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SUMMARY

Genetically diverse mouse populations are powerful tools for characterizing the regulation of 

the proteome and its relationship to whole-organism phenotypes. We used mass spectrometry to 

profile and quantify the abundance of 6,798 proteins in liver tissue from mice of both sexes across 

58 Collaborative Cross (CC) inbred strains. We previously collected liver proteomics data from 

the related Diversity Outbred (DO) mice and their founder strains. We show concordance across 

the proteomics datasets despite being generated from separate experiments, allowing comparative 

analysis. We map protein abundance quantitative trait loci (pQTLs), identifying 1,087 local and 

285 distal in the CC mice and 1,706 local and 414 distal in the DO mice. We find that regulatory 

effects on individual proteins are conserved across the mouse populations, in particular for local 

genetic variation and sex differences. In comparison, proteins that form complexes are often 

co-regulated, displaying varying genetic architectures, and overall show lower heritability and map 

fewer pQTLs. We have made this resource publicly available to enable quantitative analyses of the 

regulation of the proteome.
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Graphical abstract

In brief

Keele et al. report quantitative profiling of protein abundance in liver tissue from genetically 

diverse mouse populations, powerful resources for characterizing protein regulation. They map 

QTLs for individual proteins and complexes and find conservation of local genetic effects and sex 

differences for individual proteins across inbred and outbred mice.

INTRODUCTION

Protein abundance in cells is regulated at multiple levels, including transcriptional and 

various post-transcriptional, translational, and protein degradation mechanisms.3 Each of 

these regulatory mechanisms can be influenced by genetic variation, as observed across a 

range of organisms, including Arabidopsis,4 yeast,5,6 mice,1,7–9 and humans.10–14 Genetic 

effects on protein abundance can be broadly divided into two classes: local and distal. 

Local variation in the vicinity of the coding gene typically influences protein abundance by 

altering the rate of transcription or stability of the transcript.15 Distal genetic variation at loci 

far from the coding gene typically influences later stages of regulation, often acting through 

a diffusible intermediate such as another protein. Other modes of regulation are possible, 

and the local versus distal distinction is a useful but imperfect indicator for distinguishing 

translational from post-translational regulation. The complexity of genetic regulation is 

compounded for proteins that form multi-unit complexes because stoichiometry can impose 

varying degrees of constraint.1,16–19 In each genetic context, proteins can be influenced by a 
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single locus (monogenic) or many (multigenic to polygenic), and effects can be additive or 

dominant and may involve epistatic interactions with other loci.

Resource populations with high levels of genetic diversity can be used to identify and 

characterize the genetic loci that affect protein abundance. The Collaborative Cross 

(CC)20,21 and Diversity Outbred (DO)22 mouse populations are two genetic resource 

populations that are descendant from a common set of eight inbred strains (i.e., the 

founder strains; short names in parentheses): A/J (AJ), C57BL/6J (B6), 129S1/SvImJ 

(129), NOD/ShiLtJ (NOD), NZO/HlLtJ (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK), and 

WSB/EiJ (WSB). The founder strains represent three subspecies of the house mouse, Mus 
musculus,23,24 and encompass genetic variation from across laboratory and wild mice. 

Each DO mouse is genetically unique with high levels of heterozygosity and low linkage 

disequilibrium (LD) that support fine mapping of genetic variants.25–28 CC mice consist 

of more than 60 inbred strains that are homozygous at most loci (>99%).21,29,30 They 

have larger LD blocks and thus lower mapping resolution because of fewer outbreeding 

generations in their derivation than DO mice. The genomes of CC strains are inbred and thus 

replenishable, enabling repeated measurements of genetically identical mice31,32 within and 

across experiments as well as characterization of strain-specific phenotypes.33–35 CC strains 

can model human diseases; examples include colitis,36 susceptibility to Ebola infection,37 

influenza A virus,38 severe acute respiratory syndrome (SARS) coronavirus,39 and peanut 

allergy.40

In this study, we quantified protein abundance in liver samples of 116 CC mice representing 

female/male pairs from 58 strains (Table S1). We previously collected proteomics data 

from the livers of 192 DO mice and 32 mice representing the eight founder strains (two 

animals of each sex per founder strain)1 (Figure 1A). Both studies employed tandem mass 

tag (TMT) multiplexed mass spectrometry (MS) but represent separate experiments with 

differences that reflect refinements in the protocols (STAR Methods), most notably use of 

a pooled bridge sample in each TMT plex for the CC. We compare sex differences and 

quantitative trait loci for protein abundance (pQTLs) between CC and DO mice, finding 

strong conservation of sex differences and local pQTLs and, to a lesser degree, distal 

pQTLs. We examine proteins that form complexes and find fewer local genetic effects. We 

highlight examples of protein complexes with diverse genetic architectures. We identify 

proteins showing unusual expression patterns in specific CC strains and associate some of 

these with de novo mutations in the CC strains and their phenotypic consequences. Our work 

demonstrates the consistency of MS proteomics data across experiments and conservation of 

the regulation of protein abundance across these resource populations.

RESULTS

Heritability and sex effects on proteins are shared across the CC, DO, and founder strains

We quantified the abundance of 6,798 proteins (Table S2) in liver tissue from 58 inbred 

CC strains, one female and one male per strain. We previously reported quantification of 

proteins from liver tissue of 192 outbred DO mice and 32 mice representing the eight 

founder strains (two per sex per strain).1 The data for DO and founder strains were re-

analyzed for this study to ensure that all data were processed consistently (STAR Methods), 
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resulting in quantification of 6,745 and 6,897 proteins (Table S2), respectively. Among the 

9,235 proteins detected in total, 4,503 were seen in all three populations (Figure 1B; Table 

S3).

We estimated protein abundance heritability (h2), which reflects the combined effects of 

genetic factors relative to the precision of protein abundance estimation (Figure 1C). 

Heritability was higher on average in the CC and founder strains compared with the DO 

strain, likely because of the combined effects of their inbred genetic architecture and 

improved precision of the MS measurement for the CC samples. Despite the differences 

in average heritability, heritability of individual proteins was correlated significantly across 

populations (Pearson correlation coefficient [r] > 0.43, p < 2.2e–16), suggesting that the 

underlying genetic factors are conserved.

Protein abundance can differ between sexes.1,18 We characterized sex effects in the CC, 

DO, and founder strains (STAR Methods; Table S3) and detected significant sex effects 

(false discovery rate [FDR] < 0.1) for 3,750 (55.2%) proteins in the CC strains, 4,520 

(67.0%) proteins in the DO mice, and 1,583 (23.0%) proteins in the founder strains. Sex-

specific differences in protein abundance were overwhelmingly in the same direction for all 

populations (Figures 1D–1F). Gene set enrichment analysis revealed that proteins related to 

ribosome, translation, and protein transport Gene Ontology (GO) terms were more abundant 

in males,18 whereas proteins related to catabolic and metabolic processes, including fatty 

acid metabolism, were more abundant in females in all populations.41

Genetic regulation of proteins is shared between the CC and DO

To identify the genetic loci that regulate variation in protein abundance, we carried out 

pQTL mapping in CC and DO mice (Table S4). To determine significant pQTLs, we first 

applied a permutation analysis42 to control the genome-wide error rate for each protein 

and then applied an FDR adjustment (FDR < 0.1) across proteins43 to establish a stringent 

detection threshold for pQTLs. Using this stringent criterion, we identified 1,087 local and 

285 distal pQTLs in CC mice and 1,706 local and 414 distal pQTLs in DO mice (Figures 

2A and 2B). We defined local pQTLs as being located within 10 Mbp of the midpoint of the 

protein-coding gene. Although this wide local window may result in some nearby but distal 

pQTLs being misclassified as local, it accounts for the large LD blocks in the CC strains 

and yields more consistent classification of local pQTLs between CC and DO mice. We also 

identified a local pQTL on the mitochondrial genome in CC mice for mt-Nd1 (Figure S1D). 

Stringent control of false positive rates can result in a high rate of false negative results. 

Therefore, to compare pQTL discovery across populations, we carried out a parallel analysis 

with more lenient FDR control (FDR < 0.5; Figures S1A and S1B).

