝𝐶𝑎𝑛𝑛𝑦 
(
𝐼𝑓 

)
(3) 
5
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Fig. 3. Contour extraction - Single/multiple fruit samples with isolated boundaries (a) Original image. (b) Thresholded image. (c) object detection. 
(d) Contour estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The edge detected image 𝐼𝐵 is subject to morphological dilation 𝑀𝑑 twice using structuring elements 𝑠 size 1 × 1 pixel, indicating
no expansion or shrink of edge pixels to occur. 

𝐼𝑚 =𝑀𝑑 

(
𝐼𝐵 , 𝑠, 𝑖 = 2 

)
(4) 

Where 𝑖 = 2 is the number of iterations and 𝐼𝑚 is the morphologically processed image. The dilation is mainly applied to abridge
the slightly disconnected edge pixels in the fruit boundary. 

Contour extraction of fruit 

To extract features from each fruit, it is required to detect the fruit boundary/contour and identify the shape. A contour is a group
of pixels that defines the shape of an object. In this study, two strategies are adopted to extract the fruit. Strategy one works on the
image samples with multiple fruit/single fruit with non-overlapping boundaries, while strategy two is specifically designed to deal 
with overlapping fruit image samples. 

Contour extraction-non-overlapping boundaries 

The edge-detected image 𝐼𝐵 is subject to contour extraction to retrieve the external contour. Each fruit contour consists of adjoining
pixels connected via 4/8/m adjacency relationships defining a connected component. Each connected component is indexed, and its 
spatial positions are stored without redundant points by the contour detection methods. A circular bounding box is estimated for
each fruit 𝑓𝑖 where 𝑖 = 1 , 2 , 3 … 𝑛 using a convex hull approach. The enclosed circle ensures all boundary pixels lie inside, producing
the center (𝑐𝑥 , 𝑐𝑦 ) and radius 𝑅 for each fruit 𝑓𝑖 . Fig. 3 depicts the processing pipeline of contour extraction for image samples with
multiple fruit and non-overlapping boundaries. 

Contour extraction-overlapping/touching boundaries 

The proposed dataset for overlapping fruit contour extraction needs to be more structured & organized. Therefore, contour ex- 
traction of fruit is done using Mask Region Convolutional Neural Networks (Mask RCNN). In this study, 72 images are acquired with
overlapping/touching boundary positions of fruit out of 281 harvested fruits. From the samples 72 images, 42 samples are subjected
to makesense.ai tool to generate the mask images for overlapping/touching fruit boundaries. These annotated mask images were then 
used to train a faster R-CNN model and to optimize model parameters. Fig. 4 shows the visuals of annotated images of samples with
overlapping/touching challenges. 

Faster R-CNN is a state-of-the-art object detection method for instance, segmentation of challenging target proposal regions. In 
the proposed study, Faster R-CNN is used only to perform instance segmentation and not for classification/grading. Faster R-CNN
performs object detection in two phases, backbone network for feature-maps computation from input images and Region Proposal 
Network (RPN) to detect and identify contours for fruit enclosed with rectangular bounding boxes. Finally, the detected objects are
individually extracted for proposed fusion feature analysis, then classification into grades. Fig. 4 depicts the workflow of detecting 
fruit with overlapping contours. 

The Faster R-CNN (Region-based Convolutional Neural Network) model is often used for object detection and has proven to
perform well in a range of computer vision tasks. In the proposed study, the authors down-sample the input feature maps of dimension
512 × 512 with three channels and length strides using a ResNet50 backbone network. To find possible object locations, the Faster R-
CNN model’s region proposal network (RPN) makes use of a collection of preconfigured anchor boxes. The anchor boxes are described
by the authors as having sizes of 8 × 8, 16 × 16, 32 × 32, 64 × 64, and 128 × 128 and ratios of [0.5, 1.2]. Previous studies on visual
attention mechanisms and the efficacy of composite backbone networks offer acceptance to the use of these anchor box specifications.
The present study use ROI pooling to construct 14 × 14 pixel feature maps for additional processing after the region proposals are
generated. Table 1 lists the hyperparameter specifications for the Faster R-CNN model, including information on the number of
6
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Fig. 4. Samples of annotated images used for training faster R-CNN model (a)–(c) Original images (d)–(f) Annotated samples. 

Table 1 

Hyperparameter specifications of Faster R-CNN model. 

Hyperparameter Description 

Backbone ResNet50 
BACKBONE_STRIDES: [4, 8, 16, 32, 64] 

Input Size 512 × 512 with three channels 
RoI Pooling RoI align with bilinear interpolation, FC = MLP 
Region proposal method RPN 

RPN_ANCHOR_RATIOS: [0.5, 1, 2] 
RPN_ANCHOR_SCALES: (8, 16, 32, 64, 128) 

RoI Sampling Balanced sampling strategy 
RoI Pooling Size 14 × 14 
Learning Rate & Learning Momentum 0.0001, 0.9 
Batch Size 1 
Number of Epochs & steps per epoch Epoch = 50, steps = 500 
Optimizer RMSprop 
Weight Initialization Random 

Dropout Rate 0.1 
Loss Function cross-entropy 

 

 

 

 

 

 

 

training iterations, weight decay, and learning rate. The method employed makes use of the Faster R-CNN model’s advantages, such
as its rapid generation of region proposals and its effectiveness in object identification and localization. The successful use of composite
backbone networks and the references to earlier research on visual attention indicate that the hyperparameter settings are probably
a result of extensive testing and fine-tuning. 

Resnet50 backbone 

Because of its architectural advantages, ResNet50, or Residual Network with 50 layers, is an often utilised backbone in object
detection applications, including fruit detection. ResNet50 ′ s depth helps it to efficiently extract high-level characteristics from images,
and its residual blocks help to prevent vanishing gradients —a major problem in deep networks —from occurring. The key components
of Resnet50 are residual blocks that are basically defined assuming input as 𝑋 and a mapping function 𝑀 to learn the features from
7
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𝑋 associating with weight vector 𝑊 resulting into a output 𝑦 as given by (5) . 

𝑦 = 𝑀( 𝑋, 𝑊 ) + 𝑋 (5) 

And the mapping function 𝑀 is expressed as 𝑀( 𝑋) = 𝑊2 𝜎(𝑊1 ( 𝑋) , where 𝑊1 and 𝑊2 are the elements of weight vector 𝑊 and 𝜎
is the ReLU activation function. 

