Corrigendum

Nanopore sequencing of native adeno-associated virus (AAV) single-stranded DNA using a transposase-based rapid protocol

Marco T. Radukic^{1,†}, David Brandt^{2,†}, Markus Haak², Kristian M. Müller^{1,*} and Jörn Kalinowski^{2,*}

¹Faculty of Technology, Bielefeld University, D-33501 Bielefeld, Germany and ²Center for Biotechnology (CeBiTec), Bielefeld University, D-33501 Bielefeld, Germany

NAR Genomics and Bioinformatics 2020;2(4). https://doi.org/10.1093/nargab/lqaa074

In the above article, Table 1 has been updated as follows online:

Previous version

 Table 1. BLASTn read assignments and qPCR results for two independently produced and sequenced rAAV samples (sample 1 and 2).

A nanopore BLAST bins as	Run 1 (sample 1)		Run 2 (sample 2)	
Group/threshold	>500 nt	>1000 nt	>500 nt	>1000 nt
rAAV genome	97.00%	97.34%	97.91%	97.96%
pITR	1.11%	1.29%	0.97%	1.25%
pRepCap	0.47%	0.49%	0.23%	0.27%
pHelper	0.25%	0.24%	0.17%	0.17%
hg38	1.18%	0.65%	0.72%	0.35%
B qPCR (and insilico fragme	entation) results as percent of total mea	surable with 95% confidence interval		
Primer	Sample 1	Sample 2	(in silico)	
Bla	$2.0 \pm 0.3\%$	$2.9 \pm 0.4\%$	(1.79%)	
Rep	$0.22 \pm 0.04\%$	$0.24 \pm 0.04\%$	(0.13%)	
E4	$0.062 \pm 0.009\%$	$0.08 \pm 0.01\%$	(0.10%)	

A: Total contamination levels in both samples are independent of the read-quality thresholds tested here, however the individual share of contaminations shifts towards higher amounts of human genomic sequences for the lower threshold. B: qPCR results lay in comparable ranges to the sequencing results, although a larger discrepancy is seen for the second sample in terms of *bla* and for *rep* gene sequences in general. The *in silico* read fragmentation and binning to qPCR targets was performed for reads from run 2.

© The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License

(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

^{*}To whom correspondence should be addressed. Kristian M. Müller. Tel: +49 521 106 6323; Fax: +49 521 106 156318; Email: kristian@syntbio.net Correspondence may also be addressed to Jörn Kalinowski. Tel: +49 521 106 8756; Fax: +49 521 106 89041; Email: joern@cebitec.uni-bielefeld.de [†]The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

Corrected version

A: nanopore BLAST bins as	percent of total hits Run 1 (sa	Run 2 (sample 2)		
Group\threshold	>500 nt	>1000 nt	>500 nt	>1000 nt
rAAV genome	97.00%	97.34%	97.91%	97.96%
pITR	1.11%	1.29%	0.97%	1.25%
pRepCap	0.47%	0.49%	0.23%	0.27%
pHelper	0.25%	0.24%	0.17%	0.17%
hg38	1.18%	0.65%	0.72%	0.35%
B: qPCR (and <i>insilico</i> fragm	entation) results as percent of total mea	asurable with 95% confidence interva	1	
Primer	Sample 1	Sample 2	(in silico)	
bla	$2.0 \pm 0.3\%$	$2.9 \pm 0.4\%$	(1.79%)	
Rep	$0.22 \pm 0.04\%$	$0.24 \pm 0.04\%$	(0.13%)	
E4	$0.062 \pm 0.009\%$	$0.08 \pm 0.01\%$	(0.10%)	

A: Total contamination levels in both samples are independent of the read-quality thresholds tested here, however the individual share of contaminations shifts towards higher amounts of human genomic sequences for the lower threshold. B: qPCR results lay in comparable ranges to the sequencing results, although a larger discrepancy is seen for the second sample in terms of *bla* and for *rep* gene sequences in general. The *in silico* read fragmentation and binning to qPCR targets was performed for reads from run 2.