We compared genetic effects between CC and DO mice by focusing on the 4,654 proteins 

that were detected in both populations (Figure S1C). Among 1,427 local pQTLs detected in 

either population, 636 were detected in both (Figure 2C). To determine whether the shared 

local pQTLs were driven by the same genetic variants, we compared the estimated haplotype 

effects at each pQTL (STAR Methods) and found that 628 (98.7%) were significantly 

positively correlated (FDR < 0.1; Figure 2D; Table S4). To assess whether pQTLs detected 

in only one population are population specific, we compared the haplotype effects of 
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detected pQTLs with effects estimated at the corresponding locus in the other population 

regardless of significance and found that 1,314 (92.1%) were significantly positively 

correlated (FDR < 0.1; Figure 2E). The concordance of local pQTLs also holds for lenient 

detection (Figures S1F–S1G; Table S4). Based on these analyses, we find that local genetic 

effects on proteins are highly conserved between the CC and DO populations.

The founder strains can provide additional support for local pQTLs in CC and DO mice 

(Figures S1K and S2), particularly for those that are hard to detect because of rare alleles 

in CC or DO mice (e.g., observed in three or fewer CC strains). We selected all genes with 

a rare local founder haplotype that did not have a leniently detected pQTL in CC mice, 

representing 2,439 genes. We correlated the haplotype effects estimated at the locus closest 

to the gene transcription start sites (TSSs) with the protein abundance in the founders (STAR 

Methods) and found significant positive correlation for 194 genes (FDR < 0.1). The three 

populations together provide evidence of local genetic effects at 2,905 proteins.

Of the 186 distal pQTLs detected in CC mice and 294 in DO mice, 20 were detected in both 

populations, all with significantly correlated haplotype effects (FDR < 0.1; Figure 2G; Table 

S4). Overall, the distal pQTLs are weaker than the local pQTLs,1,44 which may contribute 

to an increased rate of false negatives. By comparing haplotype effects for pQTLs that were 

detected in only one population, we identified an additional 55 shared distal pQTLs (Figure 

2H). Based on the stringent criteria, a total of 75 distal pQTLs had consistent effects of 

the total (16.3%) detected in CC or DO mice compared with 19 (0.5%) for lenient criteria 

(Figure S1J). The reduction in concordance for the lenient criteria is likely due to increased 

numbers of false positives and weak distal pQTLs, although it did uniquely identify a shared 

distal pQTL for Ercc3 (Figure S3).

Mediators of strong distal genetic effects detected in CC and DO mice are concordant

The genetic variants that drive distal pQTL are generally thought to act through diffusible 

intermediates that are under local genetic control at the pQTL. We used mediation 

analysis1,45–47 to identify candidate mediators of distal pQTLs (STAR Methods; Table 

S5). Mediation analysis is best used for prioritizing candidate mediators and, in this 

study, is limited to evaluating candidates that exert their effects through changes in protein 

abundance. Therefore, we cannot exclude the possibility of mediation by proteins that were 

not detected, by non-coding RNAs or by protein variants that affect function without altering 

abundance. For example, in this study, PGD was found to mediate a strong Akr1e1 distal 

pQTL in CC and DO mice. However, Zfp985 has been identified previously as the mediator 

based on gene expression in CC mice47 but was not detected at the protein level in this study.

We identified candidate mediators for each of the 20 shared distal pQTLs (Figure 2I), of 

which only four had best candidate mediators that differed between CC and DO mice. For 

example, TUBGCP3 is the strongest candidate mediator of the distal pQTL for Tubg1 in 

CC mice, but NAXD is the strongest candidate mediator in DO mice (Figures 2L and 2M). 

Given that Tubg1 and Tubgcp3 (as well as Tubgcp2, which also has a co-mapping distal 

pQTL) are members of the tubulin superfamily, TUBGCP3 is a strong functional candidate, 

suggesting that NAXD is likely a false positive mediator in DO mice.
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We also examined candidate mediators for all distal pQTLs that were detected (FDR 

< 0.1) in only one of the populations and evaluated the corresponding pQTL status 

(stringent, lenient, or not detected) and mediation status (e.g., same or different) in the 

other population. We found the same candidate mediator between CC and DO mice for 21 

of 460 distal pQTLs mapped across both populations, suggesting that mediation is more 

accurate for strong distal pQTLs that are detected in both populations (Figure S1L).

Drivers of variation in the co-abundance of protein complexes

Members of protein complexes exhibit varying degrees of coabundance, to which we refer 

as cohesiveness of the complex. We quantify cohesiveness as the median Pearson correlation 

between complex members.18 A high level of cohesiveness suggests that co-regulation of 

protein abundances across a complex is maintaining stoichiometry. We found that individual 

proteins that are part of a complex48–50 (Table S6) are less heritable and have fewer 

pQTLs than proteins that are not part of a complex (Figures S4A–S4D). We evaluated the 

extent to which members of protein complexes were inter-correlated as well as how genetic 

factors and sex contribute to variation in their joint abundance. To assess the contributions 

from genetic factors and sex, we performed principal-component analysis (PCA) on the 

abundances of proteins for each protein complex51 and took the first principal component 

(PC1) as a summary (STAR Methods). We then estimated heritability and the proportion of 

variation explained by sex for each complex PC1.

Protein complex cohesiveness was correlated between CC and DO mice (r = 0.68, p < 

2.2e–16) (Figures 3A and 3B), and within each population, it is correlated with complex 

heritability (r = 0.28, p = 1.2e–4 in CC mice and r = 0.12, p = 0.11 in DO mice) (Figure 

S4E), suggesting that cohesiveness reflects some degree of shared genetic regulation in CC 

mice. Complex heritability is consistently higher in CC mice than in DO mice (115 of 155 

complexes, 74.2%) and is uncorrelated with complex heritability in DO mice (r = 0.09, p = 

0.26) (Figures 3C and 3D). This lack of correlation between heritability of complexes for 

the CC and DO mice contrasts with the highly correlated heritability of individual proteins 

(r = 0.44, p < 2.2e–16). The proportion of variation in complex abundance (as summarized 

by PC1) explained by sex is correlated between CC and DO mice (r = 0.70, p < 2.2e–16; 

Figures 3E and 3F). Protein complexes that have been shown previously to have sex-specific 

abundance in DO mice,18 such as eIF2B, were confirmed in CC mice.

Genetic and stoichiometric regulation of the exosome

The exosome complex provides a striking example of complex-level genetic regulation 

(Figures 4A–4E). It had the highest complex heritability in CC mice (87.8% [81.7%–

90.8%]) but very low heritability in DO mice (0.0% [0.0%–34.8%]). Low abundance of 

EXOSC7 in the presence of a local PWK genotype in CC mice appears to be the main driver 

of exosome complex abundance. Seven CC strains are homozygous for the PWK haplotype 

at this locus, whereas in the DO cohort, there were no mice homozygous for the PWK 

haplotype (Figure S5D). Among the DO mice with one copy of the PWK haplotype, there 

is no reduction in the abundance of the exosome complex, which suggests that the PWK 

haplotype effect on Exosc7 is recessive (Figure S5E). We also note that inbred founder PWK 

mice have low EXOSC7 abundance (Figure S5F). Mediation analysis identifies EXOSC7 as 
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a candidate distal regulator of the complex as well as the functionally related genes Dis3l 
and Etf1. These two genes were not included in the complex annotations, but our findings 

suggest that they are maintained in stoichiometric balance with the annotated complex 

members. The complex heritability (with Dis3l and Etf1 now included) was 91.9%, and after 

removing the seven CC strains with the PWK haplotype at Exosc7, it was reduced but still 

high at 65.1% (Figure 4E), indicating the presence of additional genetic factors that affect 

the abundance of the exosome.