Region proposal network 

Region proposal network is used to generate region proposals from the convolution feature maps of a given input image. The
object detection network refines the identified region proposals and predicts the categories of the detected objects. The convolutional
feature maps are generated via backbone network through a set of convolution filters with specified kernel size and taken through
sliding window process with the given anchor box specifications. The attributes associated with anchor box includes the varying
scales and aspect ratios assisting in detecting the object location coordinates precisely. The region proposal network produces the 
probability score for each object location detected which implies the likelihood of accuracy indicating a foreground or background.
Finally, the regression layer outputs the coordinate positions of each bounding box localizing the object. The efficiency of RPN is
measured using binary cross entropy loss to determine the classification loss indicating how well the anchor box specifications are
determining the goodness of fit with respect to various object sizes in image. Additionally, regression loss is calculated to interpret the
object localization prediction. At this stage, region of interest pooling is carried out subsequently on the generated region proposals
that transform them into fixed size bins of specified dimensions. Later, the max pooling is applied on each bin estimated from region
proposal of objects irrespective of its size. The classification layer uses the softmax function to convert the raw scores generated by
region proposal network into probability score associated with each region proposal concerning a particular class. Finally, it predicts 
the detected object regions along the localization scores of detection associated with each object. 

Anchor box specifications 

Let 𝐹 be the feature map generated by backbone network with dimensions as 𝑀 ×𝑁 ×𝐷, indicating 𝑀 as the height, 𝑁 as the
width and 𝐷 as the number of channels. If 𝑆 and 𝐴 representing various scales and 𝐴 as the corresponding aspect ratios for the scales
for 1 … 𝑛 . Then the location (𝑖, 𝑗 ) in the feature map be computed as given by (6) based on the scale and aspect ratio. 

The anchor width 𝑁 = 𝑆 ×
√
𝑟 and anchor height 𝑀 = 𝑆∕

√
𝑟 (6) 

Where 𝑠 ∈ 𝑆 𝑎𝑛𝑑 𝑟 ∈ 𝐴 . Thus, generating a set of anchor boxes as per each 𝑠 𝑎𝑛𝑑 𝑟 for each spatial location. Each location is
assigned with a confidence score associated with anchor box signifying the strength of object presence within that corresponding 
location. 

TopoGeoFusion – feature computation 

After the contour extraction process, each fruit was interpreted to extract the required features for analysis (see Fig. 4 ). The
bounding boxes enclosing each fruit are used to identify the spatial locations of the fruit. The spatial locations identified from binary
mask images of each fruit are utilized for feature computation based on the binary image. This study employs a set of hand-crafted
features and four geometrical features for analysis. 

Conventional features 

Geometrical features such as area, perimeter, major, and minor axis are computed to define the feature representation. The area
is the crucial feature to assess the fruit’s quality as it quantifies its size, which is considered by the outer boundary of the fruit. The
other feature, such as perimeter, gives the circumference of the fruit based on the summing of the length of line segments along the
fruit boundary. Further, the perimeter captures the measure of the fruit boundary. The other geometrical feature, the major axis, is
the longest line connecting the two contour positions passing through the principal axis center. Finally, the minor axis is the shortest
line connecting the center of the fruit to a contour position perpendicular to the major axis. The minor axis helps in capturing the
shape and orientation of the fruit. 

Hand-crafted features 

In this study, we propose five hand-crafted features, fruit density, T- Extent, B-Extent, l -Extent, and R-Extent, as described subse-
quently. Fruit density is the area occupied by the fruit pixels, which is the sum of white pixels within the fruit’s contour as given by
(7) . 

𝐷𝑓 =
∑
𝑤 ∈𝑓𝑖 

𝐼( 𝑥, 𝑦 ) (7) 

Where 𝐷𝑓 is the fruit density, 𝐼( 𝑥, 𝑦 ) represents the white pixel with spatial coordinate position ( 𝑥, 𝑦 ) of fruit 𝑓𝑖 with pixel 𝑤 .
Other features are computed based on distance measurements from the center of the fruit. If 𝐶 is the centroid of the fruit with spatial
8
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Fig. 5. Architecture of contour extraction-multiple fruit with overlapping contours. 

 

 

 

 

coordinate (𝐶𝑥 , 𝐶𝑦 ) and 𝐵𝑡 , 𝐵𝑏 , 𝐵𝑙 , and 𝐵𝑟 represent the boundary points lying to each other in perpendicular directions from center
𝐶, then the features T- Extent, B-Extent, l -Extent, and R-Extent are defined as the distances measured from center 𝐶 to all boundary
positions 𝐵𝑡 , 𝐵𝑏 , 𝐵𝑙 , and 𝐵𝑟 as given by (8)–(11) . 

𝑇 − 𝐸𝑥𝑡𝑒𝑛𝑡 =
[(
𝑥𝑡 − 𝐶𝑥 

)2 + (
𝑦𝑡 − 𝐶𝑦 

)2 ] 1 
2 

(8) 

𝐵 − 𝐸𝑥𝑡𝑒𝑛𝑡 =
[(
𝑥𝑏 − 𝐶𝑥 

)2 + (
𝑦𝑏 − 𝐶𝑦 

)2 ] 1 
2 

(9) 

𝐿 − 𝐸𝑥𝑡𝑒𝑛𝑡 =
[(
𝑥𝑙 − 𝐶𝑥 

)2 + (
𝑦𝑙 − 𝐶𝑦 

)2 ] 1 
2 

(10) 

𝑅 − 𝐸𝑥𝑡𝑒𝑛𝑡 =
[(
𝑥𝑟 − 𝐶𝑥 

)2 + (
𝑦𝑟 − 𝐶𝑦 

)2 ] 1 
2 

(11) 

Where ( 𝑥𝑡 , 𝑦𝑡 ) , ( 𝑥𝑏 , 𝑦𝑏 ) , ( 𝑥𝑙 , 𝑦𝑙 ) , and ( 𝑥𝑟 , 𝑦𝑟 ) are the spatial coordinates designating boundary points 𝐵𝑡 , 𝐵𝑏 , 𝐵𝑙 , and 𝐵𝑟 , respectively.
Fig. 6 gives the visual representation of features quantified in this study, and Fig. 6 depicts the visual representation of hand-crafted
features and Table 2 presents the statistical descriptions of computed features. 
Fig. 6. Visual representation of hand-crafted features in TopoGeoFusion (a) Feature measurements from the center of the fruit to four directions 
named T-Extent, B-Extent, l -Extent, and R-Extent (b) Fruit detection and feature quantification representation with T-Extent, B-Extent, l -Extent and 
R-Extent specifications. 
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Table 2 

Statistical description of fusion of computed features - TopoGeoFusion. 

