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Background and Purpose: Lower grade glioma (LGG) is one of the leading causes of
death world worldwide. We attempted to develop and validate a radiosensitivity model for
predicting the survival of lower grade glioma by using spike-and-slab lasso Cox model.

Methods: In this research, differentially expressed genes based on tumor
microenvironment was obtained to further analysis. Log-rank test was used to identify
genes in patients who received radiotherapy and patients who did not receive
radiotherapy, respectively. Then, spike-and-slab lasso was performed to select genes
in patients who received radiotherapy. Finally, three genes (INA, LEPREL1 and PTCRA)
were included in the model. A radiosensitivity-related risk score model was established
based on overall rate of TCGA dataset in patients who received radiotherapy. The model
was validated in TCGA dataset that PFS as endpoint and two CGGA datasets that OS as
endpoint. A novel nomogram integrated risk score with age and tumor grade was
developed to predict the OS of LGG patients.

Results: We developed and verified a radiosensitivity-related risk score model. The
radiosensitivity-related risk score is served as an independent prognostic indicator. This
radiosensitivity-related risk score model has prognostic prediction ability. Moreover,
the nomogram integrated risk score with age and tumor grade was established to
perform better for predicting 1, 3, 5-year survival rate.

Conclusions: This model can be used by clinicians and researchers to predict patient’s
survival rates and achieve personalized treatment of LGG.
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INTRODUCTION

Glioma is the most common malignant brain tumor in adults
and one of the leading causes of death world worldwide. Age-
adjusted incidence rates for all gliomas range from 4.67 to 5.73
per 100 000 persons (1). According to the Central Brain Tumor
Registry of the United States reports, lower grade gliomas (LGG)
consist of diffuse low grade and intermediate grade gliomas
(World Health Organization grades II and III) (2). In 2016,
presence/absence of isocitrate dehydrogenase (IDH) mutation
and 1P/19Q codeletion were introduced to classify glioma based
on histology and molecular characteristics by WHO (3). Surgical
treatment, radiotherapy, chemotherapy, and a combination of
radiotherapy and chemotherapy are the main options for the
treatment of LGG. Among them, radiotherapy is the main
constituent in the combined modality therapy, which has been
shown to increase progression-free survival and improve overall
survival for LGG patients (4).

However, heterogeneity in radiosensitivity exists among LGG
patients. Large retrospective studies of LGGpatients in theNational
Cancer Database (NCDB) have shown that radiotherapy is
associated with improved survival outcomes in patients younger
than40years of age, histological subtypesof astrocytomas, andearly
high-dose radiotherapy (5). It is desirable to determine
radiosensitive LGG patients before incorporating radiotherapy as
part of the combined modality therapy. Currently, radiosensitivity
of LGG patients can be predicted by O6-methylguanine-DNA
methyltransferase (MGMT) promoter methylation and 1p19q
codeletion status (6). Moreover, IDH mutation and 1P/19Q
codeletion were found to be associated with survival rate and can
be used to predict the response to adjuvant therapy.

Even though, the radiosensitivity cannot be fully explained by
existing biomarkers. A possible explanation could be provided by
researching the tumormicroenvironment (TME).TMEplays a vital
role in the occurrence, progression, and prognosis of tumors.
Cancer cells, immune cells, blood vessels, fibroblasts, and other
stromal cells make up the TME (7). TME and cancer therapy are
complex interplay. Treatment targeted to the TME can increase the
likelihood of a good prognosis for patients. Radiotherapy affects
tumorbloodvessels and immune cells inTME.Specifically, it causes
radiation-induced inflammation through damage to endothelial
cells and activates immunosuppressive pathways (8). Radiotherapy
can shrink the local tumor, but it canalso affectdistant lesionsdue to
the immunomodulatory effect initiated by the local tumor
microenvironment (9). However, radiosensitivity based on TME
in LGG has not been systematically discussed.

For LGG, Wen Yin et al. developed and validated an immune-
related risk score systembasedonsixhubgenes to estimate theoverall
survival of LGG patients (10). An IDH1-associated immune
prognostic signature includes four genes and a nomogram model
was established for diffuse LGG(11).Considering the radiosensitivity
of the tumor, Yi Cui et al. developed gene signatures by integrating
radiosensitivity and immune gene signatures for predicting
radiotherapy in breast cancer (12). A retrospective analysis
validated 24-gene postoperative radiotherapy outcomes score in
prostate cancer (13). But, up to now, a model for predicting the
benefit of radiotherapy in LGG has not been established.
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With the development of personalized oncology therapy,
molecular biomarkers play an important role in the prognosis of
LGG. To provide an optimal personalized treatment plan for LGG
patients, it is important to find biomarkers and establish a
radiosensitivity model based on the tumor microenvironment.
Therefore, we attempted to develop and validate a radiosensitivity
model for predicting the survival for LGG by using the spike-and-
slab lassoCoxmodel. In summary, our study providednew insights
into radiotherapy for LGG.
MATERIALS AND METHODS

Data Sources
We downloaded 515 LGG patients with clinical and 20503 gene
expression datasets from a public database The Cancer Genome
Atlas (TCGA, http://cancergenome.nih.gov/) by using the R
package TCGA-Assembler (14). Survival information of 534
LGG patients was procured from UCSC Cancer Genomics
Browser (https://xenabrowser.net/datapages/) (15). Overall
survival (OS) and progression-free survival (PFS) as endpoints.
We eliminated the samples without radiotherapy information
(n=29) and removed patients with missing survival information
(n=3). Considering each gene expression distribution, we also
screened genes. The flowchart was summarized in Figure 1.
Finally, after combining clinical information, RNAseq, and
survival information, a final total of finally total of 474 patients
with 14627 genes were obtained for the present study. We
downloaded gene expression and clinical profiles of 443 LGG
patients from CGGA693 dataset (16, 17) and 182 LGG patients
from CGGA325 dataset (18, 19) as external validation datasets
(http://www.cgga.org.cn/). The cleaned clinical data are
summarized in Supplementary Tables 1, 2.