Secondary genetic effects on the chaperonin-containing T (CCT) complex

Previously we reported that the CCT complex was stoichiometrically regulated by low 

abundance of CCT6A when the NOD haplotype is present.1 The CCT complex (Figures S6) 

has high heritability in DO mice (83.2% [68.8%–99.6%]) and in CC mice (51.6% [41.6%–

65.2%]) (Figures 3C and 3D). The DO sample includes 19 (9.9%) mice homozygous for 

the NOD haplotype (Figure S6C). The CC strains, six of which are homozygous for NOD 

at the Cct6a locus (Figure S6D), replicate this distal pQTL for the complex members Cct4, 

Cct5, Cct8, and Tcp1, although CCT6a itself was not detected in the CC samples. The effect 

of the pQTL at Cct6a in CC mice drives less of the overall variation in the CCT complex. 

A secondary genetic effect mediated through CCT4 is revealed in CC mice corresponding 

to high abundances in the presence of NZO or PWK haplotypes at Cct4. The complex 

heritability (including all complex members) was 56.8%. After excluding CC strains with 

the NOD haplotype at Cct6a and NZO or PWK haplotypes at Cct4, heritability of the 

complex abundance is 44.9% (Figure S6H), indicating that, as with the exosome, additional 

genetic effects contribute to CCT complex abundance.

Independent genetic effects on the subcomplexes of the 26S proteasome

The 26S proteasome is composed of a 20S proteasome catalytic core (PSMA and 

PSMB proteins) that, in the constitutive form, incorporates subunits PSMB5, PSMB6, 

and PSMB7 and is capped by two 19S regulators (composed of the PSMC and PSMD 

proteins). The constitutive form can be modified by replacing the PSMB subunits with 

the three immunoproteasome-inducible subunits (PSMB8, PSMB9, and PSMB10) and the 

19S regulators with the 11S regulators, composed of PSME proteins52 (Figure 5A). The 

immunoproteasome is a highly efficient form of the proteasome that is predominantly, but 

not exclusively, expressed in immune cells.53

This alternation between two different forms of the proteasome is apparent in the 

correlations among the inducible and immune components in the CC, DO, and founder 

strains (Figures 5B, 5C, and 5I). Individual mice appear to predominantly express one of 

the proteasome forms, as suggested by the anti-correlation between the constitutive and 

inducible components. Across the founder strains, this dynamic appears to be regulated 

genetically, with the WSB, AJ, B6, and NZO strains expressing more immunoproteasome 

components and the other founder strains expressing more of the constitutive components 

(Figures S7). In CC and DO mice, we identified genetic variation that controls the balance 

between PSMB6 (constitutive) and PSMB9 (immunoproteasome) (Figures 5F and 5G). The 

WSB haplotype at Psmb9 drives higher PSMB9 abundance as well as lower abundance of its 

constitutive analog PSMB6, confirmed through mediation analysis (Figures 5H and 5I). The 
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Psmb9 local pQTL only appears to drive the balance between PSMB9 and PSMB6 and does 

not directly affect the other interchangeable members of the proteasome (PSMB5, PSMB7, 

PSMB8, and PSMB10), which do not map strong pQTLs. The distinct correlation patterns 

among the interchangeable components suggests that they are still co-regulated across the 

three populations.

Some of the other non-interchangeable components of the 26S proteasome are regulated by 

genetic variation independent of the Psmb9 locus. We identified a strong local pQTL for 

Psmd9 that is present in CC and DO mice and does not affect other members of the 19S 

regulator (Figures 5D and 5E), which explains the lack of cohesiveness of PSMD9 with the 

rest of the proteasome, as noted previously in these DO mice.18

Polygenic regulation of the mitochondrial ribosomal small subunit (MRSS)

The MRSS is highly cohesive in CC and DO mice (Figures 3A, 3B, 6A, and 6B). Complex 

heritability is also high in CC (73.4% [67.3%–79.1%]) and DO (44.8% [22.2%–70.6%]) 

mice. Despite its high complex heritability, we detect few pQTLs for individual members of 

the complex. One exception is Auh, which has a local pQTL in CC and DO mice (Figures 

6E and 6F). AUH is not a core member of the MRSS but has been associated with it54 and 

is included in the annotations. AUH’s local pQTL and lack of cohesion with the core MRSS 

proteins indicate that it is regulated separately from the core MRSS. Similarly, RPS15 

and PPME1 were annotated with the complex but not correlated with the core proteins, 

suggesting that they are also not co-regulated with the MRSS. MRPS27 and MRPS28, on 

the other hand, were missing from the annotations and are thus not included in Figure 6, but 

we found them to be highly cohesive with the core MRSS. For the core MRSS proteins, CC 

strains have an overall abundance that is highly strain specific, as represented in the complex 

PC1 and even for individual proteins (r = 0.82 between males and females for the complex 

PC1 and r = 0.76 for MRPS7). Furthermore, the variation across CC strains is highly 

continuous (Figures 6C and 6D). This distribution contrasts with the bimodal abundance 

pattern for the exosome complex, which is driven mostly by a single strong pQTL (Figure 

4E), suggesting that many loci with small effects influence the overall abundance of the 

MRSS.

CC strain-specific variation affects protein abundance

Inbred mouse strains accumulate mutations that can have phenotypic consequences.55–58 

New mutations have arisen and become fixed in the CC strains29,30 (Figure 1A), which may 

affect protein abundance. We confirmed functional effects on protein abundance for genes 

with CC strain-specific deletions, including the 80-kbp deletion in CC026 that includes the 

C3 coding gene and a 15-bp deletion in the Itgal gene (Figures 7A and 7B) that occurred in 

CC042 and has been shown to increase susceptibility to tuberculosis59 and Salmonella.60

We estimated strain-specific abundance levels for every protein detected in CC mice and 

identified CC strains where the male and female had a distinctly low or high abundance 

of a given protein (|Z score | > 2.5; STAR Methods), which we refer to as strain-specific 

protein outliers. In total, we identified 5,907 strain-specific protein outliers representing 

4,267 proteins across all 58 CC strains. Of these, 67 strain-specific protein outliers occur 
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in strains with a unique genetic variant in or near the coding gene.30 Furthermore, not all 

genes with a strain-specific protein outlier and matching strain-specific genetic variants were 

associated with low protein abundance, as is the case for the deletions; we observed high 

abundance associated with strain-specific variants, such as Sash1, which harbors a novel 

SNP allele in CC058 (Figure 7C).

Outlying protein abundance patterns specific to a CC strain may represent larger biological 

pathway dynamics that result from the strain’s genetic background. We defined sets of 

proteins for each strain based on having low or high strain-specific protein outliers and 

observed strain-specific enrichments for biological functions based on GO and KEGG 

pathway terms (Table S7). In CC013, we observed increased abundance in proteins related 

to the innate immune system (Figure 7D), leukocytes, and other immune system-related GO 

terms. CC013 possesses a unique SNP allele in Hcls1 that was associated with increased 

HCLS1 abundance (Figure 7E), a gene involved in myeloid leukocyte differentiation that 

may contribute to the high abundance of these immune-related proteins. During the process 

of tissue collection, it was noted that CC013 had a unique liver phenotype characterized by 

white granules throughout the tissue. We examined additional mice to confirm this (Figure 

7F) and hypothesize that the liver granules are related to an excess of immune-related 

proteins. Additional CC strains (Figures S8C–S8E) with multiple outlier proteins that 

are functionally related include CC007 (Figure 7G), which has low- and high-abundance 

proteins in mitochondrial respiratory complex I. The replenishable inbred CC strains 

capture these dynamics and allow deeper interrogation of unique strain-specific networks 

of functionally related proteins with perturbed abundance and a better understanding of their 

phenotypic consequences.

DISCUSSION

We carried out proteomics profiling of mice from the CC and DO strains and their founder 

strains. Despite the challenges imposed by separate experiments and the relative nature of 

MS proteomics,61 the data provided consistent results that supported comparative analysis. 