Feature Description Features Grade 

Fruit Density Perimeter Area Major axis Minor axis T-Extent L-Extent R-Extent B-Extent 

Min-Max 53,066–165,557 164–244 0.311–0.578 50.45–73.12 44.3–65.99 33.66–48.54 34.60–48.63 33.70–48.86 34.69–49.20 Standard 
Mean 97,160 194 0.417 59.78 54.53 39.99 40.57 39.93 40.53 
Median 88,763 193.18 0.404 59.89 53.75 39.6 40.08 39.56 40.22 
Min-Max 70,316–170,827 232.41–315.04 0.610–1.111 70.94–95.14 62.31–91.62 46.98–64.77 48.43–65.92 47.35–66.13 48.45–67.30 Premium 

Mean 106,170 265.78 0.786 80.77 75.66 54.71 55.27 55.14 55.74 
Median 97,769 262.79 0.753 80.34 74.57 53.99 53.9 54.18 54.55 
Min-Max 38,769–163,359 93.95–195.25 0.094–0.297 29.76–56.59 25.14–48.55 18.63–35.20 19.04–38.81 19.40–35.40 19.77–40.36 Reject 
Mean 79,451 138.32 0.205 42.76 38.08 28.08 28.73 28 28.7 
Median 74,624 137.19 0.203 42.93 38.41 28.19 28.77 28.1 28.61 

1
0
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Pseudocode: 

1. Import necessary image processing libraries 

2. Set the algorithm’s input path to 𝑃𝑎𝑡ℎ to the folder containing images 

3. Set the thresholding parameter to 𝑡ℎ𝑟𝑒𝑠ℎ = 15 for extracting region of interest(roi). 

4. For each image 𝐼 from 𝑃𝑎𝑡ℎ 

5. Apply image resizing, 𝐼 = 𝑖𝑚𝑟𝑒𝑠𝑖𝑧𝑒 (𝐼, 𝑚 × 𝑛 ) 
6. Convert RGB to gray scale image, 𝐼𝑔 = 𝑅𝐺𝐵 𝑡𝑜𝑔 𝑟𝑎𝑦 ( 𝐼) 
7. Remove noise in 𝐼𝑔 with kernel size 𝑘 and obtain blurred image, 𝐼𝑏 = 𝐺 𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑏𝑙 𝑢𝑟 (𝐼𝑔 , 𝑘 ) 
8. Perform edge detection, 𝐼𝑒 = 𝐶𝑎𝑛𝑛𝑦_𝑜𝑝 (𝐼𝑏 , 𝑙𝑜𝑤𝑒𝑟_𝑡ℎ𝑟𝑒𝑠ℎ, 𝑢𝑝𝑝𝑒𝑟_𝑡ℎ𝑟𝑒𝑠ℎ ) 
9. Bridge gaps using dilation, 𝐼𝑑 = 𝐷𝑖𝑙𝑎𝑡𝑒 (𝐼𝑒 , 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 1 ) 
10. Detect contours, 𝐼𝑐 = 𝐹 𝑖𝑛𝑑_𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠 (𝐼𝑑 , 𝑡𝑦𝑝𝑒 = 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙, 𝑚𝑒𝑡ℎ𝑜𝑑 = 𝑆𝑖𝑚𝑝𝑙𝑒_𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 ) 
11. Detect markers around roi, 𝐼𝑚 = 𝐷𝑒𝑡𝑒𝑐𝑡_𝑚𝑎𝑟𝑘𝑒𝑟𝑠_𝑟𝑜𝑖 (𝐼𝑐 , 𝑚𝑒𝑡ℎ𝑜𝑑 = 𝐴𝑟𝑢𝑐𝑜_𝑚𝑎𝑟𝑘𝑒𝑟𝑠 ) 
12. Perform contour analysis and feature extraction, 

13. a. 𝑤ℎ𝑖𝑡𝑒𝑓𝑟𝑒𝑞 = 𝑐𝑜𝑢𝑛𝑡_𝑤ℎ𝑖𝑡𝑒_𝑝𝑖𝑥𝑒𝑙𝑠 (𝐼𝑚 (𝑟𝑜𝑖𝑛 ) ) , 𝑓𝑜𝑟 𝑛 = 1 … 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓 _𝑟𝑜𝑖 
14. b. 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 = 𝑐𝑜𝑢𝑛𝑡_𝑝𝑖𝑥𝑒𝑙𝑠_𝑎𝑟𝑐𝑙𝑒𝑛𝑔𝑡ℎ (𝐼𝑚 (𝑟𝑜𝑖𝑛 ) ) 
15. c. 𝑎𝑟𝑒𝑎 = 𝑐𝑜𝑢𝑛𝑡_𝑝𝑖𝑥𝑒𝑙𝑠_𝑟𝑜𝑖 (𝐼𝑚 (𝑟𝑜𝑖𝑛 ) ) 
16. d. 𝑚𝑎𝑗𝑜𝑟_𝑎𝑥𝑖𝑠 = 𝐼𝑚 (𝑟𝑜𝑖𝑛 (max _𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝1 , 𝑝2 )) 𝑤ℎ𝑒𝑟𝑒, 𝑝1 , 𝑝2 𝑎𝑟𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑛 𝑟𝑜𝑖 
17. e. 𝑚𝑖𝑛𝑜𝑟_𝑎𝑥𝑖𝑠 = 𝐼𝑚 (𝑟𝑜𝑖𝑛 (min _𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝1 , 𝑝2 )) 
18. f. 𝑡𝑜𝑝𝑟 = 𝐼𝑚 (𝑟𝑜𝑖𝑛 ( 𝑑𝑖𝑠𝑡𝑎𝑛𝑐 𝑒 ( 𝑐 𝑒𝑛𝑡𝑟𝑜𝑖𝑑, 𝑝𝑡𝑟 )) , 𝑤ℎ𝑒𝑟𝑒, 𝑝𝑡𝑟 𝑖𝑠 𝑡𝑜𝑝 𝑟𝑖𝑔ℎ𝑡 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑖𝑠 𝑜𝑟𝑖𝑔𝑖𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑜𝑓 𝑟𝑜𝑖𝑛 