Differential Expression Analysis and
Functional Enrichment Analysis
The Estimation of Stromal and Immune cells in Malignant
Tumor tissues using the Expression data (ESTIMATE) tool
was used to evaluate the immune and stromal scores for each
sample (20). We compared the survival rate between high-scores
and low-scores based on the median of each score. Differentially
expressed genes (DEGs) analysis was performed by using the
limma package. The cut-off criteria were adjusted p-value by false
discovery rate (FDR) <0.05 and log2 fold-change>1.5. Then,
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) were performed by using the R package
clusterProfiler (21).

Spike-and-Slab Lasso and Lasso
The least absolute shrinkage and selection operator (Lasso) is the
commonly used method to select variables. The lasso can select
and shrink variables by using the form of the Ɩ1-penalty (22).
However, the lasso can include many irrelevant predictors and
over-shrink large coefficients because of a single penalty.

The spike-and-slab formulation is the core ingredient that can
identify promising models (23). Ročková and George developed
July 2021 | Volume 11 | Article 701500
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and applied spike-and-slab Lasso (sslasso) priors to select a
variable. spike-and- slab Lasso has a two-point mixture of a
Laplace spike distribution (ѕ0) and a Laplace slab (ѕ1). ѕ0 and ѕ1
are two scale parameters of the spike distribution and slab
distribution respectively (24). Therefore, spike-and-slab Lasso
has advantages in variable selection and parameter estimation.
Recently, Tang et. extended the spike-and-slab lasso framework
to generalized linear models and Cox survival models (25, 26).
Lasso analysis was performed by using the “glmnet” R package.
The model developed by spike-and-slab Lasso was implemented
using R package BhGLM (Bayesian hierarchical generalized
linear models) (https://github.com/nyiuab/BhGLM) (27).
Frontiers in Oncology | www.frontiersin.org 3
Construction and Validation of
Radiosensitivity-Related Risk Score
After obtaining the 491DEGsbasedon tumormicroenvironment, a
log-rank test was performed to select genes in patients with
radiotherapy and patients who did not receive radiotherapy. We
obtained 111 genes for the next analysis. Spike-and-slab Lasso was
used to identifying thebest prognostic valueof these genes. Finally, a
radiosensitivity-related risk score was established utilizing spike-
and-slab Lasso regression coefficients to multiply the expression
values of genes in each patient. We used Kaplan-Meier survival
analysis to evaluate the prognostic value of this risk score.
Radiosensitive (RS) group and radioresistant (RR) group were
FIGURE 1 | The flow-chart of study design, patient selection and gene selection.
July 2021 | Volume 11 | Article 701500
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defined according to the difference in overall survival rate. The
sensitivity and specificity of the model were evaluated by plotting
time-dependent receiver operating characteristics (ROC). The
radiosensitivity-related risk score was validated in TCGA dataset
that PFS as endpoint and two CGGA datasets that OS as
the endpoint.

Development and Validation of the
Nomogram
Univariate and multivariate Cox regression analyses were
performed to validate whether the risk score has an independent
prediction factor. A nomogram to predict the 1-, 3-, and 5-years
survival probability were developed according to the results of
multivariate Cox analysis. The nomogram was validated in
TCGA dataset that PFS as endpoint and two CGGA datasets that
OS as the endpoint.

Analysis Method
All statistical analyses were performed by using the R (4.0.2). The
Kaplan-Meier curves were employed to show survival curves.
The log-rank test was used to filter radiosensitivity genes based
on the tumor microenvironment. Time-dependent ROC curves
were plotted by using “timeROC” R package. A nomogram was
generated by using the “rms” R package. Infiltration levels for the
RS and RR group were quantified by using the bioinformatics
tool “CIBERSORT” R package (20). P-value of < 0.05 was
considered to be statistically significant. All statistical tests
were two-sided.
RESULTS

Differentially Expressed Genes Based on
Tumor Microenvironment
Todetermine the gens of the TME,we calculated the Stromal score,
Immune score and ESTIMATE score by using R package
“ESTIMATE”. Whole patients were classified into two group
according to median score, respectively. As shown in
Supplementary Figure 1, there was a significant difference
between the low stromal-score group and the high stromal-score
group (OS: p=0.043, PFS: p=0.025). For the immune-score group,
the OS and PFS of the low immune-score group had significantly
better than the high immune-score group (OS: p=0.0068, PFS:
p=0.020). For the ESTIMATE score, the low ESTIMATE score
group had the better OS and PFS than the high ESTIMATE score
group (OS: p=0.029, PFS: p=0.039). We also plotted Volcano Plots
(Figure 2A). Differentially expressed genes (DEGs) analysis
between the high- and low-score groups were performed and 491
DEGs were obtained based on the TME(Figure 2B). Next, GO
analysis demonstrated that the significant biological processes were
T cell activation, leukocyte proliferation, and regulation of Tell cell
activation (Figure 2C). In theKEGGpathway, there were pathways
related to the TME, including PI3K-Akt signaling pathway, MAPK
signaling pathway, B cell receptor signaling pathway, T cell receptor
signaling pathway and PD-L1 expression and PD-1 checkpoint
pathway in cancer (Figure 2D). These biological functions
Frontiers in Oncology | www.frontiersin.org 4
documented that the DEGs played an important role in TME-
related biological procedures in LGG patients.

Construction of Sensitivity Prediction
Model for Radiotherapy
After obtaining differentially expressed genes based on the tumor
microenvironment, we performed a log-rank test to identify DEGs
associated with radiosensitivity. Whole LGG patients were divided
into the high- and low-expression level groups using the median
geneexpression level as a cutoff point. For radiotherapypatients, the
patients in the high- and low-expression group have significant
survival differences. However, there was no survival difference
between the high- and low- expression level group for non-
radiotherapy patients. Ultimately, we obtained 111 genes
associated with OS based on TME.

