
Research Article
Simultaneous Channel and Feature Selection of Fused EEG
Features Based on Sparse Group Lasso

Jin-Jia Wang, Fang Xue, and Hui Li

College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China

Correspondence should be addressed to Jin-Jia Wang; wjj@ysu.edu.cn

Received 25 November 2014; Revised 17 January 2015; Accepted 19 January 2015

Academic Editor: Michele Rechia Fighera

Copyright © 2015 Jin-Jia Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Feature extraction and classification of EEG signals are core parts of brain computer interfaces (BCIs). Due to the high dimension
of the EEG feature vector, an effective feature selection algorithm has become an integral part of research studies. In this paper,
we present a new method based on a wrapped Sparse Group Lasso for channel and feature selection of fused EEG signals. The
high-dimensional fused features are firstly obtained, which include the power spectrum, time-domain statistics, AR model, and
the wavelet coefficient features extracted from the preprocessed EEG signals. The wrapped channel and feature selection method
is then applied, which uses the logistical regression model with Sparse Group Lasso penalized function. The model is fitted on the
training data, and parameter estimation is obtained by modified blockwise coordinate descent and coordinate gradient descent
method. The best parameters and feature subset are selected by using a 10-fold cross-validation. Finally, the test data is classified
using the trained model. Compared with existing channel and feature selection methods, results show that the proposed method
is more suitable, more stable, and faster for high-dimensional feature fusion. It can simultaneously achieve channel and feature
selection with a lower error rate. The test accuracy on the data used from international BCI Competition IV reached 84.72%.

1. Introduction

Brain-computer interfaces (BCIs), which are communication
systems designed to transmit information between the brain
and computers or other electronic devices, are currently the
most popular technique used in neurological rehabilitation
[1]. The system does not depend on the brain’s normal
pathways of peripheral nerves andmuscles but relies on signal
acquisition technology to capture the signal generated from
brain activity, which is used to control external equipment
after analysis and processing. The electroencephalogram
(EEG) signal is the brain signal that is obtained by noninva-
sive electrode acquisition. EEG signal feature extraction and
classification have become a hot topic in BCI research.

The biggest problem of BCIs based on EEG signals is the
high dimensions of the EEG feature space and the limited
number of samples. This has prompted research into EEG
channel selection and BCI feature selection. Research into
feature selection and channel selection of the EEG signal
can be roughly divided into two types. The first type is
feature selectionmethods. Coelho introduced a new artificial

immune network algorithm to realize automatic feature
selection using the EEG signal power spectral density feature,
which used an extreme learning machine as a classifier [2].
Rejer used blind source separation, a genetic algorithm and
a forward feature selection method [3, 4]. Bhattacharyya
proposed a differential evolution and mimetic algorithm
for high-dimensional EEG signal power spectrum density
feature selection [5]. Noshadi proposed an algorithm which
combines Lempel–Ziv with EMD for feature extraction on
the EEG signal, using t-test and a forward or backward feature
selection method [6]. The second type is EEG signal channel
selection methods. Arvaneh proposed a sparse common
spatial pattern algorithm and a robust sparse common spatial
pattern algorithm for channel selection. The classification
results are better than the feature selection method based
on Fisher criterion, mutual information, support vector
machine, and common spatial pattern or a regularized
common spatial pattern [7, 8]. He proposed a genetic algo-
rithm for feature selection based on the maximized Rayleigh
coefficient feature [9]. Yang proposed a method for channel
selection of a specific object based on Fisher discriminant
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Figure 1: System diagram of the proposed method.

analysis scoring criteria. This method can effectively reduce
the number of channels from 118 channels to no more than
11 without significantly reducing the classification accuracy
by shortening the training time [10]. Gonzalez proposed a
combination of Fisher discriminant analysis and a multiob-
jective real/binary hybrid particle swarm algorithm, which
can maximize the classification accuracy and minimize the
number of channels while searching for EEG channels and
the classifier parameters [11]. As can be seen, most studies
undertake research on EEG signals by either feature selection
or channel selection unilaterally.

Lasso (least absolute shrinkage and selection operator)
is a new regularization method which can be used to select
high-dimensional features [12]. Group Lasso is an extended
Lasso method [13], while Sparse Group Lasso is a regulariza-
tionmethod which combines Lasso and Group Lasso [14, 15].
Germán et al. proposed a Lasso feature selection method
based on minimum angle regression using fusion charac-
teristics of the EEG, such as the power spectrum, Hjorth
parameters, AR model coefficients, and wavelet transform
parameters.This method used linear discriminant analysis as
the classifier [16]. Experimental results show that thismethod
is superior to traditional methods. Yeh studied the image
classification problem of audio and video, using the fusion of
theMel-frequency cepstral coefficients (MFCC) feature, scale
invariant feature transform (SIFT) descriptor subfeatures,
histogram of oriented gradients (HOG) descriptor subfea-
tures, Gabor texture features, and edge direction histogram
(EDH) described characteristics, and then proposed a multi-
core learning framework which is based on Group Lasso for
feature selection [17]. Xie studied the problem with selection
of uncertainty characteristics based on Sparse Group Lasso
for data mining and has done experiments on nine types of
UCI machine learning datasets [18].