19. g. 𝑡𝑜𝑝𝑙 = 𝐼𝑚 (𝑟𝑜𝑖𝑛 ( 𝑑𝑖𝑠𝑡𝑎𝑛𝑐 𝑒 ( 𝑐 𝑒𝑛𝑡𝑟𝑜𝑖𝑑, 𝑝𝑡𝑙 )) , 𝑤ℎ𝑒𝑟𝑒, 𝑝𝑡𝑙 𝑖𝑠 𝑡𝑜𝑝 𝑙𝑒𝑓 𝑡 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
20. h. 𝑏𝑜𝑡𝑟 = 𝐼𝑚 (𝑟𝑜𝑖𝑛 ( 𝑑𝑖𝑠𝑡𝑎𝑛𝑐 𝑒 ( 𝑐 𝑒𝑛𝑡𝑟𝑜𝑖𝑑, 𝑝𝑏𝑟 )) , 𝑤ℎ𝑒𝑟𝑒, 𝑝𝑏𝑟 𝑖𝑠 𝑏𝑜𝑡𝑡𝑜𝑚 𝑟𝑖𝑔ℎ𝑡 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
21. i. 𝑏𝑜𝑡𝑙 = 𝐼𝑚 (𝑟𝑜𝑖𝑛 ( 𝑑𝑖𝑠𝑡𝑎𝑛𝑐 𝑒 ( 𝑐 𝑒𝑛𝑡𝑟𝑜𝑖𝑑, 𝑝𝑏𝑙 )) , 𝑤ℎ𝑒𝑟𝑒, 𝑝𝑏𝑙 𝑖𝑠 𝑏𝑜𝑡𝑡𝑜𝑚 𝑙𝑒𝑓𝑡 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
22. Store the features a to i to a feature vector 

23. Repeat until all images are processed 

24. Stop 

The above pseudocode depicts the procedure of feature extraction by using image processing techniques. The feature extraction 
is performed by the detection and analysis of contours within a given input image. The workflow initiates by importing OpenCV,
NumPy, SciPy, Pandas libraries. In pseudocode, the variables 𝐼 represent original RGB image, 𝐼𝑔 is gray scale image obtained by 
processing 𝐼 with 𝑅𝐺𝐵 𝑡𝑜𝑔 𝑟𝑎𝑦 function. Then, 𝐼𝑔 is subject to intermediate processing steps via Gaussian, blur, canny edge operator,
morphological dilation, finding contours producing the outcomes as blurred image 𝐼𝑏 , 𝐼𝑑 , and 𝐼𝑐 respectively. For each detected region 
of interest 𝑟𝑜𝑖𝑛 , 𝑤ℎ𝑒𝑟𝑒 𝑛 = 1 … 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓 _𝑟𝑜𝑖 from markers detected image 𝐼𝑚 , contour analysis carried out for extraction of features
and storage in feature vector. For each 𝑟𝑜𝑖𝑛 of 𝐼𝑚 , the features such as, 𝑤ℎ𝑖𝑡𝑒𝑓𝑟𝑒𝑞 , 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 , 𝑎𝑟𝑒𝑎 , 𝑚𝑎𝑗𝑜𝑟𝑎𝑥𝑖𝑠 , 𝑚𝑖𝑛𝑜𝑟𝑎𝑥𝑖𝑠 , 𝑡𝑜𝑝𝑟 , 𝑡𝑜𝑝𝑙, 𝑏𝑜𝑡𝑟
and 𝑏𝑜𝑡𝑙 are computed using the specified functions in pseudocode. A method named 𝐴𝑟𝑢𝑐𝑜_𝑚𝑎𝑟𝑘𝑒𝑟𝑠 , is employed with 𝐷𝑒𝑡𝑒𝑐𝑡_𝑚𝑎𝑟𝑘𝑒𝑟𝑠_𝑟𝑜𝑖 
for calibrating the image for distance-based feature measurements. Then, the image is subject to undergo resizing, conversion to
grayscale, and image blurring to reduce noise. Canny edge detection is performed using 𝐶𝑎𝑛𝑛𝑦_𝑜𝑝 , followed by morphological dilation
and erosion to bridge gaps within the contours using 𝐷𝑖𝑙𝑎𝑡𝑒 . The visualization of detected contours positions are demonstrated by
plotting of marker positions and feature measurements in different colors on an RGB image for visualization, and then sorted from left
to right. The 𝐴𝑟𝑢𝑐𝑜_𝑚𝑎𝑟𝑘𝑒𝑟𝑠 in the pseudocode calculates the pixels-per-metric ratio for each region of interest in markers detected
image and then converted to pixel measurements. The detected contour positions are analyzed to calculate attributes in terms of
bounding box, centroid, width, height, along with perimeter, area, and dimensions of fitted ellipses. Finally, the computed features
are for each detected fruit is stored into a data frame and then saved as CSV file. 

Generalization of control parameters for Gaussian filtering, hysteresis thresholding and morphological operations 

The control parameters employed for detecting the contours of Gooseberry fruit are determined via trivial experimental procedures 
with trial-and-error approach. To ensure reproducibility of proposed TopoGeoFusion method, the control parameters are analyzed 
further to determine its goodness of fit towards different circular fruit commodities. The generalization of various control parameters 
that are required to be fine-tuned according to fruit type is discussed subsequently. 

One of the crucial parameters that is adapted in the proposed workflow is kernel size and standard deviation in Gaussian filtering
process. The Gaussian filtering is used to perform image smoothing as a result of which the noise reduction will takes place while
preserving edges. The increase in kernel dimensions would result in increasing smoothing effect on the fruit image. The decrease in
kernel size would result in reduced smoothing effect on the fruit which is suitable for fruits with minimal noise. With regard to kernel
sizes, optimal specifications are experimented between 3 × 3 and 7 × 7. For instance, the commodities such as an apple with minimal
noise can work with a 3 × 3 kernel dimensions as that imposes slight smoothing effect. In the case of a noisy image such as oranges
which has slightly jagged texture that is captured under inconsistent lighting conditions, a kernel size of 7 × 7 can possibly address
the noise issues while maintaining the circular contour of the fruits. 

Concerning the control parameter such as hysteresis thresholding, that is applied on the result of the Canny edge detection process
for determination of strong and weak edges, the experimented thresholds are set in between 50 and 100 as the lowest and the high
threshold is set between 150 and 200. For fruits such as lemons with adequate lighting conditions in image with clearly defined edges,
low threshold range between 50 and 100 are employed. In case of uneven illumination conditions, a high threshold range between
150 and 200 works effectively. 

Yet another crucial parameter in the proposed work includes size of structuring elements and number of iterations used for mor-
phological dilation in the process of segmentation of fruits from its background. The morphological operations are highly subjective
and depends on the amount of noise that is caused due to external lighting conditions during image acquisition process. However, to
11
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maintain the integrity in the process of segmentation, a set of experiments are conducted by adapting the size of structuring elements
varying from range from 3 × 3 to 5 × 5, with 1 to 3 iterations. In all experiments, it is noticed that the proposed sizes implies that
morphological dilation helps in filling the small gaps in detected contours. It is recommended to increase the size of structuring
element in case of images with more external noise occurred due to lighting effect. Furthermore, the number of iterations can also
be increased in addition to the increase in the number of broken edgelike structures in the contours of fruits. For instance, in case
of strawberries, the number of broken edges will be high due to its texture and which requires more iterations and increased in
structuring element size compared to gooseberries. As per the context of image acquisition setup in the current scenarios of proposing
method, the standard ranges of structuring element size and number of iterations it is restricted to the range of 3 × 3–5 × 5 and 3. 