To construct a radiosensitivity-related risk score in the TCGA
cohort. Spike-and-slab Lasso was used to selecting genes. We fixed
the slab scale ѕ1 to 1 and varied the spike scale ѕ0 over the grid of
values: 0.0001+k×0.002, k = 0,1,2…,49, leading to 50 models. 10-
fold cross-validation was performed to select an optimal model
based on the deviance. The minimum value of deviance appears to
be 924.330 when the spike scale ѕ0 is 0.0041 (Figure 3A). Therefore,
we have chosen the prior scale (0.0041,1) for model fitting and
prediction. Finally, three genes were included in the
radiosensitivity-related risk score. They are INA (Alpha
internexin), LEPREL1 (Leprecan-like 1) and PTCRA (Pre T-cell
antigen receptor alpha). And the radiosensitivity-related risk score
is the following: Risk score=-0.4442264*INA+0.2253638*
LEPREL1+ 0.3067226*PTCRA. Each sample was calculated the
radiosensitivity-related risk score. Using the median risk score,
patients were divided into high- and low-risk groups. The low-risk
group was defined as a radiosensitive group (RS), and the high-risk
group was defined as a radioresistant group (RR). The Kaplan–
Meier plots indicated that the RS group have a significantly better
overall survival than the RR group in the patients who received
radiotherapy (p<0.001, Figure 3B). There was no difference in
overall survival between theRSgroup andRRgroup inpatientsdoes
not receive radiotherapy (p=0.098, Figure 3B). Then, we further
used ROC analysis to evaluate the predictive ability of
radiosensitivity-related risk score model (1-year AUC:0.848
(0.749-0.948); 3-years AUC:0.794 (0.720-0.869); 5-years
AUC:0.698 (0.604-0.792), Figure 3C).

We also fitted the model by the lasso approach and performed
10-fold cross-validation as a comparison. However, no genes
were screened by using lasso (Supplementary Figure 2).

Validation of Radiosensitivity Model in
Validation Sets
To validate the radiosensitivity-related risk score constructed in
the TCGA cohort, we applied the risk score formula to PFS
outcome in TCGA, CGGA693 and CGGA 325 datasets,
respectively (Figure 4). Each patient has calculated the risk
score and divided into RS group and RR group according to
median risk score. The Kaplan–Meier analysis showed patients
in RS group had a better prognosis while patients in RR group
had unfavorable outcomes in radiotherapy patients (TCGA PFI:
July 2021 | Volume 11 | Article 701500

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Du et al. Radiosensitivity Prediction Model for LGG
p<0.001, CGGA693: p<0.001, CGGA325: p<0.001Figures 4B, E,H).
ROC curve was used to evaluate the predictive accuracy for 1-, 3-,
and 5-year survival. AUC values revealed the high predictive
value of the radiosensitivity-related risk score for LGG patients.
(TCGA PFI:1-year AUC:0.726 (0.652-0.800); 3-years AUC:0.670
Frontiers in Oncology | www.frontiersin.org 5
(0.595-0.744); 5-years AUC:0.724(0.626-0.822). CGGA693:1-
year AUC:0.641(0.530-0.752); 3-years AUC:0.645(0.576-0.715);
5-years AUC:0.630(0.559-0.701). CGGA325:1-year AUC:0.740
(0.609-0.871); 3-years AUC:0.774 (0.687-0.861); 5-years
AUC:0.809 (0.733-0.884). Figures 4C, F, I).
A B

C

D

FIGURE 2 | Differentially expressed genes based on tumor microenvironment (A) Volcano Plots for DEGs. (B) Venn diagram. (C) GO enrichment analysis of the
DEGs. (D) KEGG enrichment analysis of the DEGs. BP, biological process; MF, molecular function; CC, cellular component. GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes.
July 2021 | Volume 11 | Article 701500

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Du et al. Radiosensitivity Prediction Model for LGG
The Radiosensitivity-Related Risk Score
Is an Independent Prognostic Indicator
Univariate and multivariate Cox regression was used to examine
whether the radiosensitivity-related risk score was an independent
prognostic factor. As demonstrated in Supplementary Figure 3.
The univariate analysis showed that the age (HR:1.055, 95%
Frontiers in Oncology | www.frontiersin.org 6
CI:1.039-1.071, p<0.001), tumor grade (HR:2.630,95%CI:1.687-
4.101, p=0.004) and risk score (HR:2.864, 95%CI:1.822-4.503,
p<0.001) were significantly associated with OS. After adjusted
clinical factors such as age, gender, tumor grade, race, IDH1, the
multivariate Cox regression result showed that radiosensitivity-
related risk score was an independent prognostic factor for LGG
A

B

C

FIGURE 3 | Construction of the radiosensitivity-related risk score model. (A) The solution paths and partial log-likelihood profiles of the spike-and-slab model.
(B) Kaplan–Meier curves for the RS group and RR group in patients with radiotherapy and patients did not receive radiotherapy. RR: radioresistant group. RS:
radiosensitive group. (C) Risk scores distribution of each patient in the TCGA(OS) and time-dependent ROC curve analysis of the radiosensitivity-related risk score in
the TCGA(OS). OS: Overall survival.
July 2021 | Volume 11 | Article 701500
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patients. When the OS as an endpoint, the HR was 3.657 (95%
CI:2.171-6.160, p<0.001,Figure 5A).When the PFS as an endpoint,
the HR was 2.522(HR: 2.522, 95%CI:1.627-3.908, p<0.001,
Figure 5B). In CGGA datasets, we adjusted clinical factors such
as age, gender, tumor grade, race, IDH2, and X1p19q2, the
Frontiers in Oncology | www.frontiersin.org 7
multivariate Cox regression results also demonstrated that
radiosensitivity-related risk score was an independent prognostic
factor for LGG (CGGA693: HR:1.726, 95%CI: 1.195-2.493,
p=0.004. CGGA325: HR: 2.013, 95%CI: 1.096-3.696, p=0.028.
Figures 5C, D).
A B C