Genetic regulation of the proteome in the liver is highly conserved across these distinct 

but related genetic reference populations. The concordance is exceptionally strong for local 

genetic regulation and sex differences but also for distal genetic effects strongly detected in 

both populations. Discordance between CC and DO mice can often be attributed to chance 

differences in allele frequencies or to dominance effects that manifest differently in the 

inbred versus outbred populations, similar to what has been observed in Drosophila for gene 

expression.62 Mediation analysis of distal pQTLs identified many of the same candidate 

mediators in CC and DO mice. Proteins that form complexes are generally less affected by 

local genetic regulation compared with other proteins. Complexes displayed a wide range of 

cohesiveness that was more highly conserved across populations than complex heritability; 

nevertheless, genetic effects on protein complexes can manifest in remarkably different 

ways. The CC strains enable discovery of extreme strain-specific abundance of individual 

proteins and of functionally related groups of proteins, which can be recaptured and studied 

further because inbred strains are replenishable.
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Implications

Protein complex members are often synthesized in proportions that are consistent with 

stoichiometric balance.17 Genetic perturbations of one or more member proteins can 

introduce imbalances that need to be compensated, typically through degradation pathways 

that recycle unassembled units of protein complexes. In this way, a genetic variant that 

severely reduces transcription of a gene and, consequently, the protein abundance of a single 

complex member can have effects that propagate through the entire complex and be detected 

as a shared distal pQTL, as was the case for the exosome and CCT complexes. At the 

other extreme, the abundance of a highly cohesive complex such as the MRSS can be 

heritable with few or no detectable pQTLs, which is consistent with polygenic regulation by 

multiple small-effect loci. Even the exosome and CCT complex display significant residual 

heritability after accounting for their largeeffect pQTL, indicating that polygenic effects on 

complex abundance are pervasive.

We observed some inconsistent results between CC and DO mice using the PC1 to estimate 

complex heritability and sex effects. This is likely due to differences in how the main 

axes of variation differ, suggesting that a single summary measure is insufficient to capture 

the behavior of many complexes. Examination of the entire correlation matrix of protein 

complexes can reveal a more detailed picture of the regulatory structure, such as internal 

heterogeneity in the relative balance of components. For example, our analysis of the 

26S proteosome reveal known subcomplexes and individual proteins that are regulated 

independently. In addition, our analysis of the MRSS highlights some shortcomings of 

current protein complex definitions that can potentially be corrected based on the correlation 

structure in shotgun proteomics data.

De novo mutations specific to individual CC strains are clearly responsible for outlying 

abundance patterns for some proteins, but we identified a large number of such outliers, 

and it seems implausible that the majority of these would be due to mutations. Based 

on the functional similarity of protein outliers within specific strains, we propose that 

these represent perturbations of interacting networks of proteins, whether they are due 

to de novo mutations or to multi-locus allelic combinations that are fixed in specific 

CC strains. Epistasis, particularly among interacting proteins, could contribute to these 

CC strain-specific networks. Regardless of their underlying origin, CC strains with single 

or functional groups of protein outliers can serve as models for further investigation of 

biological mechanisms and disease.

Limitations of study

Our study has insufficient power to reliably detect and characterize small distal genetic 

effects, which likely contributes to the reduced concordance of distal pQTLs between 

CC and DO mice. This study also highlights some of the caveats of mediation analysis. 

Successful mediation analysis requires that the true mediator is present in the data and that 

its effects are mediated through variation in abundance and not through other functional 

changes in the protein. A protein that is correlated with the true but unobserved mediator 

may be identified incorrectly as a candidate mediator. In addition to unobserved proteins, 

other factors, such as non-coding RNAs that could mediate distal pQTLs, may not be 
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measured for a given experiment. Proteins with strong local pQTLs can appear to be 

mediators, as was likely the case for mediation of the Tubg1 distal pQTL through NAXD 

in DO mice. Comparison of mediation analysis across independent genetic experiments can 

correct and refine candidate mediators.

Outlook

Unbiased profiling of the proteome provides a unique window into the molecular processes 

that are active in cells and tissues, a view that is complementary to and often more directly 

relevant to function than transcriptome profiling. Although many proteins are responsive 

to transcriptional regulation, they can also be regulated by a variety of post-translational 

mechanisms. Analysis of proteomics data in genetically diverse populations provides causal 

perturbations in the form of genetic variation that introduce variability in protein abundance 

across all levels of regulation. Genetic mapping and correlation analyses can identify 

co-regulated proteins and key drivers that regulate other proteins and protein complexes. 

Technologies that measure protein abundance are developing rapidly but are already capable 

of delivering accurate and reproducible data. Together with the demonstrated consistency 

of genetic effects on proteins across distinct but related mouse resource populations, this 

suggests that we can extrapolate findings across these genetic reference populations with 

some confidence. Resource data such as described here can be co-analyzed with future 

data through meta-analyses; for example, comparing genetic effects across different tissues. 

These findings suggest that imputation of locally regulated proteins could be an option when 

direct profiling of proteins is not available.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact Gary Churchill (gary.churchill@jax.org).

Materials availability—The CC strains used in this study (key resources table) are 

available from the UNC Systems Genetics Core (https://csbio.unc.edu/CCstatus/index.py?

run=availableLines). Many of the strains are also available from the Jackson Laboratory.

Data and code availability—The mass-spec proteomics data for the CC liver samples 

reported here have been deposited in ProteomeXchange (http://www.proteomexchange.org/) 

via the PRIDE partner repository (ProteomeXchange: PXD018886). This study also makes 

use of existing, publicly available liver proteomics data from the DO and founder strains 

(ProteomeXchange: PXD002801).1

All analyses were performed using the R statistical programming language (v3.6.1).2 

The analysis pipeline used to generate the results, starting from the raw data, scripts to 

process the raw data, the processed data, and scripts to analyze the processed data and 

generate the figures, has been made publicly available (figshare: https://doi.org/10.6084/

m9.figshare.12818717).
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All processed data and pQTL results are also available for download and interactive 

analysis from the QTL Viewer webtool (https://github.com/churchill-lab/qtlapi) for both 

the CC (https://qtlviewer.jax.org/viewer/FerrisCC) and DO (https://qtlviewer.jax.org/viewer/

SvensonHFD).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—We received pairs of young mice from 58 CC strains from the UNC Systems 

Genetics Core Facility between the summer of 2018 and early 2019. Mice were singly 

housed upon receipt until eight weeks of age. More information regarding the CC strains can 

be found at https://csbio.unc.edu/CCstatus/index.py?run=availableLines.

METHOD DETAILS

Mouse genotyping, founder haplotype reconstruction, and gene annotations
—The 116 CC mice were genotyped on the Mini Mouse Universal Genotyping Array 

(MiniMUGA), which includes 11,125 markers.66 Founder haplotypes were reconstructed 

using a Hidden Markov Model (HMM), implemented in the qtl2 R package,65 using the 

‘‘risib8’’ option for an eight founder recombinant inbred panel. Heterozygous genotypes 

were omitted, and haplotype reconstructions are limited to homozygous states, smoothing 

over a small number of residual heterozygous sites that remain in the CC mice. The 

genotyping and haplotype reconstruction for the DO mice were previously described;1 

briefly, genotyping was performed on Mega-MUGA (57,973 markers),67 and founder 

haplotypes were reconstructed using the DOQTL R package.68

Ensembl version 91 gene and protein annotations were used in the CC, whereas version 75 

was previously used in the DO and founder strains data. If the gene symbol or gene ID 

differed for a protein ID between versions 75 and 91, we updated them to version 91 in the 

DO and founder strains. When comparing results (e.g., heritability, sex effects, and pQTLs) 

between the CC, DO, or founder strains, we merged based on protein ID. For comparing the 

more complicated mediation analysis, we allowed matches based on mediator gene symbol 

rather than mediator protein ID if the target protein IDs matched.

Sample preparation for proteomics analysis—We analyzed liver tissue in the CC 

to match the previously collected liver data in the DO and founder strains. Sample 

preparation and mass spectr (MS) analysis for the DO and founder strains were previously 

described.1 Singly housed CC mice had their food removed six hours prior to euthanasia 

and tissue harvest. Tissues were dissected, weighed, and snap frozen in liquid nitrogen. 