For commodities such as apples, using a 5 × 5 Gaussian filter with low hysteresis thresholds in the range of 50 and 150, and a
3 × 3 structuring element for dilation with 1 iteration, the proposed technique can handle minor noise producing the circular edges
of apples. Similarly, in case of oranges, a 7 × 7 Gaussian filter with higher hysteresis thresholds ranging between 100 and 200 and a
5 × 5 structuring element with 3 iterations ensures precise extraction of fruit contours. 

Table 2 emphasizes the efficiency of features computed concerning the discriminating properties from one grade to another, 
corresponding to hand-crafted and conventional features. The statistical descriptions such as mean, median, and min-max help in 
highlighting the distinctiveness of proposed hand-crafted over conventional features. The mean and median measures indicate the 
central feature positions concerning the distribution of analyzed features. The min and max represent the range of features distributed
to each feature; a more extensive range signifies the high reliability of the features. As per Table 2 , hand-crafted features project a
wide range of distribution as well as the central feature positions are aligned to mean and median values. In the case of conventional
features, though the min to the max range is competent, the central values of the distribution are not aligned with the mean and
median for the features area and major axis. 

Fig. 7 depicts the feature distribution using pair plots. The pairwise feature analysis uses pair plots with a grid of scatterplots and
histogram representations. The comprehensive overview and relationship between a pair of other hand-crafted features are expressed 
using scatter plots by allowing simultaneous examination of the multiple features. However, in the context of one vs. the rest of
the classes, the data distribution exhibits a satisfactory relationship indicating a fit for linear classifiers such as Decision Trees (DT),
Support Vector Machines (SVM), and Random Forests (RF). Therefore, it is proposed to employ the Machine Learning classifiers with
the linear kernel to perform predictions in the proposed model. 

Classifier training and evaluation 

Computer vision-based techniques, in combination with Machine Learning classifiers, have been extensively applied to automat- 
ically grade the quality of gooseberries as standard, premium, or rejected according to fruit maturity. A total of 1697 Indian Star
Gooseberries samples graded by eight to ten human experts are employed for analysis. The study also considered images extracted
from multiple fruit samples with overlapping and non-overlapping boundaries. The classifier training is conducted using four training 
strategies using stratified sampling with K-fold cross-validation for K = 11; the details of sample distribution for each training strategy
are presented in Table 3 . For classification, models such as RF, DT, SVM, Naïve Bayesian (NB), and K-Nearest Neighbor (KNN) are
used for predictions. The training is conducted without any data augmentation methods to supplement with original datasets, and no
potential samples influence the bias within datasets. All the samples are sorted out to ensure no spoilage in the samples considered
for the study. Further, the classifier is evaluated using Accuracy, Precision, Recall, and F1-score metrics. The class-wise sample dis-
tribution statistics are depicted in Table 4 , which provides a comprehensive understanding of the number of samples considered for
analysis with/without challenges. 
Table 3 

Training strategies and dataset statistics. 

Train: Test Strategies No. of Training Samples No. of Testing Samples Total Number of Samples 

80:20 1357 340 1697 
70:30 1187 510 1697 
60:40 1018 679 1697 
50:50 848 849 1697 

Table 4 

Class-wise sample distribution statistics with various dataset artifacts. 

Premium No. of Single-fruit 
Samples 

No. of Multi-fruit (touching 
contours) Samples 

No. of Multi-fruit (overlapping 
contours) Samples 

Total Number of 
Samples 

Grade 138 62 281 481 
Standard 269 183 254 706 
Reject 304 183 23 510 

12
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Fig. 7. Pair-plot representation of hand-crafted features for three grades 1: Reject, 2: Standard, 3: Premium. 

 

 

 

 

 

 

 

 

 

 

 

KNN 

KNN’s are often used for classification tasks which share the data distribution characteristics that are linearly separable in nature.
The classifier though addresses the problem of noisy data issues, it is not that effective on datasets with large number of dimensions.
The KNN can perform pretty well on the context of limited number of features and reduced noise. As the principle of KNN classifier
is often oriented to work based on the hyper parameter 𝑘 indicating the number of neighbors considered to determine target class
label of a unknown test sample. Given an unkown test sample associated with a set of features, which needs to be compared with
features of training samples to identify k neighbors with closer distances. The k neighbors are the samples that exhibit high proximity
in matching of features between test and k neighbors in training dataset. The target class label determined is the one with the set
of neighbors that share maximum voting among the designated number of classes. In the proposed method, geometrical features
are combinedly used with the distance-based features computed upon the fruit topology. The features computed exhibit a linear
relationship and thus exhibiting a better efficacy making KNN an apt tool to address the present topic of research. 

SVM 

SVM classifier is also proved to be effective at addressing the issues associated with solving various complex classification tasks
even in the presence of noisy data with non-linear as well linear data distributions. The SVM classifies the unknown test sample
13
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by finding the optimal hyperplane position in an n-dimensional feature space with (n-1) features. The hyperplane separates the 
datapoints belonging to different classes by maximizing the margin between the closest points of different classes. Though SVM is
designed to handle the larger dimensional data, to works pretty well with linearly separable feature space. Especially, linear kernel
is for linearly separable data, whereas in case of non-linear data distribution SVM can handle using polynomial kernel, Radial Basis
Function(RBF), quadratic, cubic polynomial kernel etc. Once the optimal position of hyperplane is determined, the classifier outputs 
the prediction. The hyper parameter C representing the learning speed plays a crucial role in classification process, for smaller values,
high misclassification rate is observed and larger values a stricter separation will be achieved. 

Naïve Bayes 

Naïve Bayes is a probabilistic classifier that makes the predictions based on the probability of test samples towards a particular
class. Given a set of features associated with training dataset, the classifier builds a learning model using the concept of posterior
probability among the feature sets that hold class conditional independence property among the features. Those features would con- 
tribute towards the predictions without any dependency on other features. The Naïve Bayes classifier is known for its computational
efficacy in terms of speed and accuracy when compared with other classifiers. However, the classifier offers assurance of accurate
results only in the presence of dataset without any noise. The performance of Naïve Bayes is highly subjective to the linear distribution
of data. 