D E F

G H I

FIGURE 4 | Validation of the radiosensitivity-related risk score model. (A) Risk scores distribution of each patient in the TCGA(PFS). (B) Kaplan–Meier curves for the
RS group and RR group in patients with radiotherapy from TCGA(PFS). (C)Time-dependent ROC curve analysis of the radiosensitivity-related risk score in the TCGA
(PFS). (D) Risk scores distribution of each patient in the CGGA693. (E) Kaplan–Meier curves for the RS group and RR group in patients with radiotherapy from
CGGA693. (F)Time-dependent ROC curve analysis of the radiosensitivity-related risk score in the CGGA693. (G) Risk scores distribution of each patient in the
CGGA325. (H) Kaplan–Meier curves for the RS group and RR group in patients with radiotherapy from CGGA325. (I)Time-dependent ROC curve analysis of the
radiosensitivity-related risk score in the CGGA325.
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Construction and Validation of Nomogram
The univariate andmultivariate Cox regression analyses indicated that
age, tumor grade, and risk score are correlated with OS. A nomogram
containing twoclinical factors (ageandtumorgrade)andriskscorewas
developed to predict OS rate for LGG patients (Figure 6A). From the
results ofROCanalysis inFigure 6B, theAUCsof nomogramat 1-, 3-,
5-year was 0.902, 0.872, 0.815, respectively, which was higher than a
model with a radiosensitivity-related risk score. Figure 6C
demonstrated that the AUCs of nomogram at 1-, 3-, 5-year was
0.723, 0.660 and 0.745 for TCGA(PFS). We also used two CGGA
datasets toverifyanomogram.Figure6Ddemonstratedthat theAUCs
of nomogram at 1-, 3-, 5-year was 0.591(95%CI:0.485-0.697), 0.635
(95%CI:0.566-0.705) and 0.594 (95%CI:0.522-0.667) for CGGA693.
Figure 6E demonstrated that the AUCs of nomogram at 1-, 3-, 5-year
was 0.750 (95%CI:0.617-0.883), 0.775(95%CI:0.681-0.869) and 0.807
(95%CI:0.730-0.784) for CGGA325.The risk score for the prognostic
model displayed superior predictive performance compared with the
nomogram in the CGGA325.

Infiltration Levels for RS and RR Group
We performed infiltration levels for the RS group and RR group
in LGG by employing the LM22 signature. In the process of
plotting the heat map (Figure 7A), we removed zero abundance
immune cells from more than half of the samples. Next, we
estimated mean fractions of immune cells in the RS and RR
group (Figure 7B). Tumor samples in the RS group shown more
dendritic cells resting, T cells gamma delta and T cells CD4 naïve
than the RR group. 15 tumor-infiltrating immune cells exhibit
significantly different relative proportions between the RS and
RR group Figure 7C.
Frontiers in Oncology | www.frontiersin.org 8
DISCUSSION

Treatments of LGG include radiotherapy, chemotherapy and surgery.
Fan Wu et. identified immune-related subtypes to select optimally
patients suffering from LGG responsive to immunotherapy (28). A
retrospective study suggested MRI feature that cyst formation on
preoperative MR images was used to predict a favorable prognosis in
patients with LGG (29). In a study of more than 1, 0000 people with
LGG, researchers noted radiotherapy improved survival outcomes (5).
However, the optimal radiotherapy for a particular patient based on
individual symptoms and the risk of treatment-induced toxicity
remains unclear. Advances have been made in biomarkers that
predict response to treatment. Despite the beneficial effects of
radiotherapy in LGG patients, this treatment has some significant
side effects that should not be disregarded. Therefore, it is important to
select biomarkers that can be used to screen radiosensitivity patients.

In this study, we obtained differentially expressed genes based on
tumor microenvironment by calculating Stromal score, Immune
Score and ESTIMATE Score. Then, we obtained DEGs and
performed GO and KEGG. The log-rank test was used to identify
genes associated in patients who received radiotherapy and patients
who did not receive radiotherapy, respectively. Spike-and-slab Lasso
was used to selecting genes. Finally, three genes (INA, LEPREL1, and
PTCRA) are included in the model. A radiosensitivity-related risk
score model was established based on the overall rate of TCGA
dataset in patients who received radiotherapy. And we validated this
model with TCGA dataset and two CGGA datasets. This
radiosensitivity-related risk score model has prognostic prediction
ability and is an independent prognostic indicator. A novel
nomogram integrated risk score with age and tumor grade was
A B

C D

FIGURE 5 | Forest plots of multivariate Cox regression. (A) Forest plots of multivariate Cox regression in TCGA(OS). (B) Forest plots of multivariate Cox regression
in TCGA(PFS). (C) Forest plots of multivariate Cox regression in CGGA693. (D) Forest plots of multivariate Cox regression in CGGA325.
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developed topredict theOSofLGGpatients.Thenomogramwasalso
validated in two CGGA datasets. According to the radiosensitivity-
related risk score and nomogram, clinicians can able to identify a
group of patients who are better benefit from radiotherapy and then
can predict the 1-, 3-, and 5-years OS of LGG.

The three genes included in our radiosensitivity-related risk
score model were INA, LEPREL1, and PTCRA. The INA gene
encodes an intermediatefilament involved inneurogenesis.a- is the
fourth subunit of neurofilaments in the adult central nervous
Frontiers in Oncology | www.frontiersin.org 9
system (30). INA is overexpressed mostly in oligodendroglia
phenotype gliomas and correlated with better PFS and OS (31).
INA expression on immunohistochemistry in anaplastic gliomas
showed a significant positive correlation with 1p/19q codeletion
and can replace to some extent 1p/19q (32, 33). INA gene
methylation is associated with the progression of colon adenoma
(34)and gastroenteropancreatic neuroendocrine neoplasms (35).
LEPREL1 similarity to the Leprecan family of proteoglycans and as
a 3.4 kb transcript encoding an 80 kDa protein (36).Many pieces of
A