Based on the literature [16], this paper proposes the
Sparse Group Lassomethod for channel selection and feature

selection of the EEG fused feature and estimates model
parameters using a combination of the blockwise coordinate
descentmethod and the coordinate gradient descentmethod.
This has the ability to not only select features between
channels but also select features within the channel and
achieves high-dimensional EEG signal channel selection
and feature selection simultaneously, while obtaining better
sparse performance and classification accuracy. We conduct
experimental verification on dataset 1 of the international
BCI Competition IV. The EEG data is firstly preprocessed
and then fused features are established from each channel of
the multichannel signal; that is, the power spectrum, time-
domain statistics, autoregression (AR) model coefficient, and
wavelet features are extracted. The wrapped channel and
feature selection method is then used. The logistic regression
model is penalized with the Sparse Group Lasso to fit the
training data, and parameter estimation is obtained using
the blockwise coordinate descent method and coordinate
gradient descent method. Finally, the test sample is classified
using the trained model. The method proposed in this
paper includes feature fusion, channel selection, and feature
selection, as shown in Figure 1.

2. Feature Extraction

In study of EEG signal classification problems, an important
factor in improving the recognition rate is to extract repre-
sentative features to represent the EEG signal properly. In this
paper, in order to extract the EEG signal features and establish
high-dimensional feature fusion comprehensively, we jointly
apply four types of feature extraction methods: frequency-
domain analysis, time-domain analysis, analysis of time and
space, and time-frequency analysis.

Power spectrum estimation can analyze the distribution
and change in EEG signal rhythm [19] and capture the
event-related desynchronization (ERD) and event-related



BioMed Research International 3

Sparsity 
in group

Channel 1 Channel 2 Channel 1 Channel 2 Channel m Channel m

· · · · · ·

(a)

Sparsity 
between 
groups

Channel 1 Channel 2 Channel 1 Channel 2 Channel m Channel m

· · · · · ·

(b)

Sparsity in 
group and 
between 
groups

Channel 1 Channel 2 Channel 1 Channel 2 Channel m Channel m

· · · · · ·

(c)

Figure 2: Diagram of channel selection and feature selection.

synchronization (ERS) which is closely associated with
movement consciousness. In our experiment, we extract the
band-pass power for the time series of each channel signal
as the features, for five frequency bands. The frequency
bands are 2–4Hz, 4–8Hz, 8–12Hz, 12–18Hz, and 18–30Hz,
respectively.

For the time sequence of each channel of the EEG signal,
we extract four commonly used statistical features: the mean
value and standard deviation of the time sequence and the
mean value of the first difference absolute value and the
second difference absolute value of the time sequence.

The AR model is an effective tool for time sequence
modeling and it has been widely used in BCI systems [20].
In our experiment, we establish a sixth order AR model for
the time sequence of each channel and take the coefficient of
the model as a feature of the EEG signal.

Wavelet transform is a type of variable resolution time-
frequency analysis method; it has good localization in the
time-domain and frequency-domain and is used for EEG
signal feature extraction frequently. We use the Db4 wavelet
as the mother wavelet in the experiment, make six decompo-
sitions of the time sequence of each channel, take the energy
of the approximate coefficients and detail coefficients (seven-
dimensional) as features, and extract four features for each
of them: the Shannon entropy, logarithmic energy entropy,
and the mean value and variance of the Teager-Kaiser energy
operator. This constitutes 55-dimensional wavelet features
overall.

3. Channel Selection and Feature Selection

The feature extraction process described above is carried
out for each channel in the time series. While tasks to
imagine different movements activate different brain areas,
not all regions of the brain’s electrical activity are associated
with each task, so the fused features established using

every channel of the EEG signal have some redundancy.
Hence, we need to complete channel selection and feature
selection. Channel selection removes channels which are not
related to the category of imagined movement. In addition,
some of the features have nothing to do with classes other
than the category of imagined movement, so feature selec-
tion is required. Feature selection considers whether each
dimension’s characteristic is associated with each category of
imagined movement, and selections are made based on the
features rather than the channel.

It is well known that the Lassomethod can obtain a sparse
solution from high-dimensional data. For feature fusion, the
method extracts characteristics from each different channel
without distinction, adopting the same selection standards,
and can realize the process of feature selection, as shown
in Figure 2(a). However, the method does not significantly
reduce the number of channels. The Group Lasso method
regards the fused features extracted from each individual
channel as a feature set, and selection is made on a channel
basis; that is, all characteristics of the channel are retained
or discarded, as shown in Figure 2(b). However, with fea-
ture fusion, not all features extracted from a channel are
necessarily associated with imagined movement categories,
and therefore feature selection within the channel is needed.
Therefore, a method is required to increase the sparsity of
the feature set among channels and within each channel.
The Sparse Group Lasso method is a combination of Lasso
and Group Lasso, which can achieve sparsity between groups
and within the group. Therefore, in this paper we propose
the Sparse Group Lasso method to solve the problem of
channel selection and feature selection for EEG signal feature
fusion, as shown in Figure 2(c). Additionally, we propose a
method that combines the blockwise coordinate descent and
coordinate gradient descent to estimate the parameters of the
Sparse Group Lassomodel, where nonzeromodel parameters
signify that the corresponding feature or feature group is
selected and vice versa.
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First, we provide the proposed logistic regression multi-
classification model penalized with the Sparse Group Lasso
of the EEG signal. The method can be described as follows:
we assume that the training sample set is (𝑥

𝑖
, 𝑔
𝑖
), 𝑖 =

1, . . . , 𝑁, 𝑥
𝑖
∈ 𝑅𝑝×𝑑 is the observation vector, 𝑝 is the

number of channels, and 𝑑 is the dimension of each channel.
We let 𝑔

𝑖
denote the multiclass response, 𝑔

𝑖
∈ {1, 2, . . . ,𝑀}.