Random Forests (RF) 

In the context of fruit maturity assessment or classification, RF model plays a superior role compared to any other existing machine
learning models. Basically, RF performs classification by generating multiple decision trees during the learning process through an 
ensemble learning approach. Each decision tree that is generated as part of ensemble learning comprises a subset of samples as part
of training dataset. By extracting features from each image and sending them to the Random Forest model for prediction, we can
utilize the model to classify new images once it has been trained. For every image, the model will provide a class label that represents
the expected class of the image based on the features that have been extracted from it. The performance efficiency of the model
depends the number of decision trees that are present as part of random forest, usually the accuracy of the model increases along
with the increase in number of decision trees that are present as part of RF model. The potential of the Random Forest Algorithm to
handle data sets with both continuous variables —as in regression —and categorical variables —as in classification —is one of its most
important properties. In tasks involving regression and classification, it performs better. 

Decision trees (DT) 

DT is a non-parametric supervised learning approach that is used for both regression and classification applications. It has a
hierarchical tree structure comprising of a root node, branches, internal nodes, and leaf nodes. Root node stands for both the initial
choice to be made and the complete dataset. While internal nodes indicate choices or evaluations based on features. Branches indicate
the conclusion of a choice or examination, leading to a new node and leaf nodes stand for the final judgment or forecast. Root node
stands for both the initial choice to be made and the complete dataset. While internal nodes indicate choices or evaluations based
on features. Branches indicate the conclusion of a choice or examination, leading to a new node and leaf nodes to indicate the class
labels. To create a decision tree, it is important to choose the Ideal quality, the optimum attribute to separate the data is chosen
based on a metric such as information gain, entropy, or Gini impurity. Dataset splitting technique is used for splitting the dataset into
subsets. A decision tree algorithm operates by recursively choosing the feature that yields the maximum information gain or gain
ratio for each internal node. The process will be continued until the tree impacts a stopping criterion, such as a maximum depth or
a minimum amount of samples in a leaf node. 

Method validation 

In the proposed study, the outcome of the classifier predictions is divided into three grades Premium, Standard, and Reject.
Performance evaluation of proposed contributions is conducted in two phases. 

1. In phase one, the Faster-R-CNN model’s efficiency towards extracting overlapping/touching fruit samples is analyzed. 
2. In phase two, the robustness of the classifier’s predictions using the fusion feature model is studied. 

Performance evaluation of faster R-CNN model 

Though the main objective of the proposed study is to perform grading of Indian star Gooseberries, the challenge of the algorithm
lies in extracting fruit samples with overlapping and touching contours. To extract the fruit samples with the challenges mentioned
above, a faster R-CNN model is used to extract the fruit with challenging contours. We adopt a single-shot training process in one
batch carried out in 10 epochs with 500 steps per epoch with a learning rate of 0.0001 and momentum of 0.9. The training uses
an RMSprop optimizer with random weight initialization and cross-entropy loss function with a dropout of 0.1. Fig. 8 presents the
outcomes achieved on object detection using the Faster R-CNN model. 
14
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Fig. 8. Contour extraction of fruit with overlapping contours using mask-R-CNN (a)–(d) Sample images with overlapping fruit contours (e)–(h) 
Fruit detected by mask-R-CNN (i)–(l) Mask images of extracted fruit from (e)–(h). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As per Fig. 8 , for the original images with challenges of overlapping and touching contours, the fruit detection outcomes using the
region proposal network, followed by mask branch outcomes, are shown. The outcomes of individual fruit extracted from the mask
image are presented by visually separating one fruit from another. The performance of the Faster R-CNN model for ten epochs and
the obtained mean Average Precision (mAP), more significant than the Intersection over Union (IoU) of 0.5, is presented in Fig. 9 .
The learning curve indicates a consistent improvement from one to another epoch, and it observed that performance convergence 
was achieved from epoch 7. The performance from the seventh epoch also closely matches visual outcomes and the fruit extraction
desired to perform subsequent analysis. 

The mean Average Precision (mAP) is used as an evaluation metric for object detection in the proposed work for contour estimation
of fruit samples with overlapping contours. A mAP of 0.56 at the 10th epoch and remains to be plateau with small increments.
Furthermore, visually the outcomes achieved in terms of object detection is sufficient to carryout analysis, with an Intersection over
the Union (IoU) threshold of 0.5. The outcomes indicates the performance of the Mask R-CNN model in terms of accurately localizing
and delineating the contours of partially visible fruit in annotated images. Also, a mAP of 0.56 suggests that the model can detect
and segment partially visible fruit with desired precision. The model correctly identifies approximately 56 % of the fruit instances
with a reasonable localization accuracy. The training analyses provides empirical evidence that the validation accuracy of the model
plateaued after 10 epochs. Increasing the training duration past this point did not result in appreciable accuracy gains. 

The IOU threshold of 0.5 determines the minimum overlap required between predicted and ground truth contours to be considered
a correct detection. In this case, if the overlapping area between the predicted and ground truth contours is at least 50 % of the union
area, it is considered a successful detection. Further, the number of epochs indicates the number of iterations the model has undergone
during training. In this case, the model was trained for ten epochs. Concerning training progress, the mapped value at the 10th epoch
indicates the model’s progress throughout the training process. It shows the average performance of the model after training for the
15
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Fig. 9. Performance of Mask-R-CNN- Contour extraction of overlapping/touching fruit boundaries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

specified number of epochs. As the model trains, the map tends to increase, indicating improved performance over time. Overall, the
mean Average Precision (mAP) of 0.56 at the 10th epoch suggests that the visual results of contour extraction using the Mask R-CNN
model have shown promising performance in contour extraction from overlapping fruit. As this research focuses mainly on the grade
assessment of fruit, we thus aim at the fine-tuning of the model’s performance towards the fusion feature model to classify the fruit
based on grade. 

Performance evaluation of classifiers with TopoGeoFusion 

This study evaluates various machine learning classifiers using four training strategies, as discussed in classifier training and eval-
uation section. The evaluation uses K-fold cross-validation for K = 11 by analyzing the trade-off between the classifier’s performance 
vs. fusion feature model, hand-crafted features, and Geometric features. A thorough grid search and cross-validation procedure led 
to the selection of K = 11. According to our evaluations, K = 11 consistently provided the best resilience and accuracy at various
training-testing proportions. In particular, we used K = 11, SVM classifiers and Decision Trees to obtain 100 % accuracy. These
findings reveal how well K = 11 captures the underlying patterns in our dataset. Table 5 depicts the performance of various machine
learning classifiers concerning hand-crafted features, fusion features, and Geometric features with precision, recall, and accuracy. 