B C

D E

FIGURE 6 | Construction and validation of nomogram model. (A) Nomogram model for predicting the probability of 1-, 3-, and 5-year OS in LGG. (B) Time-dependent
ROC curve analyses of the nomogram model in the TCGA(OS). (C) Time-dependent ROC curve analyses of the nomogram model in the TCGA(PFS). (D) Time-dependent
ROC curve analyses of the nomogram model in the CGGA693. (E) Time-dependent ROC curve analyses of the nomogram model in the CGGA325.
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evidence shown that LEPREL1 was associated with ophthalmic
diseases such as high myopia and lyens subluxation (37–39). For
cancer, LEPREL1 may be a potential tumor suppressor gene by
inhibiting HCC cell proliferation (40). LEPREL1 was methylation
inactivation of tumor suppressor gene and involved in the
pathogenesis of breast cancer (41). PTCRA participates in cancer-
related signaling pathways. Research has shown that variation of
PTCRA may be related to the prognosis of patients with chronic
myelogenous leukemia (42). Unfortunately, we did not find a
correlation between PTCRA gene and LGG.
Frontiers in Oncology | www.frontiersin.org 10
There is growing evidence that the identification of prognostic
factors is important for the optimal treatment of LGGpatients.Han
Sang Kim et al. used the NCI-60 cancer cell line to identify 31-gene
signature of radiosensitivity from four different microarrays (43).
This signature was verified in breast cancer (44), and low-grade
glioma (45). Gene signatures have been successfully used in various
cancer types to develop prognostic and predictive models that
benefit patients. We developed a radiosensitivity-related risk score
model to predict the benefit of radiotherapy in LGG. This study
showed that in independent validation cohorts that radiosensitivity
A B

C

FIGURE 7 | Infiltration levels for RS and RR group. (A) Heat map of infiltration cells in RS and RR group. (B) Bar graphs of mean percentage of immune cells in RS
and RR group. (C) Violin plots illustrating the relative proportions of the 15 TIICs exhibiting significantly different infiltrating degree in RS and RR group. RR,
radioresistant group. RS, radiosensitive group. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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patients had significant survival benefits from radiotherapy,
whereas there was no difference between RS group and RR group
in patients who did not receive radiotherapy. Two studies
researched prediction of radiotherapy in prostate cancer (13)and
breast cancer (12). They matched patients in the entire cohort and
each biomarker-defined group, respectively. In prostate cancer,
researchers compared the radiotherapy patients and no
radiotherapy patients in high- and low-score. Recently, Xing
Chen et al. developed and validated a six gene signature for breast
cancer radiotherapy (46). In this article, theyused theKaplan-Meier
curve tocomparehigh- and low-score inradiotherapygroup. Inour
study, the definition of radiosensitivity is that patients receiving
radiotherapy, this subgroup patients obtained significantly more
survival benefit than patients in another subgroup.Moreover, there
were no differences between the two subgroups in patients who did
not receive radiotherapy.

Selecting genes induced in the model plays an important role in
establishingapredictionmodel.Researchers usually screengenesby
using Cox regression analysis, Lasso Cox regression method,
random forest algorithm and other methods. In our study, Spike-
and-slab Lasso and Lasso were used to selecting genes. Results have
shown that three geneswere selected by using spike-and-slab Lasso.
However, we were unable to screen for the gene with Lasso. Spike-
and-slab Lasso can shrink many coefficients exactly to zero and
select variables similar to the lasso. Spike-and-slab Lasso has the
advantage of diminishing the estimation bias of Lasso by yielding
weak shrinkage on important predictors and strong shrinkage on
irrelevant predictors (25). The spike-and-slab Lasso method to
select has been applied successfully in LGG real data. Our results
demonstrated that advantages of spike-and-slab Lasso in screening
variables compared with Lasso.

We developed and verified a radiosensitivity-related risk score
model. Next, weperformedROCanalysis to compare the predictive
ability of a risk score model. We compared the radiosensitivity-
related risk scoremodel andnomogram, the results showed that the
AUC of the nomogram was not significantly improved compared
with a radiosensitivity-related risk score model.

Jun Su et al. constructed a prognostic risk score model (Model 1)
based on eight TME-related genes using co-expression network
analysis (WGCNA) and lasso (47). This model had potential value
for predicting the sensitivity of LGG patients to radio- and
chemotherapy. We both obtained the immune score and the
stromal score by ESTIMATE algorithm. However, we obtained
the TME related gene by using DEGs instead of WGCNA. We used
the sslassomethod to screen genes and developed the radiosensitivity
prediction model in patients who received radiotherapy. Jun Su et al.
constructed aprognostic risk scoremodel inwhole patients.Wen Jing
Zeng et al. constructed a survival risk score system (Model 2) based
identify prognostic genes associated with promoter methylation by
using Cox proportional hazards regression analysis (48). This three-
gene signature was validated in CGGA and performed stratified
survival analysis. However. this model was not applied to
radiosensitivity. Next, we compared these two models in patients
who received radiotherapy and patients who not received
radiotherapy. As shown in Supplementary Figure 4, Kaplan-Meier
curves demonstrated that low-risk group had longer OS than high-
Frontiers in Oncology | www.frontiersin.org 11
risk group both in patients who underwent radiotherapy and patients
whowere not undergoing radiotherapy.Ourmodel took into account
not only people who received radiotherapy but also people who did
not receive radiotherapy. Kaplan-Meier plots indicated that the RS
group have a significantly better overall survival than the RR group in
the patients who received radiotherapy (p<0.001, Figure 3B). There
was no difference in overall survival between the RS group and RR
group in patients does not receive radiotherapy (p=0.098,Figure 3B).
Therefore, our model has better potential to identify RS and
RR groups.

Our study provides new insights into the radiotherapy
therapies for LGG. The main strength of this study is the
method of selecting genes. We applied spike-and-slab Lasso to
select genes different from Cox regression and Lasso. The
radiosensitivity-related model can identify patients most likely
to benefit from radiotherapy. However, a limitation of our study
is that this is a retrospective study, and the models should be
further confirmed by prospective studies.