The EEGdata used in this paper is two-class data, but in order
to make the algorithm more general in our description here,
we give an example using a multiclassification model. The
logistic regression model is used to represent the conditional
probability; then the probability of sample 𝑖 belonging to class
𝑚 is described as

𝑝
𝑖,𝑚
≜ 𝑃 (𝑔

𝑖
= 𝑚 | 𝑥

𝑖
) =

exp (𝑥
𝑖
𝛽
⋅𝑚
)

∑
𝑀

𝑙=1
exp (𝑥

𝑖
𝛽
⋅𝑙
)
𝑚 = 1, . . . ,𝑀.

(1)

Here, 𝛽 is the coefficient matrix, which represents the model
parameters which need to be solved, and 𝛽

⋅𝑚
is the 𝑚th

column of 𝛽. We let 𝑔 = 𝑀 as a reference, and then we can
obtain𝑀− 1 logistic models:

ln
𝑃 (𝑔
𝑖
= 𝑚 | 𝑥

𝑖
)

𝑃 (𝑔
𝑖
= 𝑀 | 𝑥

𝑖
)
= 𝑥
𝑖
𝛽
⋅𝑚

𝑚 = 1, . . . ,𝑀 − 1. (2)

Here, 𝑥
𝑖
𝛽
⋅𝑀
= 0.

Using maximum likelihood estimation to fit the model,
we define matrix 𝑌 with elements as follows:

𝑦
𝑖,𝑚
=
{

{

{

1 𝑔
𝑖
= 𝑚

0 𝑔
𝑖
̸= 𝑚.

(3)

The training dataset can be considered as𝑁 independent
observations to simplify calculations. We take the logarithm
likelihood function as follows:

ℓ (𝛽) =
𝑁

∑
𝑖=1

𝑀

∑
𝑚=1

𝑦
𝑖,𝑚

ln𝑝
𝑖,𝑚

=

𝑁

∑
𝑖=1

[

𝑀

∑
𝑚=1

𝑦
𝑖,𝑚
𝑥
𝑖
𝛽
⋅𝑚
− ln(

𝑀

∑
𝑙=1

exp (𝑥
𝑖
𝛽
⋅𝑙
))] .

(4)

After adding a Sparse Group Lasso penalty function to
(4), the objective function becomes

min
𝛽
{−ℓ (𝛽) + 𝜆Φ(𝛽)}

𝛽

= min
{

{

{

−ℓ (𝛽) + 𝜆 (1 − 𝛼)

𝑝

∑
𝐽=1

󵄩󵄩󵄩󵄩󵄩
𝛽
(𝐽)󵄩󵄩󵄩󵄩󵄩2

+ 𝜆𝛼

𝑝×𝑑×𝑀

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨

}

}

}

.

(5)

Here, 𝜆 > 0 and when 𝜆 is sufficiently large, 𝛽 is zero, 𝛼 ∈
[0, 1].

𝛽(𝐽) is the 𝐽th group of 𝛽, which represents the
coefficient vector of the 𝐽th channel fused feature of
each class, with dimension 𝑑, 𝐽 = 1, . . . , 𝑝.

𝛽
(𝐽)

𝑗
is the𝑗th feature coefficient of the 𝐽th group of 𝛽,

𝑗 = 1, . . . , 𝑑 × 𝑀.
𝛽
𝑗
is the 𝑗th feature coefficient of 𝛽, 𝑗 = 1, . . . , 𝑝 × 𝑑 ×

𝑀.

We can see that the Sparse Lasso penalty is a combination
of Group Lasso penalty and Lasso penalty, and when 𝛼 = 0
or 𝛼 = 1, it converts to Group Lasso or Lasso estimation,
respectively.

As described in a previous study [21], the model parame-
ter estimation algorithm proposed in this paper is composed
of three main loops: an outer coordinate gradient descent
loop (Algorithm 1), a middle blockwise coordinate descent
loop (Algorithm 2), and an inner modified coordinate
descent loop (Algorithm 3).

For Algorithm 1, we let 𝑓(𝛽) = −ℓ(𝛽), 𝑞 = ∇𝑓(𝛽), and
H = ∇

2𝑓(𝛽), where H is the Hessian matrix of 𝑓(𝛽). Then
the quadratic approximation of 𝑓(𝛽) at point 𝛽̃ is

𝑓 (𝛽) = q𝑇 (𝛽 − 𝛽̃) + 1
2
(𝛽 − 𝛽̃)

𝑇

H (𝛽 − 𝛽̃) + 𝑓 (𝛽̃) +O (𝛽)

= 𝑄 (𝛽) − q𝑇𝛽̃ + 1
2
𝛽̃
𝑇

H𝛽̃ + 𝑓 (𝛽̃) +O (𝛽) .
(6)

Here, 𝑄(𝛽) = (q − H𝛽̃)𝑇𝛽 + (1/2)𝛽𝑇𝐻𝛽. Ignoring the
irrelevant items in (6), (5) can be simplified as

min
𝛽∈𝑅
𝑝
𝑄 (𝛽) + 𝜆Φ (𝛽) . (7)

Algorithm 1 (outer loop used in the model parameter estima-
tion algorithm).