Table 5 shows that the classifiers RF and DT exhibit 100 % precision, recall, and accuracy with fusion features regardless of the
training strategy employed. While the classifier KNN produces an average accuracy of 97 %, precision, and recall are close to 98
%. On the other hand, the NB produces 86 % of average accuracy and precision. In comparison, the SVM is the poor-performing
classifier with minimum to maximum accuracy ranging from 62 to 68 % across various training strategies. It is also important to note
that the performance of classifiers such as KNN, NB, and SVM varies and degrades across four training strategies. The performance
of classifiers is observed to be reliable with fusion features compared to hand-crafted and geometric features. It is inferred that the
classifier’s performance degrades across training strategies by independently evaluating geometric and hand-crafted features. 

DT and RF classifiers perform exceptionally well on our dataset as shown in Figs. 10 and 11 . They consistently achieve 100
% accuracy, precision, and recall [ 25 ] across different training/testing proportions (80:20, 70:30, 60:40, and 50:50). K-fold cross-
validation indicates that they can correctly classify all three data classes in your study. This high level of performance suggests that
the classifiers effectively capture the underlying patterns and relationships within your dataset, leading to accurate predictions. It 
implies that the features or variables used for classification are highly informative and distinct, allowing the models to make precise
decisions. 

While accuracy, precision, and recall are commonly used evaluation metrics, examining the F1 score to gain a more comprehensive
understanding would be beneficial. Fig. 11 shows that the F1 score is also consistently 100 % across all training strategies, especially
with the fusion feature model. Additionally, the outcomes support the inference that RF and DT classifiers are performing exceptionally
well compared with other datasets. Further, the F1 score metric combines precision and recall and exhibits appreciable and balanced
performance by RF and DT. The F1 score of 100 % indicates that the proposed fusion feature model achieves both high precision
(low false positive rate) and high recall (low false negative rate) simultaneously. It is worth noting that the fusion of geometric and
hand-crafted distance features proves robust in capturing comprehensive features compared to Geometric and hand-crafted features 
independently for classification. Thus, the fusion feature model can produce accurate and precise predictions across three classes, 
regardless of the training strategy. 
16
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Table 5 

Performance of classifiers vs. training strategies with K-fold Cross-validation for K = 11. 

Classifier Hand-crafted Features TopoGeoFusion Geometric Features 

Precision (%) Recall (%) Accuracy (%) Precision (%) Recall (%) Accuracy (%) Precision (%) Recall (%) Accuracy (%) 

Training Strategy S1 
SVM 80.45 82.4 81.11 62.43 59.79 68.53 84.67 82.55 83.42 
DT 96.02 95.85 95.8 100 100 100 94.17 94.09 94 
RF 99.46 99.39 99.3 100 100 100 94.2 94.48 94.19 
KNN 86.5 88.76 87.41 98.85 98.21 98.6 86.46 86.55 85.91 
NB 88.07 82.23 87.41 88.5 82.82 88.81 84.55 77.23 83.44 

Training Strategy S2 
SVM 81.95 83.24 82.71 72.08 68 77.57 84.07 82.52 83.07 
DT 97.31 96.94 96.72 100 100 100 92.52 92.17 92.35 
RF 97.57 96.78 97.66 100 100 100 94.2 94.4 93.95 
KNN 86.29 88.48 87.85 98.41 98.37 98.59 85.39 85.73 84.69 
NB 86.14 82.06 86.91 88.13 82.72 88.31 85.84 76.92 82.9 

Training Strategy S3 
SVM 84.31 84.33 84.91 52.78 49.9 59.64 81.79 80.4 80.74 
DT 95.09 95.24 94.73 100 100 100 94.04 93.47 93.65 
RF 96.64 96.32 96.84 100 100 100 93.77 93.84 93.41 
KNN 87.14 89.31 88.42 97.23 97.62 97.54 82.73 83.19 82.17 
NB 87.01 78.69 86.31 87.72 79.9 87.36 86.91 77.09 83.09 

Training Strategy S4 
SVM 82.22 82.24 82.58 56.29 53.82 62.92 80.78 77.02 79.13 
DT 94.94 93.55 94.1 100 100 100 91.73 91.07 91.55 
RF 96.9 96.49 96.91 100 100 100 91.84 92.44 91.83 
KNN 85.44 87.25 86.23 97.86 98.12 98.03 83.95 84.38 83.63 
NB 83.8 76.18 83.42 87.87 80.57 87.07 84.78 75.41 81.7 

Fig. 10. Performance of DT classifier using F1 Score vs. Training strategies. 

 

 

 

 

 

 

On the other hand, the lower F1 scores for geometric and hand-crafted distance features may indicate that more than these
individual feature sets are needed to capture the discriminative features across all three classes. The performance is observed to be
degraded as the training data size decreases by training the classifier with independent feature sets. The consistent F1 score of 100 %
for the fusion feature model is inferred even with a 50 % training and 50 % testing data split, suggesting the strengths of integrating
geometric and hand-crafted distance features. 

Statistical analysis on performance of classifiers across different feature sets 

A thorough statistical analysis is carried out on the performance outcomes reported in Table 5 in terms of precision, recall and
accuracy. The statistical analysis is carried out using measures such as mean, standard deviation and analysis of variance and the
outcome of the analysis is presented in Table 6 . 
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Fig. 11. Performance of Random Forests classifier using F1 Score vs. Training strategies. 

Table 6 

Statistical analysis of classifiers across different feature sets. 

Precision 

Classifier Hand-crafted Features (Mean ± SD) TopoGeoFusion (Mean ± SD) Geometric Features (Mean ± SD) 

SVM 82.73 ± 1.73 60.40 ± 8.38 82.33 ± 1.58 
DT 95.84 ± 0.95 100 ± 0 93.62 ± 1.06 
RF 97.64 ± 1.38 100 ± 0 93.50 ± 0.52 
KNN 86.34 ± 0.84 98.34 ± 0.75 84.13 ± 1.49 
NB 86.26 ± 1.84 88.31 ± 0.38 85.52 ± 1.12 

Recall 

Classifier Hand-crafted Features (Mean ± SD) TopoGeoFusion (Mean ± SD) Geometric Features (Mean ± SD) 

SVM 83.05 ± 1.58 57.88 ± 7.94 80.12 ± 2.13 
DT 95.89 ± 1.20 100 ± 0 92.70 ± 1.41 
RF 97.25 ± 1.34 100 ± 0 93.79 ± 0.35 
KNN 88.45 ± 0.93 98.08 ± 0.49 84.96 ± 1.22 
NB 79.29 ± 3.13 81.00 ± 1.21 76.14 ± 0.67 