In conclusion, the radiosensitivity-related score is an
independent prognostic indicator. Patients with LGG can be
divided into RS and RR groups. The patients in the RS group are
more likely to benefit from radiotherapy. This model can be used
by clinicians and researchers to predict patient’s survival rates
and achieve personalized treatment of LGG.
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radiotherapy in model1. (B)Kaplan–Meier curves for the low riskscore group and
high riskscore group in patients with radiotherapy and patients did not receive
radiotherapy in model2.

Supplementary Table 1 | Basic patient characteristics in TCGA dataset.

Supplementary Table 2 | Basic patient characteristics in CGGA693 and
CGGA325 datasets.
REFERENCES

1. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, et al. The
Epidemiology of Glioma in Adults: A “State of the Science” Review. Neuro
Oncol (2014) 16:896–913. doi: 10.1093/neuonc/nou087

2. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, et al.
CBTRUS Statistical Report: Primary Brain and Central Nervous System
Tumors Diagnosed in the United States in 2006-2010. Neuro Oncol (2013)
15 Suppl 2:ii1–56. doi: 10.1093/neuonc/not151

3. Wesseling P, Capper D. WHO 2016 Classification of Gliomas. Neuropathol
Appl Neurobiol (2018) 44:139–50. doi: 10.1111/nan.12432

4. Wang TJC, Mehta MP. Low-Grade Glioma Radiotherapy Treatment and
Trials. Neurosurg Clin N Am (2019) 30:111–8. doi: 10.1016/j.nec.2018.08.008

5. Nunna RS, Khalid S, Ryoo JS, Sethi A, Byrne RW, Mehta AI. Radiotherapy in
Adult Low-Grade Glioma: Nationwide Trends in Treatment and Outcomes.
Clin Transl Oncol (2020) 23(3):628–37. doi: 10.1007/s12094-020-02458-9

6. Chen R, Ravindra VM, Cohen AL, Jensen RL, Salzman KL, Prescot AP, et al.
Molecular Features Assisting in Diagnosis, Surgery, and Treatment Decision
Making in Low-Grade Gliomas. Neurosurg Focus (2015) 38:E2. doi: 10.3171/
2015.1.FOCUS14745

7. Yang LV. Tumor Microenvironment and Metabolism. Int J Mol Sci (2017) 18
(12):2729. doi: 10.3390/ijms18122729

8. Jarosz-Biej M, Smolarczyk R, Cichon T, Kulach N. Tumor Microenvironment
as A “Game Changer” in Cancer Radiotherapy. Int J Mol Sci (2019) 20
(13):3212. doi: 10.3390/ijms20133212

9. Ozpiskin OM, Zhang L, Li JJ. Immune Targets in the Tumor
Microenvironment Treated by Radiotherapy. Theranostics (2019) 9:1215–
31. doi: 10.7150/thno.32648

10. YinW, Jiang X, Tan J, Xin Z, ZhouQ, ZhanC, et al. Development andValidation
of a Tumor Mutation Burden-Related Immune Prognostic Model for Lower-
Grade Glioma. Front Oncol (2020) 10:1409. doi: 10.3389/fonc.2020.01409

11. DengX,LinD,ChenB,ZhangX,XuX,YangZ, et al.Development andValidation
of an IDH1-Associated Immune Prognostic Signature for Diffuse Lower-Grade
Glioma. Front Oncol (2019) 9:1310. doi: 10.3389/fonc.2019.01310

12. Cui Y, Li B, Pollom EL, Horst KC, Li R. Integrating Radiosensitivity and Immune
Gene Signatures for Predicting Benefit of Radiotherapy in Breast Cancer. Clin
Cancer Res (2018) 24:4754–62. doi: 10.1158/1078-0432.CCR-18-0825

13. Zhao SG, Chang SL, Spratt DE, Erho N, YuM, Ashab HA-D, et al. Development
andValidation of a 24-GenePredictor ofResponse toPostoperativeRadiotherapy
in Prostate Cancer: A Matched, Retrospective Analysis. Lancet Oncol (2016)
17:1612–20. doi: 10.1016/S1470-2045(16)30491-0

14. Zhu Y, Qiu P, Ji Y. TCGA-Assembler: Open-Source Software for Retrieving
and Processing TCGA Data. Nat Methods (2014) 11:599–600. doi: 10.1038/
nmeth.2956

15. Kuhn RM, Haussler D, Kent WJ. The UCSC Genome Browser and Associated
Tools. Brief Bioinform (2013) 14:144–61. doi: 10.1093/bib/bbs038
16. Wang Y, Qian T, You G, Peng X, Chen C, You Y, et al. Localizing Seizure-
Susceptible Brain Regions Associated With Low-Grade Gliomas Using Voxel-
Based Lesion-SymptomMapping. Neuro Oncol (2015) 17:282–8. doi: 10.1093/
neuonc/nou130

17. Liu X, Li Y, Qian Z, Sun Z, Xu K, Wang K, et al. A Radiomic Signature as a non-
Invasive Predictor of Progression-Free Survival in Patients With Lower-Grade
Gliomas. NeuroImage Clin (2018) 20:1070–7. doi: 10.1016/j.nicl.2018.10.014

18. Bao ZS, Chen HM, Yang MY, Zhang CB, Yu K, Ye WL, et al. RNA-Seq of 272
Gliomas Revealed a Novel, Recurrent PTPRZ1-MET Fusion Transcript in
Secondary Glioblastomas. Genome Res (2014) 24:1765–73. doi: 10.1101/
gr.165126.113

19. Zhao Z, Meng F, Wang W, Wang Z, Zhang C, Jiang T. Comprehensive RNA-
Seq Transcriptomic Profiling in the Malignant Progression of Gliomas. Sci
Data (2017) 4:170024. doi: 10.1038/sdata.2017.24

20. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia
W, et al. InferringTumourPurity andStromal and ImmuneCellAdmixtureFrom
Expression Data. Nat Commun (2013) 4:2612. doi: 10.1038/ncomms3612