Coordinate gradient descent

Input: 𝛽̃ = 𝛽
0

Iterate until convergence occurs
Let q = ∇𝑓(𝛽̃), H = ∇2𝑓(𝛽̃), 𝑄(𝛽) = (q −
H𝛽̃)𝑇𝛽 + (1/2)𝛽𝑇H𝛽
Compute 𝛽̂ = min

𝛽∈𝑅
𝑝×𝑑×𝑀𝑄(𝛽) + 𝜆Φ(𝛽)

Compute the step size 𝑡 and set 𝛽̃ = 𝛽̃ + 𝑡Δ, for
Δ = 𝛽̃ − 𝛽̂.

The purpose of Algorithm 2 is to solve the quadratic
optimization problem in (7). Since the penaltyΦ is separable,
(7) can be written as

𝑄 (𝛽) + 𝜆

𝑝

∑
𝐽=1

Φ
(𝐽)
(𝛽
(𝐽)
) . (8)

Here, we can use the blockwise coordination descent algo-
rithm becauseΦ(𝐽) is convex. Taking the 𝐽th group (the fused
feature coefficients of the 𝐽th channel), the problem can be
simplified to

min
𝛽̂
(𝐽)

∈𝑅
𝑝𝐽

𝑄
(𝐽)
(𝛽̂
(𝐽)

) + 𝜆Φ
(𝐽)
(𝛽̂
(𝐽)

) . (9)

Here, 𝛽̂
(𝐽)

represents the estimation of the 𝐽th group.
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Since H is a diagonal matrix, it can be broken down into
block matrices of𝑚 × 𝑚 size. By symmetry ofH, we obtain

𝑄
(𝐽)
(𝛽̂
(𝐽)

)

= 𝛽̂
(𝐽)𝑇

(q −H𝛽̃)
(𝐽)

+
1

2
(2∑
𝐼

𝛽̂
(𝐽)𝑇

H
𝐼𝐽
𝛽
(𝐼)
− 𝛽̂
(𝐽)𝑇

H
𝐽𝐽
𝛽
(𝐽)
)

= 𝛽̂
(𝐽)𝑇

(q(𝐽) + [H (𝛽 − 𝛽̃)]
(𝐽)

−H
𝐽𝐽
𝛽
(𝐽)
) +

1

2
𝛽̂
(𝐽)𝑇

H
𝐽𝐽
𝛽̂
(𝐽)

.

(10)

Equation (10) can be rewritten as

𝑄
(𝐽)
(𝛽̂
(𝐽)

) = 𝛽̂
(𝐽)𝑇

g(𝐽) + 1
2
𝛽̂
(𝐽)𝑇

H
𝐽𝐽
𝛽̂
(𝐽)

. (11)

Here, g(𝐽) is the group gradient and g(𝐽) = q(𝐽) + [H(𝛽 −
𝛽̃)](𝐽)−H

𝐽𝐽
𝛽(𝐽). 𝛽̂

(𝐽)

= 0when√𝑑 ×𝑀 × (𝜆𝛼, g(𝐽)) ≤ 𝜆(1−𝛼).

Algorithm 2 (middle loop used in the model parameter
estimation algorithm).

Blockwise coordinate descent

Iterate until convergence occurs
Choose the next block index 𝐽 according to the
cyclic rule
Compute the block gradient g(𝐽)

if√𝑑 ×𝑀 × (𝜆𝛼, g(𝐽)) ≤ 𝜆(1−𝛼), then let 𝛽(𝐽) =
0

else
𝛽(𝐽) = min

𝛽̂
(𝐽)

∈𝑅
𝑝𝐽
𝑄(𝐽)(𝛽̂

(𝐽)

) + 𝜆Φ(𝐽)(𝛽̂
(𝐽)

).

For Algorithm 3, we rewrite (9) as

𝑄
(𝐽)
(𝛽̂
(𝐽)

) + 𝜆 (1 − 𝛼)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝛽̂
(𝐽)󵄩󵄩󵄩󵄩󵄩󵄩󵄩2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

loss

+ 𝜆𝛼

𝑝𝐽

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
(𝐽)

𝑗

󵄨󵄨󵄨󵄨󵄨
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

penalty

. (12)

The two first terms of (12) are considered to be the loss
function and the last term is the penalty. The loss is not
differentiable at zero due to the L2-norm, and thus we cannot
completely separate out the nondifferentiable parts, so the
coordinate descent method has been modified for this case.
For the 𝑗th iteration of the 𝐽th group, we need to find the
minimum of the function 𝜔(𝛽(𝐽)

𝑗
):

𝜔 (𝛽
(𝐽)

𝑗
) = 𝑐𝛽

(𝐽)

𝑗
+
1

2
ℎ𝛽
(𝐽)2

𝑗
+ 𝛾√𝛽

(𝐽)2

𝑗
+ 𝑟 + 𝜉

󵄨󵄨󵄨󵄨󵄨
𝛽
(𝐽)

𝑗

󵄨󵄨󵄨󵄨󵄨
, (13)

where 𝑐 = 𝑔(𝐽)
𝑗
+∑
𝑘 ̸=𝑗
(H
𝐽𝐽
)
𝑗𝑘
𝛽
(𝐽)

𝑘
, 𝛾 = 𝜆(1 − 𝛼), 𝑟 = ∑

𝑘 ̸=𝑗
𝛽
(𝐽)2

𝑘
,

𝜉 = 𝜆𝛼, and ℎ is the 𝑗th diagonal of the Hessian blockH
𝐽𝐽
.