Pulverized CC liver tissue were syringe-lysed in 8 M urea and 200 mM EPPS pH 8.5 with 

protease inhibitor and phosphatase inhibitor. BCA assay was performed to determine protein 

concentration of each sample. Samples were reduced in 5 mM TCEP, alkylated with 10 mM 

iodoacetamide, and quenched with 15 mM DTT. 200 µg protein was chloroform-methanol 

precipitated and re-suspended in 200 µL 200 mM EPPS pH 8.5. The proteins were digested 

by Lys-C at a 1:100 protease-to-peptide ratio overnight at room temperature with gentle 

shaking. Trypsin was used for further digestion for 6 hours at 37°C at the same ratio 

with Lys-C. After digestion, 50 µL of each sample were combined in a separate tube and 

used as the 11th sample in all 12 tandem mass tag (TMT) 11plex. 100 µL of each sample 
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were aliquoted, and 30 µL acetonitrile (ACN) was added into each sample to 30% final 

volume. 200 µg TMT reagent (126, 127N, 127C, 128N, 128C, 129N, 129C, 130N, 130C, 

130N, and 131C) in 10 µL ACN was added to each sample. After 1 hour of labeling, 2 

µL of each sample was combined, desalted, and analyzed using MS. Total intensities were 

determined in each channel to calculate normalization factors. After quenching using 0.3% 

hydroxylamine, 11 samples were combined in 1:1 ratio of peptides based on normalization 

factors. The mixture was desalted by solid-phase extraction and fractionated with basic pH 

reversed phase (BPRP) high performance liquid chromatography (HPLC), collected onto a 

96 well plate and combined for 24 fractions in total. Twelve fractions were desalted and 

analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Offline basic pH reversed-phase (BPRP) fractionation—We fractionated the pooled 

TMT-labeled peptide sample using BPRP HPLC.69 We used an Agilent 1200 pump 

equipped with a degasser and a photodiode array (PDA) detector. Peptides were subjected 

to a 50-min linear gradient from 5% to 35% acetonitrile in 10 mM ammonium bicarbonate 

pH 8 at a flow rate of 0.6 mL/min over an Agilent 300Extend C18 column (3.5 µm particles, 

4.6 mm ID, and 220 mm in length). The peptide mixture was fractionated into a total 

of 96 fractions, which were consolidated into 24, from which 12 non-adjacent samples 

were analyzed.70 Samples were subsequently acidified with 1% formic acid and vacuum 

centrifuged to near dryness. Each consolidated fraction was desalted via StageTip, dried 

again via vacuum centrifugation, and reconstituted in 5% acetonitrile, 5% formic acid for 

LC-MS/MS processing.

Liquid chromatography and tandem mass spectrometry—Mass spectrometric data 

were collected on an Orbitrap Fusion Lumos mass spectrometer coupled to a Proxeon 

NanoLC-1200 UHPLC. The 100 µm capillary column was packed with 35 cm of Accucore 

50 resin (2.6 µm, 150Å; ThermoFisher Scientific). Peptides were separated using a 2.5 h 

gradient of 9~35% acetonitrile gradient in 0.125% formic acid with a flow rate of ~400nl 

min 1. The scan sequence began with an MS1 spectrum (Orbitrap analysis, resolution 

120,000, 350 1400 Th, automatic gain control (AGC) target 5E5, maximum injection time 

50 ms). SPS-MS3 analysis was used to reduce ion interference.71,72 The top 10 precursors 

were then selected for MS2/MS3 analysis. MS2 analysis consisted of collision-induced 

dissociation (CID), quadrupole ion trap analysis, automatic gain control (AGC) 1E4, NCE 

(normalized collision energy) 35, q-value < 0.25, maximum injection time 60 ms), and 

isolation window at 0.5. Following acquisition of each MS2 spectrum, we collected an 

MS3 spectrum in which multiple MS2 fragment ions are captured in the MS3 precursor 

population using isolation waveforms with multiple frequency notches. MS3 precursors 

were fragmented by HCD and analyzed using the Orbitrap (NCE 65, AGC 3E5, maximum 

injection time 150 ms, resolution was 50,000 at 400 Th).

Mass spectra data analysis—Mass spectra were processed using a Sequest-based 

pipeline.73 Spectra were converted to mzXML using a modified version of ReAdW.exe. 

Database search included all entries from an indexed Ensembl database version 90 

(downloaded:10/09/2017). This database was concatenated with one composed of all protein 

sequences in the reversed order. Searches were performed using a 50 ppm precursor ion 

Keele et al. Page 13

Cell Genom. Author manuscript; available in PMC 2022 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tolerance for total protein level analysis. The product ion tolerance was set to 0.9 Da. 

TMT tags on lysine residues, peptide N termini (+229.163 Da), and carbamidomethylation 

of cysteine residues (+57.021 Da) were set as static modifications, while oxidation of 

methionine residues (+15.995 Da) was set as a variable modification.

Peptide-spectrum matches (PSMs) were adjusted to FDR < 0.01.74,75 PSM filtering was 

performed using a linear discriminant analysis (LDA), as described previously,73 while 

considering the following parameters: XCorr, DCn, missed cleavages, peptide length, 

charge state, and precursor mass accuracy. For TMT-based reporter ion quantitation, we 

extracted the summed signal-to-noise (S:N) ratio for each TMT channel and found the 

closest matching centroid to the expected mass of the TMT reporter ion. For protein-level 

comparisons, PSMs were identified, quantified, and collapsed to a peptide FDR < 0.01 and 

then collapsed further to a final protein-level FDR < 0.01, which resulted in a final peptide 

level FDR < 0.001. Moreover, protein assembly was guided by principles of parsimony to 

produce the smallest set of proteins necessary to account for all observed peptides. PSMs 

with poor quality, MS3 spectra with TMT reporter summed signal-to-noise of less than 100, 

or having no MS3 spectra were excluded from quantification.76

QUANTIFICATION AND STATISTICAL ANALYSIS

Filtration of peptides that contain polymorphisms—Peptides that contain 

polymorphisms are problematic for protein quantification in genetically diverse samples 

because the variant peptides cannot be quantified simultaneously. Polymorphisms can result 

in reduced intensity or non-detection events for peptide isoforms that do not match the 

reference mouse genome. This in turn can affect protein abundance estimation from peptides 

and can either obscure the signal of a true pQTL or create a false local pQTL. Therefore, we 

filtered out polymorphic peptides based on the genome sequences of the founder strains. We 

further confirmed the presence of the expected polymorphisms by examining the distribution 

of peptide intensities across samples from the founder strains.

To determine whether peptides with polymorphisms matched their expected allele 

distribution pattern, the peptide data was standardized within batches and adjusted for 

batch effects. Each peptide was scaled by a sample-specific within-batch scaling factor: 

yi
pep k =

yi
pep k

θi
, where yi

pep k is the intensity of peptide k for mouse i, θi =
∑K yi

pep k

max
l ∈ B i

∑K yl
pep k , 

K is the set of all peptides measured for mouse i, and B[i] is the set of samples included 

in batch i. For the CC samples, a pooled bridge sample was included in each batch and 

provided an additional standardization across batches: yi
pep k = log2

yi
pep k + 1

yb i
pep k + 1

, where b[i] 

represents the bridge sample from the batch of mouse i. For the DO and founder strain 

samples that did not include bridge samples, yi
pep k = log2 yi

pep k + 1 . A log transformation 

was applied to peptide intensities.
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Batch effects were removed from the processed peptide data using a linear mixed effect 

model (LMM) fit with the lme4 R package.64 Peptides unobserved for all samples within 

a batch were recorded as missing (NA). If greater than 80% of samples were missing for 

a polymorphic peptide, it was removed from the batch correction step and the subsequent 

evaluation. The following model was fit to peptide intensity data for the CC mice:

yi
pep k = μ + xi, covarT βcovar + ustrain i + ub i + εi Equation 1

where µ is the intercept, βcovar are the fixed effects of covariates, xi, covarT  is the ith row 

of the covariate design matrix, ustrain[i] is the effect of the strain of sample i, ub[i] is the 

effect the batch of sample i, and εi is the error for sample i with εi N 0, σ2 . The strain and 

batch effects were estimated as random effects: ustrain N 0, I τStrain
2  and ub N 0, I τb

2 . 