21. Yu G, Wang LG, Han Y, He QY. Clusterprofiler: An R Package for Comparing
Biological Themes Among Gene Clusters. OMICS (2012) 16:284–7. doi:
10.1089/omi.2011.0118

22. Tibshirani R. Regression Shrinkage and Selection via the Lasso: A
Retrospective. J R Stat Soc: Ser B (Stat Methodol) (2011) 73:267–88. doi:
10.1111/j.1467-9868.2011.00771.x
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24. Ročková V, George EI. Bayesian Penalty Mixing: The Case of a Non-Separable
Penalty. Switzerland: Springer International Publishing (2016). doi: 10.1007/
978-3-319-27099-9_11

25. Tang Z, Shen Y, Zhang X, Yi N. The Spike-And-Slab Lasso Generalized Linear
Models for Prediction and Associated Genes Detection. Genetics (2017)
205:77–88. doi: 10.1534/genetics.116.192195

26. Tang Z, Shen Y, Zhang X, Yi N. The Spike-and-Slab Lasso Cox Model for
Survival Prediction and Associated Genes Detection. Bioinformatics (2017)
33:2799–807. doi: 10.1093/bioinformatics/btx300

27. Yi N, Tang Z, Zhang X, Guo B. BhGLM: Bayesian Hierarchical GLMs and
Survival Models, With Applications to Genomics and Epidemiology.
Bioinformatics (2019) 35:1419–21. doi: 10.1093/bioinformatics/bty803

28. Wu F, Wang ZL, Wang KY, Li GZ, Chai RC, Liu YQ, et al. Classification of
Diffuse Lower-Grade Glioma Based on Immunological Profiling. Mol Oncol
(2020) 14:2081–95. doi: 10.1002/1878-0261.12707

29. Deng L, Shen L, Shen L, Zhao Z, Peng Y, Liu H, et al. Prognostic Value of
Magnetic Resonance Imaging Features in Low-Grade Gliomas. Biosci Rep
(2019) 39(6):BSR20190544. doi: 10.1042/BSR20190544

30. Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments and Neurofilament
Proteins in Health and Disease. Cold Spring Harb Perspect Biol (2017) 9(4):
a018309. doi: 10.1101/cshperspect.a018309
July 2021 | Volume 11 | Article 701500

https://www.frontiersin.org/articles/10.3389/fonc.2021.701500/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.701500/full#supplementary-material
https://doi.org/10.1093/neuonc/nou087
https://doi.org/10.1093/neuonc/not151
https://doi.org/10.1111/nan.12432
https://doi.org/10.1016/j.nec.2018.08.008
https://doi.org/10.1007/s12094-020-02458-9
https://doi.org/10.3171/2015.1.FOCUS14745
https://doi.org/10.3171/2015.1.FOCUS14745
https://doi.org/10.3390/ijms18122729
https://doi.org/10.3390/ijms20133212
https://doi.org/10.7150/thno.32648
https://doi.org/10.3389/fonc.2020.01409
https://doi.org/10.3389/fonc.2019.01310
https://doi.org/10.1158/1078-0432.CCR-18-0825
https://doi.org/10.1016/S1470-2045(16)30491-0
https://doi.org/10.1038/nmeth.2956
https://doi.org/10.1038/nmeth.2956
https://doi.org/10.1093/bib/bbs038
https://doi.org/10.1093/neuonc/nou130
https://doi.org/10.1093/neuonc/nou130
https://doi.org/10.1016/j.nicl.2018.10.014
https://doi.org/10.1101/gr.165126.113
https://doi.org/10.1101/gr.165126.113
https://doi.org/10.1038/sdata.2017.24
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1111/j.1467-9868.2011.00771.x
https://doi.org/10.1080/01621459.2013.869223
https://doi.org/10.1007/978-3-319-27099-9_11
https://doi.org/10.1007/978-3-319-27099-9_11
https://doi.org/10.1534/genetics.116.192195
https://doi.org/10.1093/bioinformatics/btx300
https://doi.org/10.1093/bioinformatics/bty803
https://doi.org/10.1002/1878-0261.12707
https://doi.org/10.1042/BSR20190544
https://doi.org/10.1101/cshperspect.a018309
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Du et al. Radiosensitivity Prediction Model for LGG
31. Suh JH, Park CK, Park SH. Alpha Internexin Expression Related With
Molecular Characteristics in Adult Glioblastoma and Oligodendroglioma.
J Korean Med Sci (2013) 28:593–601. doi: 10.3346/jkms.2013.28.4.593

32. Figarella-Branger D, d.P. Maues A, Colin C, Bouvier C. Histomolecular
Classification of Adult Diffuse Gliomas: The Diagnostic Value of
Immunohistochemical Markers. Rev Neurol (2011) 167:683–90. doi:
10.1016/j.neurol.2011.07.006

33. Rajmohan KS, Sugur H, Shwetha SD, Pandey P, Santosh V. Alpha Internexin:
A Surrogate Marker for 1p/19q Codeletion and Prognostic Marker in
Anaplastic (WHO Grade III) Gliomas. Neurol India (2020) 68:832. doi:
10.4103/0028-3886.293453

34. Li Y, Bai L, Yu H, Cai D, Luo Y. Epigenetic Inactivation of a-Internexin
Accelerates Microtubule Polymerization in Colorectal Cancer. Cancer Res
(2020) 80:canres.1590.2020. doi: 10.1158/0008-5472.CAN-20-1590

35. Wang Y, Chen Y, Li X, Hu W, Zhang Y, Chen L, et al. Loss of Expression and
Prognosis Value of Alpha-Internexin inGastroenteropancreaticNeuroendocrine
Neoplasm. BMC Cancer (2018) 18:691. doi: 10.1186/s12885-018-4449-8

36. Jarnum S, Kjellman C, Darabi A, Nilsson I, Edvardsen K, Aman P. LEPREL1,
a Novel ER and Golgi Resident Member of the Leprecan Family. Biochem
Biophys Res Commun (2004) 317:342–51. doi: 10.1016/j.bbrc.2004.03.060