Due to the convexity of 𝑓(𝛽), we conclude that ℎ ≥ 0.
Since the quadratic approximation 𝑄(𝛽) is bounded by the
constraints below, we obtain 𝛽(𝐽)

𝑗
= 0 when ℎ = 0. When

ℎ > 0, 𝛽(𝐽)
𝑗

can be obtained as follows.

If 𝑟 = 0 or 𝛾 = 0, then

𝛽
(𝐽)

𝑗
=

{{{{{{

{{{{{{

{

𝜉 + 𝛾 − 𝑐

ℎ
if 𝑐 > 𝜉 + 𝛾

0 if |𝑐| ≤ 𝜉 + 𝛾
−𝜉 − 𝛾 − 𝑐

ℎ
if 𝑐 < −𝜉 − 𝛾.

(14)

If 𝑟 > 0, 𝛾 > 0, and |𝑐| ≤ 𝜉, then 𝛽(𝐽)
𝑗
= 0 and therefore

𝑐 + sgn (𝜉 − 𝑐) 𝜉 + ℎ𝛽(𝐽)
𝑗
+ 𝛾

𝛽
(𝐽)

𝑗

√𝛽
(𝐽)2

𝑗
+ 𝑟

= 0. (15)

We solve (15) by applying a standard root findingmethod.
We define Δ ∈ 𝑅𝑝×𝑑×𝑀 and can then rewrite the descent
direction at zero for function (12):

Δ
(𝐽)

𝑖
=
{

{

{

0
󵄨󵄨󵄨󵄨󵄨
𝑔
(𝐽)

𝑖

󵄨󵄨󵄨󵄨󵄨
≤ 𝜆𝛼

𝑔
(𝐽)

𝑖
− 𝜆𝛼 sgn (𝑔(𝐽)

𝑖
) else.

(16)

Algorithm 3 (inner loop used in the model parameter estima-
tion algorithm).

Modified coordinate descent scheme

Iterate until convergence occurs
Choose the next parameter index 𝑗 according to
the cyclic rule
Compute 𝛽(𝐽)

𝑗
using (14) and (15)

If ‖𝛽(𝐽)‖
2
< 𝜀 and 𝑄(𝐽)(𝛽(𝐽) + 𝜆Φ(𝐽)(𝛽(𝐽))) ≥ 0

then
Compute the descent direction Δ(𝐽) of (12) at
zero by (16)
Use line search to find 𝑡, such that 𝑄(𝐽)(𝑡Δ(𝐽)) +
𝜆Φ(𝐽)(𝑡Δ(𝐽)) < 0

Let 𝛽(𝐽) = 𝑡Δ(𝐽).

4. Experimental Process and Results Analysis

4.1. Description of Data. The EEG data from international
BCI Competition IV dataset 1 was used in experiments, as
shown in Table 1. The four datasets were recorded from 4
healthy subjects and sampled from 59 electrodes which were
distributed over the head, with each dataset containing 400
sampling points. Within the four groups of data, datasets
A and F are imagined movement data for the left hand
and foot, and datasets E and G are imagined movement
data for the left and right hand. The original data used 59
electrodes, with a sampling frequency of 1000Hz, and the
duration of each experiment was 4 s.We resampled the signal
with a sampling frequency of 100Hz. Figure 3 shows the
schematic diagram of the 59 channels in the brain-machine
interface.The first channels 1–10 in the EEG signal acquisition
channels are, respectively, “AF3,” “AF4,” “F5,” “F3,” “F1,” “Fz,”
“F2,” “F4,” “F6,” and “FC5,” channels 11–20 are, respectively,
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Table 1: Description of data used in the experiment.

Dataset Contest
name

Task of movement
imagination

Number of samples
(training + testing)

A IV-1a Left hand and
foot

200 + 227
F IV-1f 200 + 228
E IV-1e Left and right

hand
200 + 229

G IV-1g 200 + 234

“FC3,” “FC1,” “FCz,” “FC2,” “FC4,” “FC6,” “CFC7,” “CFC5,”
“CFC3,” and “CFC1,” channels 21–30 are, respectively, “CFC2,”
“CFC4,” “CFC6,” “CFC8,” “T7,” “C5,” “C3,” “C1,” “Cz,” and “C2,”
channels 31–40 are, respectively, “C4,” “C6,” “T8,” “CCP7,”
“CCP5,” “CCP3,” “CCP1,” “CCP2,” “CCP4,” and “CCP6,”
channels 41–50 are, respectively, “CCP8,” “CP5,” “CP3,” “CP1,”
“CPz,” “CP2,” “CP4,” “CP6,” “P5,” and “P3,” and channels 51–
59 are, respectively, “P1,” “Pz,” “P2,” “P4,” “P6,” “PO1,” “PO2,”
“O1,” and “O2.”

4.2. Experimental Process and Results Analysis. The first step
was to extract the features from the 𝑝 = 59 channels of the
EEG signal. For each channel signal, a 5-dimensional power
spectral feature, 4-dimensional time-domain statistical fea-
ture, 6-dimensional AR model coefficient feature, and 55-
dimensional wavelet decomposition coefficient feature were
extracted. Thus, the fused features of each channel were 70-
dimensional.