For the CC and founder strains, sex was included as a covariate. A similar model was fit 

for the DO mice but with no strain effect and diet was included as a covariate along with 

sex. The batch effects, estimated as best linear unbiased predictors (BLUPs) using restricted 

maximum likelihood estimates (REML),77 were subtracted from each peptide measurement: 

yi
pep k

= yi
pep k − ub i .

For peptides expected to contain a polymorphism, we fit local genetic effects based on the 

haplotype at the marker closest to the TSS of the gene to which the peptide maps,

yi
pep k

= μ + local i + xi, covarT βcovar + ui
kinsℎip + εi Equation 2

where locali is the effect of the local haplotype on peptide k for sample i, ui
kinsℎip represents 

a random kinship effect to account for overall genetic relatedness, and all other terms as 

previously defined. For the CC mice, local i = piTβlocal where piT  is the founder haplotype 

probability vector at the marker closest to the gene TSS (e.g., ordering the founder strains 

as AJ, B6, 129, NOD, NZO, CAST, PWK, and WSB, piT = 0 1 0 0 0 0 0 0  for a CC 

mouse i that is B6/B6 at the locus). For the DO, local i = di
Tβlocal where di

T  is the founder 

haplotype dosage vector, scaled to sum to zero, at the marker closest to the gene TSS 

(e.g., di
T = 0.5 0.5 0 0 0 0 0 0  for a DO mouse i that is AJ/B6 at the locus). For the 

founder strains, locali = xi, strain
T βlocal where xi, strain

T  is the founder strain incidence vector 

for mouse i (e.g., xi, strain
T = 0 1 0 0 0 0 0 0  for a B6 mouse). βlocal is an eight-element 

vector of founder haplotype effects, fit as a random effect: βlocal N 0, I τlocal
2  where I is an 

8×8 identity matrix and τlocal
2  is the variance component underlying the local effects. The 

kinship effect is included for the CC and DO mice and modeled as ukinsℎip N 0, G τG
2

where G is a realized genomic relationship matrix and τG
2  is the variance component 

underlying the kinship effect, accounting for population structure.78–81 Here we used a 

leave-one-chromosome-out (LOCO) G, in which markers from the chromosome the peptide 

is predicted to be located on are excluded from G estimation in order to avoid the kinship 
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term absorbing some of local[i].82 We then calculated rpoly = cor βlocal, q , the Pearson 

correlation coefficient between βlocal, the BLUP of βlocal and q, the incidence vector of the 

B6 haplotype among the founder strains (e.g., q = [01000000] for a peptide that contains 

a B6-specific allele that is missing in the other founder strains). Sets of peptides with 

polymorphisms were defined based on having rpoly > 0:5 for each of the CC, DO, and 

founder strains, to be excluded from further analysis because they would bias protein 

abundance estimation.

Protein abundance estimation from peptides—Protein abundances were estimated 

from their component peptides after filtering out polymorphic peptides. The abundance for 

protein j is calculated as yi
prot j =

∑M yi
pep m1i, m
θi

 where M is the set of peptides that map 

to protein j, 1i,m is the indicator function that peptide m was observed in mouse i, and 

θi is the scaling factor previously defined.73 Similar to the previously described peptide 

normalization in the CC mice, proteins were scaled relative to the bridge sample and log-

transformed: yi
prot j = log2

yi
prot j + 1

yb i
prot j + 1

. For the DO and founder strains, there was no bridge 

sample, and proteins were instead normalized as: yi
prot j = log2 yi

prot j + 1 . Batch effects were 

removed from the protein data using the LMM described for the peptide data (Equation 1). 

If more than 50% of samples were missing a protein, it was removed from further analysis 

in order to avoid false downstream findings. Batch effects, estimated as BLUPs, were then 

removed: yi
prot j = yi

prot j − ub i .

Heritability estimation—We estimated heritability for all proteins in the CC, DO, and 

founder strains. The heritability model is similar to Equation 2, but for proteins instead of 

peptides and without the local[i] term:

yi
prot j = μ + xi, covarT βcovar + ui

kinsℎip + εi Equation 3

where terms are as previously defined. The genomic relationship matrix G – corresponding 

to the kinship term ukinsℎip N 0, G τG
2  for the CC and DO – is estimated from all markers, 

i.e., non-LOCO G – because there are no other genetic factors in the model. In the founder 

strains, G = XstrainXstrain
T  where Xstrain is the founder strain incidence matrix. Sex was 

modeled as a covariate for all three populations, and diet as well in the DO. Heritability is 

then calculated as ℎ2 =
τG
2

τG
2 + σ2 . The estimate in the DO is for the narrow sense heritability, 

representing the contributions of additive genetic effects. For the CC and founder strain 

mice, the estimate represents broad sense heritability, incorporating non-additive genetic 

effects, due to the presence of replicates.
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QTL analysis—In the CC and DO mice, we performed a genome-wide pQTL scan for 

each protein, testing a QTL effect at positions across the genome, using a model similar to 

Equation 2:

zi
prot j = μ + QTLm i + xi, covarT βcovar + ui

kinsℎip + εi Equation 4

where zi
prot j is the standard normal quantile returned by the inverse cumulative distribution 

function of the normal distribution on the uniform percentiles defined by the ranks of yprot j, 
i.e., the rank-based inverse normal transformation (RINT)83 of protein j for individual i, 
QTLm[i] is the effect of the putative QTL at marker m on protein j for individual [i], 
equivalent to the local[i] term in Equation 2 for the CC and DO mice, and all other terms 

as previously defined. The kinship effect was fit based on the LOCO G specific to the 

chromosome of marker m. We used RINT for the QTL analysis to reduce the influence 

of extreme observations that can produce false positives, particularly when they coincide 

with a rare founder haplotype allele. This is of particular concern in the CC sample of 58 

unique genomes. To test the QTL term, the model in Equation 4 is compared to a null model 

excluding QTLm, summarized as the log10 likelihood ratio (LOD) score.

The QTL model in Equation 4 was also used for variant association mapping at specific 

pQTL identified through the haplotype-based analysis by adjusting the QTLm[i]term: 

QTLv i = pi, vT βQTL, where pi, vT  is the marginal variant allele probability vector for variant 

v, which is calculated by collapsing and simplifying the underlying founder haplotype 

probabilities based on variant genotypes in the founder strains (SQLite variant database: 

https://doi.org/10.6084/m9.figshare.5280229.v3).

For the CC mice, we mapped pQTLs based on strain averages where zi
prot j is the average 

of ymale, strain i
prot j

 and yfemale, strain i
prot j

 followed by RINT across the strains. Founder haplotype 

probabilities were reconstructed at the level of individual mice and averaged for strain-level 

mapping. No covariates were included when mapping on strain averages. We tried mapping 

pQTLs in the CC mice on individual-level data, which returned largely consistent results, but 

notably fewer and weaker pQTLs. In the CC, we also mapped pQTLs to the mitochondrial 

genome and Y chromosome by testing whether the founder origin of the mitochondria 

or Y chromosome was associated with protein abundance. We fit Equation 4, treating 

the mitochondrial genome or Y chromosome as a single locus QTLY [i] and QTLMT [i], 
respectively, using the non-LOCO G for the kinship effect. The founder strain of origin for 

the Y chromosome was determined for all CC strains. For the mitochondrial genome, six 

strains (CC031, CC032, CC041, CC051, CC059, CC072) possessed ambiguity between AJ 

and NOD, which we encoded as equal probabilities pi, MT
T = 0.5 0 0 0.5 0 0 0 0 .