Accuracy 

Classifier Hand-crafted Features (Mean ± SD) TopoGeoFusion (Mean ± SD) Geometric Features (Mean ± SD) 

SVM 82.83 ± 1.41 67.17 ± 7.65 81.09 ± 1.65 
DT 95.83 ± 1.04 100 ± 0 92.99 ± 1.13 
RF 97.68 ± 1.19 100 ± 0 93.85 ± 0.36 
KNN 87.48 ± 0.94 98.19 ± 0.32 84.10 ± 0.94 
NB 86.51 ± 0.95 87.64 ± 0.78 82.33 ± 0.57 

 

 

 

 

 

 

 

Based on Table 6 , in the point view of precision, it is noticed that a significant difference (for range 82.73 %–97.64 %) is observed
concerning the handcrafted feature set. The proposed TopoGeoFusion exhibits notably high precision of 100 % for classifiers DT and
RF. While, it is reported as below 60.40 % for SVM and 88.31 % by Naïve Bayes classifier. On the other hand, precision is reported in
the range of 82.33 %–93.30 % for geometric features. Furthermore, recall and accuracy is reported high as 100 % for the proposed
TopoGeoFusion technique compared other method which lie below 76.14 % in case of other classifiers. 

Based on the analysis of variance with p -value < 0.05 upon various feature sets considered, it is noticed that atleast one feature set
significantly differs in terms of precision, recall and accuracy from other classifiers. Finally, notable difference is reported in terms of
precision with TopoGeoFusion resulting into a high precision for RF and DT classifiers. Similarly, a perfect recall of 100 % is evident
with DT and RF classifiers. Thus, the proposed method shows a significant impact on classifier performances. 
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Table 7 

Comparative study on state-of-the-art methods versus performance achieved. 

State-of-the-art work Quality assessment of 
fruit/ vegetable 

Features used Classifier Accuracy 

Behera et al. (2021) [ 21 ] Papaya Shape + Texture KNN KNN + HOG – 100 % 

Naive Bayes VGG19 – 100 % 

SVM 

Sarkar et al. (2022) [ 10 ] Amla Hue & RGB Correlation 
Coefficient 

96 % 

Wajid et al. (2018) [ 29 ] Orange RGB color space 
Borders 

DT 
ANN 
Naive Bayes 

Ripe - 95.24 % 

Scaled 94.96 % 

Unripe - 90.15 % 

Mazen et al. (2019) [ 28 ] Banana Color Statistical 
Texture 

ANN Green and over-ripen classes - 100 % 

Yellowish green + mid-ripen - 97.75 
% 

Faisal et al. (2020) [ 27 ] Date fruit Convolution VGG 19 
NASNet 

Seven stages- 98.5 % 

Zhou et al. (2021) [ 14 ] Seven maturity stages of 
Strawberry 

Convolution You Only Look Once 
(YOLOv3), 

Flower - 0.93 
Flower fruit - 0.84 
Green fruit - 0.89 
Green, white fruit - 0.93 
White, red fruit - 0.92 
Red fruit - 0.94 
Rotted fruit - 0.80 

TopoGeoFusion (proposed 
method) 

Gooseberries Handcrafted 
topologically aware 
features + conven- 
tional 
features 

SVM 

DT 
RF 
KNN 
NB 

Standard – 100 % 

Premium – 100 % 

Reject – 100 % 

(with DT and RF) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparative analysis of TopoGeoFusion with state-of-the-art methods 

The performance of proposed contributions in terms of maturity-based grade assessment is also compared with the effective state-
of-the-art methods in the literature in this section. To compare, the contributions to grade assessment provide comprehensive insights
on the type of fruit, features employed, and classifiers used to perform a quality assessment. Through this, the robustness of features
employed concerning the geometrical structure of fruit becomes more apparent and assists in validating the results achieved. Table 7
presents the details of state-of-the-art methods related to classified fruit. 

Table 7 shows that works related to maturity assessment of circular fruit types such as Amla and Orange include Bediako et al. [ 31 ]
and Wajid et al. [ 32 ] using multi-spectral color features. Accuracy levels range from 90 % to 96 % for fruit Amla and Orange using
color features. While the fruit types do entirely not rely on the color and statistical features from multi-spectral feature space, it is vital
to consider some specific features related to geometrical structure that would result in robust and precise outcomes. Further, the other
works employed deep learning models to perform the quality assessment of non-circular fruit structures such as bananas, papaya,
and apples. Though the state-of-the-art works employ micro-level features through deep convolutional models, the performance is at 
most 90 % towards most fruit types. Further, the grade assessment of fruit utilizing the integration of geometrical and hand-crafted
features would result in the proposed method achieving high accuracies. 

Model’s generalizability 

In the context of the model’s generalizability, the proposed TopoGeoFusion model is extensible, specifically for classifying circular 
fruit structures that vary in size in terms of maturity for grading rather than color. Specifically, the sorting problem is mainly based
on size for packaging purposes in industries. The small fruits or vegetables such as all berries, circular fruit including round purple

fruit, round green fruit, red and yellow small fruit, red and brown fruit, small apples, cherries, and tomatoes can be easily recognized by
the proposed model with high precision. Further, the fusion feature model is also scalable to other fruit and pulses with non-circular
structures by consideration of datasets in the context of maturity assessment. By supplementing the learning models specific to fruit,
pulses, or berries, the proposed model can be generalized to produce highly reliable outcomes. 

In this work, the selection of amla was influenced by specific characteristics and challenges to identifying contours of it, including
its size, texture, and color fluctuations. It is required to thoroughly examine and optimize our detection and grading process for these
specific features by focusing on a single fruit variety and then rescale the algorithm to other fruits with varying and rough surface
textures. 

Objective derivative 

In the context of accomplishing research outcomes concerning the proposed objectives, the challenges concerning extracting 
objects with overlapping and fruit contours are successful. The model for fruit detection proved reliable for dataset creation for the
19
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image of multiple fruit or object samples where one is overlapping and touching each other and also isolated form. Consequently,
the proposed fusion feature model has also proved to be robust enough to classify fruit based on size as the primary aspect. Thus, the
proposed contribution and evaluation help accomplish the objectives derived from the research. 

Limitations 

• As the method TopoGeoFusion mainly depends on the topology and geometry of the object which is targeted for detection,
computing the features related to complex spatial relationships mainly on texture is not possible. 

• In order to employ the proposed method in diverse scenarios with varied object shapes, it is required to devise a model that detects
and interprets the object’s topology. 

• In scenarios where objects are present in complex backgrounds with noise and occlusions, it is required to extract the location of
the object before applying the proposed method. 
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