In this paper, the Sparse Group Lasso method was
firstly used for EEG signal processing. The features of each
channel were extracted as a group, that is, 𝛽(𝐽), where
𝐽 = 1, . . . , 𝑝, with 𝑝 = 59 groups in total. Here, 𝛽 =

(𝛽(1), . . . , 𝛽(𝐽), . . . , 𝛽(𝑝)), where 𝛽(𝐽) ∈ 𝑅𝑑×𝑀. In experiments,
we used the wrapped Sparse Group Lassomethod for channel
and feature selection. At first, the feature set consisted of
features extracted from each channel of the EEG signal.
The combined coordinate gradient descent method and
blockwise coordinate method were then used to solve the
objective function with a corresponding penalty term to
get the parameter estimation results, based on the training
data logistic regression model. A 10-fold cross-validation
method was applied to select the parameter estimation with
the highest training accuracy rate as a result of channel and
feature selection. Finally, the test data corresponding to the
selected channel and feature subset for the trained model
under test was used to calculate the test error rate.

The first experiments use datasets A and E as follows.
For dataset A, the method proposed in this paper can be
compared to a type of feature extraction method and feature
fusion method, respectively, with results shown in Table 2.

From Table 2 it can be observed that, compared with the
AR coefficient and wavelet coefficient features, the feature
fusion obtains a lower error rate for simultaneous channel
and feature selection. For the power spectrum characteris-
tic and the time-domain statistics characteristic, although
the feature fusion error rate is slightly higher, the feature
fusion method has obvious advantages for channel selection.

AF3 AF4
F5

F3
F1 Fz F2

F4
F6

FC5
FC3 FC1 FCz FC2 FC4

FC6

CFC7 CFC5 CFC3 CFC1 CFC2 CFC4 CFC6 CFC8

T7 C5 C3 C1 Cz C2 C4 C6 T8

CCP7 CCP5 CCP3 CCP1 CCP2 CCP4 CCP6 CCP8

CP5
CP3 CP1 CPz CP2

CP4
CP6

P5
P3

P1 Pz P2
P4

P6PO1 PO2

O1 O2

Electrode position point

Figure 3: Schematic diagram of 59 channels of the BCI.

Therefore, it can be concluded that when considering com-
prehensive performance of the test error rate and channel
selection number, a fused feature extraction method is better
than a single feature extraction method. Figures 4 and 5
compare single feature extraction and feature fusion of the
channel/feature selection for dataset A, respectively, and
Figure 6 shows the fused feature channel selection result
analysis.

Figure 4 shows that the ratio of the number of channels
and features selected is lowest when using feature fusion and
it better reduces the redundancy of channel and feature.

Figure 5 shows that, out of the 18 channels selected by
the feature fusion method, 15 channels are included in the
selection results from three or more extraction methods, a
percentage of 83.33%. In addition, there are 10 channels, F2,
F5, FCz, C4, CP1, CP3, P5, P6, O1, and O2, respectively,
selected by all four feature extraction methods, and these
channels are important for classification of dataset A. Finally,
the proposed method includes all of these channels, which
indicates that the feature fusion is superior at removing
redundant channels and choosing the most relevant channels
for signal classification.

As an example, we observe that the 12th (FC1) channel in
Figure 6 only contains the power spectrum feature and the
wavelet feature; that is, only these features contribute to the
classification problem from the four types of heterogeneous
feature of this channel. From analysis of all 18 channels,
it can be observed that selection frequency of the power
spectrum feature and the wavelet feature is 100%, while
the time-domain statistic and AR coefficient feature have a
selection frequency of 88.89%.Therefore, compared with the
time-domain statistic and AR coefficient feature, the power
spectrum feature and the wavelet feature are more important
in the classification of dataset A.
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Table 2: The experimental results of different feature extraction methods for dataset A.

Feature extraction method The experimental results
Number of channels Number of features Test error rate (%)

Power spectrum 51 193 27.76
Time-domain statistic 57 203 28.64
AR coefficient 35 146 40.97
Wavelet coefficient 23 737 30.40
Fusion feature 18 737 29.26
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Figure 4: Comparison of single features on the number of selected channels and features of dataset A.

The second experiment followed the same experimental
procedure and analysis for dataset E.The results are shown in
Table 3 and Figures 7–9.

We can draw similar conclusions from analysis of Table 3;
that is, when there is a lower or equivalent test error rate, the
feature fusion method can achieve better channel and feature
selection. Figures 7 and 8 compare single feature extraction
and feature fusion, respectively, for the channel and feature
selection of dataset E. Figure 9 is the fused feature channel
selection result analysis.

From Figure 7, we can directly observe that the fused
feature extractionmethod achieves better dimensional reduc-
tion on the selected number of channels and features. In
Figure 8, 23 channels are selected by feature fusion, with
16 channels contained in the selection results from three or
more extraction methods, a percentage of 69.6%. Seven of
the channels (F6, FC6, CFC8, C5, C3, C4, and CP6) are
selected by all four feature extraction methods, and of these
six channels (all except CFC8) are selected by the feature
fusion method, a percentage of 85.7%. This shows that the
feature fusion method can more accurately choose channels
which are relevant to the classification.

Figure 9 shows that 23 channels (which all include
the power spectrum characteristic and wavelet feature) are
selected by feature fusion, 13 channels include the time-
domain statistic, and 11 channels contain the AR coefficient
features. From this, we conclude that the power spectrum
characteristics andwavelet feature play amore important role
for classification.

The above experiments have shown that the feature fusion
extraction method can provide alternative features for Sparse
Group Lasso. It is suitable for handling data with high
dimensions and can select themost effective features from the
data.