QTL significance thresholds—We estimated significance thresholds for pQTLs using 

permutations.42 We accounted for missing data by performing 10,000 permutations of 

the normal quantiles for each level of observed missingness in the CC and DO mice 

(ranging from 0 to 50%). Genome scans of the permuted data used the model in Equation 

4, excluding covariates and the kinship term. We first applied a genome-wide error rate 
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correction across marker loci and then applied an FDR correction to account for testing 

multiple proteins.43 We modeled the maximum (genome-wide) LOD scores from the 

permutation scans using a generalized extreme value distributions (GEV)84,85 specific to 

each level of missingness, to compute genome-wide permutation p-value for each protein:

ppermprot j = 1 − FGEV , nNA prot j max LOD prot j Equation 5

where FGEV , nNA prot j  is the cumulative density function for the GEV fit from the 

permutations of quantiles with nNA number missing values, corresponding to the number 

missing for protein j, and max LOD[prot j] is the maximum LOD score from the genome 

scan of protein j. We then used the Benjamini-Hochberg (BH) procedure86 to calculate FDR 

q-values across the permutation p-values, and applied interpolation to find the permutation 

p-value that corresponds to FDR < α : pperm, αinterp  where α ∈ 0.1, 0.5 . Significance thresholds 

on the LOD scale, specific to FDR < α and nNA missing data points, were calculated: 

λFDR < α
nNA = FGEV , nNA

−1 1 − pperm, FDR < α
interp  where FGEV , nNA

−1  is the inverse cumulative 

density function for the GEV with nNA missing data points. As a final step to reduce 

random variation between sets of permutations, we regressed the estimated thresholds for a 

population and FDR level on the number of missing data points nNA, and created a table 

of fitted thresholds: λFDR < α
nNA  for α ∈ [0.1, 0.5] for both the CC and DO mice. Whether 

a pQTL met FDR < α significance, the threshold corresponding to α with the nNA for 

protein j was used. For reference, λFDR < 0.1
0 = 7.96 and λFDR < 0.5

0 = 6.33 in the CC, and 

λFDR < 0.1
0 = 7.86 and λFDR < 0.5

0 = 6.41 in the DO.

Defining local/distal status of QTL—Detected pQTLs were classified as local if their 

position was within 10 Mbp upstream or downstream of the middle of the coding gene. 

If they did not fall within this local window, they were classified as distal. The broad 

local window was used because the CC have larger LD blocks than the DO due to fewer 

outbreeding generations. With a narrower definition, it would be more likely to have 

‘‘distal’’ pQTL in the CC that align and have consistent effects with ‘‘local’’ pQTL in 

the DO. On the other hand, this lenient definition of local may absorb some distally acting 

pQTLs that happen to be within 10 Mbp the gene on which they act.

Consistency of QTL between the CC and DO—We evaluated the consistency of local 

and distal pQTLs between the CC and DO by comparing their haplotype effects. We first 

had to define pQTLs that were detected in both the CC and DO and thus pair them for effect 

comparison. Local pQTLs were paired based on simply having matching protein IDs. For 

distal pQTLs, we also required the pQTL positions to be within 10 Mbp of each other.

Haplotype effects were estimated at the pQTL marker using the model in Equation 4. To 

stabilize the effects, they were modeled as a random effect: βQTL N 0, I τQTL
2 , where τQTL

2

is a variance component underlying the haplotype effects of the pQTL. We then estimated 

the haplotype effects as BLUPs βQTL . To declare pQTLs consistent between the CC and 

DO, we evaluated whether their haplotype effects were significantly positively correlated: 
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pQTL
r = Pr rQTL > 0  where rQTL = cor βQTL

CC , βQTL
DO  and rQTL 6 1 − rQTL

2 −1 t 6 . To 

account for multiple testing, we used the BH procedure on the p-values for correlated effects 

and declared pQTLs with qQTL
r < 0.1 as consistent between the CC and DO.

Haplotype effects for a pQTL are fit at a specific marker. Selecting which marker for effect 

comparison is complicated by the fact that the CC and DO have different sets of markers 

and the genomic coordinates of the peak LOD scores also vary. When comparing pQTLs 

detected in both populations, we fit the Equation 4 model at the markers with the highest 

LOD score specific to each population. When comparing pQTLs that were detected in only 

one population, we selected the marker in the population that failed to map the pQTL that 

was closest to the marker in the population that detected it.

Consistency of local QTL in the CC with the founder strains—If the genetic 

effects on a protein are primarily local, the relative abundances for a protein in the founder 

strains should match the local pQTL effects observed in the CC and DO. We evaluated the 

consistency of local pQTLs in the CC with the founder strains, using an approach similar 

to how we compared pQTL effects between the CC and DO. For the founder strains, rather 

than fitting pQTL effects βQTL , we fit the founder effects as random terms (as described 

for the local term in Equation 2 for the founder strains) summarized as BLUPs βstrain
Founders . 

We then calculated the Pearson correlation between local pQTL effects in the CC and 

founder effects in the founder strains: rlocal = cor βQTL
CC , βstrain

Founders . As when comparing QTL 

effects between the CC and DO, we then tested rlocal > 0, and corrected for multiple testing 

through the BH procedure.

Mediation analysis—For each distal pQTL (lenient threshold) in the CC or DO 

populations, we performed a mediation analysis which involved a scan analogous to the 

QTL genome scans. Instead of scanning through genetic markers as putative QTLs, we scan 

through proteins as putative mediators of a given distal pQTL. The model is

zi
prot t = μ + QTL i + xi, covarT βcovar + mediatorq i + εi Equation 6

where QTL[i]is as defined for QTLm[i]in Equation 4 but fixed at the peak marker m of the 

distal pQTL for target protein t and conditioned on protein q, with mediatorq[i] representing 

its effect on protein t for individual i, and all other terms as previously defined. The effect 

of the mediator is modeled as mediatorq i = βprot qzi
prot q, where βprot q is the regression 

coefficient for the mediator protein q and zi
prot q is the RINT quantity of protein q for 

individual i. The likelihood of Equation 6 model is compared to a null QTL model that 

excludes the QTLi term, producing a mediation conditional LOD score. The mediation 

model is fit for all proteins as individual mediators, excluding protein t, resulting in a 

mediation scan.

We assume that most of the proteins evaluated as candidates are not true mediators of 

the pQTL and thus the distribution of mediation conditional LOD scores approximates a 
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null distribution, roughly centered around the LOD score of the distal pQTL that was first 

detected. We calculate the z-scores of the mediation conditional LOD scores and then define 

strong candidate mediators of the pQTL for protein t as proteins with zqmed < − 4, where 

zqmed is the z-score of the mediation LOD score for candidate mediator protein q. The 

rationale being that when testing the QTL term in Equation 6, if the mediator contains much 

of the information from the pQTL, its presence in both the alternative and null models will 

result in a large drop in the LOD score of the detected pQTL. For a protein to be declared 

as a candidate mediator of the distal pQTL, we required that the mediator TSS be within 

10 Mbp of the pQTL marker. Strong mediators that were not near the pQTL often represent 

proteins that are correlated with the target protein t, which are often co-regulated members 

of a protein complex or pathway.

Sex effects on protein abundance analysis—Proteins that exhibited differential 

abundance between the sexes, i.e., sex effects, were identified using an LMM similar to 

the heritability model (Equation 3) for the CC, DO, and founder strains, but instead testing 

the significance of the sex coefficient:

yi
prot j = μ + βMalexi, Male + xi, covarT βcovar + ui

kinsℎip + εi Equation 7

where βMale is the effect on protein j of being male, xi, Male is an indicator variable of being 

male, and all other terms as defined previously. Other covariates and the specification of 

ui
kinsℎip for the different populations are the same as described for heritability.

A p-value for the sex effect was calculated by comparing the model in Equation 7 to a null 

model without the sex effect through the likelihood ratio test (LRT): psexprot j = Pr X > χprot j
2

where Pr .  denotes the χ 1
2  probability density function and χprot j

2  is the observed LRT 

statistic for protein j. The LMM was fit with the qtl2 R package,65 using maximum 

likelihood estimates (MLE) for parameters rather than REML, which are more appropriate 

for asymptotic-based significance testing of fixed effects. Proteins with significant sex 

effects were selected based on FDR < 0.1 using the BH procedure.86

We performed gene set enrichment analysis using the clusterProfiler R package.63 We 

defined gene sets based on qsex < 0.01 and split them further into subsets based on having 

higher abundance in males or higher abundance in females. We used the quantified proteins 

in each population as the background gene set. Hypergeometric tests for enrichment of GO 

and KEGG terms were performed with FDR multiple testing control.87 Enriched GO and 

KEGG terms were selected based on having qset < 0:1.