37. Mordechai S, Gradstein L, Pasanen A, Ofir R, El Amour K, Levy J, et al. High
Myopia Caused by a Mutation in LEPREL1, Encoding Prolyl 3-Hydroxylase 2.
Am J Hum Genet (2011) 89:438–45. doi: 10.1016/j.ajhg.2011.08.003

38. Guo H, Tong P, Peng Y, Wang T, Liu Y, Chen J, et al. Homozygous Loss-of-
Function Mutation of the LEPREL1 Gene Causes Severe non-Syndromic High
Myopia With Early-Onset Cataract. Clin Genet (2014) 86:575–9. doi: 10.1111/
cge.12309

39. Khan AO, Aldahmesh MA, Alsharif H, Alkuraya FS. Recessive Mutations in
LEPREL1 Underlie a Recognizable Lens Subluxation Phenotype. Ophthalmic
Genet (2015) 36:58–63. doi: 10.3109/13816810.2014.985847

40. Wang J,XuX,LiuZ,WeiX,ZhuangR,LuD, et al. LEPREL1Expression inHuman
Hepatocellular Carcinoma and Its Suppressor Role on Cell Proliferation.
Gastroenterol Res Pract (2013) 2013:109759. doi: 10.1155/2013/109759

41. Shah R, Smith P, Purdie C, Quinlan P, Baker L, Aman P, et al. The Prolyl
3-Hydroxylases P3H2 and P3H3 Are Novel Targets for Epigenetic Silencing in
Breast Cancer. Br J Cancer (2009) 100:1687–96. doi: 10.1038/sj.bjc.6605042

42. Lavrov AV, Chelysheva EY, Smirnikhina SA, Shukhov OA, Turkina AG,
Adilgereeva EP, et al. Frequent Variations in Cancer-Related Genes may Play
Prognostic Role in Treatment of Patients With Chronic Myeloid Leukemia.
BMC Genet (2016) 17 Suppl 1:14. doi: 10.1186/s12863-015-0308-7
Frontiers in Oncology | www.frontiersin.org 13
43. Kim HS, Kim SC, Kim SJ, Park CH, Jeung HC, Kim YB, et al. Identification of
a Radiosensitivity Signature Using Integrative Metaanalysis of Published
Microarray Data for NCI-60 Cancer Cells. BMC Genomics (2012) 13:348.
doi: 10.1186/1471-2164-13-348

44. Jang BS, Kim IA. A Radiosensitivity Gene Signature and PD-L1 Status Predict
Clinical Outcome of Patients With Invasive Breast Carcinoma in The Cancer
Genome Atlas (TCGA) Dataset. Radiother Oncol (2017) 124:403–10. doi:
10.1016/j.radonc.2017.05.009

45. Jang BS, Kim IA. A Radiosensitivity Gene Signature and PD-L1 Predict the
Clinical Outcomes of Patients With Lower Grade Glioma in TCGA. Radiother
Oncol (2018) 128:245–53. doi: 10.1016/j.radonc.2018.05.003

46. Chen X, Zheng J, Zhuo ML, Zhang A, You Z. A Six-Gene-Based Signature for
Breast Cancer Radiotherapy Sensitivity Estimation. Biosci Rep (2020) 40(6):
BSR20190544. doi: 10.1042/BSR20202376

47. Su J, Long W, Ma Q, Xiao K, Li Y, Xiao Q, et al. Identification of a Tumor
Microenvironment-Related Eight-Gene Signature for Predicting Prognosis in
Lower-Grade Gliomas. Front Genet (2019) 10:1143. doi: 10.3389/
fgene.2019.01143

48. Zeng WJ, Yang YL, Liu ZZ, Wen ZP, Chen YH, Hu XL, et al. Integrative
Analysis of DNA Methylation and Gene Expression Identify a Three-Gene
Signature for Predicting Prognosis in Lower-Grade Gliomas. Cell Physiol
Biochem (2018) 47:428–39. doi: 10.1159/000489954

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Du, Cai, Yan, Li, Zhang, Yang, Cao, Yi and Tang. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
July 2021 | Volume 11 | Article 701500

https://doi.org/10.3346/jkms.2013.28.4.593
https://doi.org/10.1016/j.neurol.2011.07.006
https://doi.org/10.4103/0028-3886.293453
https://doi.org/10.1158/0008-5472.CAN-20-1590
https://doi.org/10.1186/s12885-018-4449-8
https://doi.org/10.1016/j.bbrc.2004.03.060
https://doi.org/10.1016/j.ajhg.2011.08.003
https://doi.org/10.1111/cge.12309
https://doi.org/10.1111/cge.12309
https://doi.org/10.3109/13816810.2014.985847
https://doi.org/10.1155/2013/109759
https://doi.org/10.1038/sj.bjc.6605042
https://doi.org/10.1186/s12863-015-0308-7
https://doi.org/10.1186/1471-2164-13-348
https://doi.org/10.1016/j.radonc.2017.05.009
https://doi.org/10.1016/j.radonc.2018.05.003
https://doi.org/10.1042/BSR20202376
https://doi.org/10.3389/fgene.2019.01143
https://doi.org/10.3389/fgene.2019.01143
https://doi.org/10.1159/000489954
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Development and Validation of a Radiosensitivity Prediction Model for Lower Grade Glioma Based on Spike-and-Slab Lasso
	Introduction
	Materials and Methods
	Data Sources
	Differential Expression Analysis and Functional Enrichment Analysis
	Spike-and-Slab Lasso and Lasso
	Construction and Validation of Radiosensitivity-Related Risk Score
	Development and Validation of the Nomogram
	Analysis Method

	Results
	Differentially Expressed Genes Based on Tumor Microenvironment
	Construction of Sensitivity Prediction Model for Radiotherapy
	Validation of Radiosensitivity Model in Validation Sets
	The Radiosensitivity-Related Risk Score Is an Independent Prognostic Indicator
	Construction and Validation of Nomogram
	Infiltration Levels for RS and RR Group

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