The third experiment is as follows. In the following
experiments, the feature fusion extractionmethod is adopted.
The comparative results of Lasso feature selection, Group
Lasso channel selection, and Sparse Group Lasso channel and
feature selection for dataset A are shown in Table 4.

From Table 4 we can see that, compared with the Lasso
and Group Lasso, Sparse Group Lasso can guarantee a lower
error rate. Sparse Group Lasso selects more characteristics
than the Lasso method but chooses a lower number of
channels. Since the four datasets were collected from 59
electrodes, and each electrode corresponds to an individual
channel for experiments, the channel selection represents
the selection of an electrode. As each channel contains
70 characteristics, removing channel redundancy has more
significance than removing redundant features. So, Sparse
Group Lasso can be used for channel selection and feature
selection at the same time with lower error rates. Figure 10
compares different channel and feature selectionmethods for
dataset A.

Figure 11 shows the channels and characteristics when
parameter 𝛼 = 0.5 on dataset A. Each channel is composed of
70-dimensional features: the power spectrum characteristics
are 5-dimensional, the time-domain statistical features are
4-dimensional, the AR model coefficient characteristics are
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Figure 5: The comparison on selected channels of dataset A.

Table 3: Experimental results comparing different feature extraction methods for dataset E.

Feature extraction method Experimental results
Number of channels Number of features Test error rate (%)

Power spectrum 40 93 14.85
Time-domain statistic 33 91 16.16
AR coefficient 28 102 17.47
Wavelet feature 25 430 19.65
Fusion feature 23 508 15.28

Table 4: Experimental results of three methods for dataset A.

Channel/feature selection method Selected channel Selected feature Test error rates (%)
Number Proportion (%) Number Proportion (%)

Lasso 27 45.76 43 1.04 31.72
Group Lasso 17 28.81 1190 28.81 31.72
Sparse Group Lasso 18 30.51 737 17.85 29.96
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Figure 6: The selected channels using fused features of dataset A.

6-dimensional, and the characteristics of the wavelet decom-
position coefficient are 55-dimensional. As can be seen in
Figure 11, 18 channels are selected from the full range of
channels, and not all features are selected. For example, on
the 12th channel, no features are selected between the 775th
dimension and the 785th dimension. AR coefficients and
time-domain statistics characteristics are stored within this

interval, therefore we can determine that the 12th channel
does not choose the time-domain statistics andAR coefficient
characteristics (also this can be concluded from Figure 6),
and similar findings can be observed through further channel
analysis.Therefore, it is more intuitive to discover the sparsity
between channels and within each channel and then obtain
the important features. This further proves that the Sparse
Group Lasso method can realize channel and feature selec-
tion at the same time.

For the fourth experiment, we compared the performance
of Lasso, Elastic Net, Group Lasso, and Sparse Group Lasso
for feature selection and the classification problem. The
results are shown in Table 5. We present the number of
selected channels and features based on Sparse Group Lasso
with different values of parameter 𝛼 (0, 0.25, 0.5, 0.75, 1).
Sparse Group Lasso is equivalent to Group Lasso when 𝛼
equals 0 and is equivalent to Lasso when 𝛼 equals 1. Group
Lasso shares the same grouping method as Sparse Group
Lasso, which takes the fused features of each channel as a
group and trades off on the group level in order to make
the channel selection. Lasso and the Elastic Net method
treat the features extracted from all channels equally and
compromise on the feature level in order to make the feature
selection. We use the packaging method with fused features
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Figure 7: Comparison of the number of channels and features selected from dataset E.
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(b) Results of selected channels using fused features

Figure 8: Comparison of selected channels of dataset E.
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Figure 9: The selected channels using fused features of dataset E.

in the experiment on the four datasets based on Lasso
feature selection, Elastic Net feature selection, Group Lasso
channel selection, and Sparse Group Lasso channel and
feature selection separately. As shown in Table 5, for different
datasets, the larger 𝛼 is, the lower test error rate becomes.
We can conclude that the Sparse Group Lasso method can

obtain the lowest error rate whenmaking channel and feature
selectionwhen the parameter setting is close to Lasso (𝛼 = 1).

Table 5 shows the results of different channel/feature
selection methods (Lasso, Elastic Net, Group Lasso, and
Sparse Group Lasso) for different datasets. We can observe
that, compared with other methods, Sparse Group Lasso
obtains the lowest error rate, with the lowest number of
selected channels, below 38.98% of the total number of chan-
nels for all datasets. The lowest number of selected channels
is only 23.73% of the total, which reduces the redundancy of
channels significantly. Since channel selection is equivalent
to the choice of electrode, it has greater significance than
feature selection. The number of features selected by Sparse
Group Lasso is below 17.85% for all datasets, with the lowest
only 7.97% of the total number of features. We conclude that
the comparison shows that Sparse Group Lasso can achieve
channel selection and feature selection simultaneously, while
ensuring sparsity among channels and features when main-
taining an error rate equal to or lower than other methods.

In comparison to other studies such as [22], we have
only analyzed training sets, rather than using a testing set
where the training set needs to be divided into 100 as 80%
and 20% randomly. In the study in [22], 11 channels were
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Figure 10: Results of three-feature channel or feature selection methods.
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Figure 11: Channel and feature selection results of fused features for 𝛼 = 0.5.
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chosen artificially: FC3, FC4, Cz, C3, C4, C5, C6, T7, T8,
CCP3, and CCP4.This is different from the channels selected
by our proposed method, since the previous study [22]
used spatial pattern characteristics, while we use frequency-
domain characteristics. The test set used, BCI Competition
IV dataset 1, is continuous data, while we have piecewise
processed the continuous data in order to increase the test
samples.Therefore, it is not possible to compare our methods
with other previous studies.

5. Conclusion

Classification of EEG signals is a core part of BCIs, so
an effective feature extraction and selection method is the
key to improving identification accuracy. For EEG signal
processing, we present a newmethod: wrapped Sparse Group
Lasso method for channel and feature selection. The joint
application of a variety of feature selection methods was
firstly used to establish high-dimensional feature fusion of
the preprocessed EEG signals. Then, channels and features
are selected in a wrapped way. The logistic regression model
penalized with Sparse Group Lasso is fitted on the training
data, and parameter estimation is obtained by a blockwise
coordinate descent method and coordinate gradient descent
method. The best feature subset is selected by using 10-fold
cross-validation. Finally, the test sample is classified using the
trained model, and the feature extraction method included
the power spectrum, time-domain statistics, AR model, and
the wavelet coefficients. Fusing multiple features to establish
a collection to make a selection is a beneficial research area
to explore for EEG signal classification. Experiments have
shown that this method can extract the characteristics of
the EEG signal more completely, so it is an effective way
to improve the signal recognition accuracy. Compared with
existing channel and feature selection methods, the results
show that the method proposed is more suitable for selecting
a subset of fused feature of the EEG signal, as well as being
more stable and faster. It can also select a subset which ismore
relevant to the classification, and the test accuracy obtained
on the data used from international BCI Competition IV
reached 84.72%. This method is a good choice for future
research in pattern recognition topics, such as speech recog-
nition, face recognition, gene classification, remote sensing
image recognition, and medical image recognition.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the Projects 61273019, 61473339
supported by the National Natural Science Foundation of
China, the Project 2014M561202 funded by China Postdoc-
toral Science Foundation, the Project B2014010005 funded
by Hebei Province Postdoctoral Special Foundation, and the
project funded by Hebei Province Top Young Talents.

References

[1] J. R. Wolpaw, N. Birbaumer, W. J. Heetderks et al., “Brain-
computer interface technology: a review of the first interna-
tional meeting,” IEEE Transactions on Rehabilitation Engineer-
ing, vol. 8, no. 2, pp. 164–173, 2000.

[2] G. P. Coelho, C. C. Barbante, L. Boccato, R. R. F. Attux, J. R.
Oliveira, and F. J. Von Zuben, “Automatic feature selection for
BCI: an analysis using the davies-bouldin index and extreme
learning machines,” in Proceedings of the Annual International
Joint Conference on Neural Networks (IJCNN ’12), pp. 1–8,
Brisbane, Australia, June 2012.

[3] I. Rejer, “EEG feature selection for BCI based on motor imagi-
nary task,” Foundations of Computing andDecision Sciences, vol.
37, no. 4, pp. 283–292, 2012.

[4] I. Rejer and K. Lorenz, “Genetic algorithm and forwardmethod
for feature selection in EEG feature space,” Journal ofTheoretical
and Applied Computer Science, vol. 7, no. 2, pp. 72–82, 2013.

[5] S. Bhattacharyya, A. Sengupta, T. Chakraborti, A. Konar, andD.
N. Tibarewala, “Automatic feature selection of motor imagery
EEG signals using differential evolution and learning automata,”
Medical and Biological Engineering and Computing, vol. 52, no.
2, pp. 131–139, 2014.

[6] S. Noshadi, V. Abootalebi, M. T. Sadeghi, andM. S. Shahvazian,
“Selection of an efficient feature space for EEG-based mental
task discrimination,” Biocybernetics and Biomedical Engineer-
ing, vol. 34, no. 3, pp. 159–168, 2014.

[7] M. Arvaneh, C. Guan, K. K. Ang, and C. Quek, “Optimizing
the channel selection and classification accuracy in EEG-based
BCI,” IEEE Transactions on Biomedical Engineering, vol. 58, no.
6, pp. 1865–1873, 2011.

[8] M. Arvaneh, C. Guan, K. K. Ang, and C. Quek, “Robust EEG
channel selection across sessions in brain-computer interface
involving stroke patients,” in Proceedings of the International
Joint Conference on Neural Networks (IJCNN ’12), pp. 1–6, IEEE,
Brisbane, Australia, June 2012.

[9] L. He, Y. Hu, Y. Li, and D. Li, “Channel selection by Rayleigh
coefficientmaximization based genetic algorithm for classifying
single-trial motor imagery EEG,” Neurocomputing, vol. 121, pp.
423–433, 2013.

[10] Y. Yang, O. Kyrgyzov, J. Wiart, and I. Bloch, “Subject-specific
channel selection for classification of motor imagery electroen-
cephalographic data,” in Proceedings of the 38th IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP ’13), pp. 1277–1280, May 2013.

[11] A. Gonzalez, I. Nambu, H. Hokari, and Y. Wada, “EEG channel
selection using particle swarm optimization for the classifica-
tion of auditory event-related potentials,” The Scientific World
Journal, vol. 2014, Article ID 350270, 11 pages, 2014.

[12] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 58, no. 1, pp. 267–288, 1996.

[13] L. Meier, S. V. D. Geer, and P. Bühlman, “The group Lasso for
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