Protein complex analysis—We assigned proteins to protein complexes using 

annotations.49 For each protein complex, we quantified how tightly co-abundant, i.e., 

cohesive, the members are, by calculating the median pairwise Pearson correlation for each 

protein with the other members of the complex. We summarized cohesiveness within a 

complex by recording the median and interquartile range across the median correlations for 

the individual proteins.
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To assess whether genetic factors or sex regulated protein complexes, we estimated the 

complex heritability and complex sex effect size based on the PC1 from PCA51 of the 

abundances of the proteins annotated to the complex. We first filtered out proteins with 

local pQTLs (FDR < 0.5) or strong distal pQTLs (FDR < 0.1) to minimize the influence of 

proteins with independent genetic effects in order to focus on the shared effects on a protein 

complex. We also regressed out effects of covariates from the individual proteins prior to 

PCA in order to keep the PC1 summary from reflecting their effects. To estimate complex 

heritability, we removed the effect of sex in the CC, and both sex and diet in the DO. For 

complex sex effect size, we removed the effect of diet from the DO. We estimated complex 

heritability using the model in Equation 3, with no covariates and the complex PC1 as the 

response variable.

To estimate the complex sex effect size: ϕsex
2 = 1 − ∑i ei2 MA / ∑i ei2 M0  where ∑i ei2 MA is 

the sum of squared residuals (SSR) under the alternative model (Equation 7) and ∑i ei2 M0. 

M0 is the SSR under the null model (Equation 7 excluding sex effect). Interval estimates 

for complex heritability and complex sex effects represent 95% subsample intervals. We 

randomly sampled without replacement 80% of the CC and DO data 1,000 times and 

estimated the complex heritability and complex sex effects for each subsample as well as 

the 2.5th and 97.5th quantiles across the subsamples. We estimated summaries for protein 

complexes that had four or more proteins observed in the CC or DO, after removing proteins 

with local pQTLs (FDR < 0.5) or distal pQTLs (FDR < 0.1), thus limiting the potential that 

the PC1 reflected a strong pQTL not shared by other members of the complex.

Strain-specific outlier proteins—To identify proteins with low or high abundance 

characteristic to individual CC strains, we fit the following LMM:

yi
prot j = μ + βMalexi, Male + ustrain i + εi Equation 8

with all terms as previously defined. Effects for all CC strains for each protein j ustrain
prot j

were estimated as BLUPs, which were then transformed to z-scores per protein zstrain
prot j . 

We defined a strain-specific protein outlier to be a protein j in CC strain i for which 

zstrain i
prot j > 2.5. This represents a lenient threshold because we aim to cast a wide net and 

identify interesting characteristics of CC strains, potentially due to subtle effects across 

many proteins. We intersected the strain outliers with known CC strain-specific genetic 

variants based on CC strain identity and the annotated coding gene,30 identifying variants 

that likely have local effects on protein abundance.

For each CC strain i, we defined sets of proteins that had consistently 

low, high, and extreme (low or high) abundance based on their strain 

effects: Ωstrain i
ℎigℎ = prot j:zstrain i

prot j > 2.5 ∀ j, Ωstrain i
low = prot j: zstrain i

prot j < − 2.5 ∀ j, and 

Ωstrain i
extreme = prot j: zstrain i

prot j > 2.5 ∀ j, respectively. We then tested whether the CC strain-

specific outlying proteins were enriched in GO and KEGG terms (qset < 0.1).
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ADDITIONAL RESOURCES

All processed data and pQTL results are also available for download and interactive 

analysis from the QTL Viewer webtool (https://github.com/churchill-lab/qtlapi) for both 

the CC (https://qtlviewer.jax.org/viewer/FerrisCC) and DO (https://qtlviewer.jax.org/viewer/

SvensonHFD). All these resources are also listed in the key resources table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Quantitative profiling of liver proteomes of genetically diverse mouse 

populations

• Consistent genetic effects on individual proteins between inbred and outbred 

mice

• Proteins in complexes show reduced heritability compared with proteins not 

in complexes

• De novo mutations in inbred strains contribute to protein abundance variation
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Figure 1. Comparisons of genetic and sex effects on protein abundance among the CC, DO, and 
founder strains reveal strong concordance
(A) The CC strains and DO mice are descended from the same eight inbred founder strains. 

Mutations occur during the breeding generations of the CC and DO mice and can become 

fixed in the CC strains.

(B) Venn diagram of the proteins analyzed in the CC, DO, and founder strains. The founder 

strains and DO samples were obtained in the same experiment, resulting in greater overlap.

(C) Estimates of heritability of protein abundance are greater on average in the inbred CC 

and founder strains compared with DO mice. Vertical lines represent the median heritability 

in each population.

(D–F) Sex effects for protein abundances in (D) CC versus DO, (E) CC versus founder 

strains, and (F) DO versus founder strains. The solid identity line and dashed horizontal and 

vertical lines at 0 are included for reference. Pearson correlation coefficients (r) between 

the sex effects of the populations and corresponding p values included. A breakdown of the 

direction of sex effects is shown for each comparison of populations. N.S. indicates proteins 

that did not have significant sex effects at FDR < 0.1. χ2 test of independence used to 

evaluate consistency of the direction of sex effects.

See also Figure S1 and Tables S1, S2, and S3.
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Figure 2. Genetic effects of loci are highly consistent between CC and DO mice
(A and B) Stringently detected pQTLs (FDR < 0.1) in (A) CC and (B) DO mice. The pQTLs 

are plotted by the genomic positions of protein-coding genes against pQTL location. Dot 

size is proportional to strength of association (log-odds [LOD] score).

(C) Venn diagram of local pQTLs detected in CC and DO mice.

(D) The correlation of haplotype effects for local pQTLs detected in CC and DO mice.

(E) The correlation of haplotype effects for local pQTLs detected in at least one of the CC 

or DO populations. Red bars represent pQTLs with significantly correlated effects (FDR < 

0.1).

(F) Venn diagram of distal pQTLs detected in CC and DO mice.

(G) The correlation of haplotype effects for distal pQTLs detected in CC and DO mice.

(H) The correlation of haplotype effects for distal pQTLs detected in at least one of the CC 

or DO populations.
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(I) The 20 distal pQTLs detected in CC and DO mice. Arrows connect candidate drivers 

identified through mediation analysis to their targets (proteins with distal pQTLs). Gene 

names in black represent the top candidates identified in both CC and DO mice. Red 

and blue gene names indicate top candidates specific to CC or DO mice, respectively. 

TUBGCP3, a top candidate from the CC and the stronger biological candidate based on 

shared membership in protein families, is underlined. The red asterisk denotes PGD as a 

likely false positive mediator because of the true mediator being unobserved, seen in both 

CC and DO mice.

(J) Mediation analysis of the Snx4 distal pQTL, an example of agreement between CC 

and DO mice. Panels showing pQTL LOD scores for CC (pink) and DO (blue) mice 

are overlayed with mediation conditional LOD scores (gray dots). Mediation scores were 

evaluated for all proteins genome-wide. Candidate mediators of interest with low mediation 

scores are labeled. Horizontal lines at a LOD score of 6 are included as a reference point 

across genome scans.

(K) Causal diagram consistent with the relationships revealed by QTL and mediation 

analysis for SNX4 and SNX7.

(L) Mediation analysis of the Tubg1 distal pQTL, an example of disagreement between CC 

and DO mice, details as described above.

(M) Causal diagram consistent with the relationships revealed by QTL and mediation 

analysis for TUBG1, TUBGCP3, TUBGCP2, and NAXD.

See also Figures S1–S3 and Tables S4 and S5.
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Figure 3. Genetic and sex effects on protein complexes
(A and B) Complex cohesiveness, the median pairwise Pearson correlation among members, 

for CC (red) and DO (blue) mice for 163 protein complexes. Intervals represent the 

interquartile range, and points represent the overall median.

(C–F) Complex heritability (C and D) and complex sex effect size (E and F), the proportion 

of variance in PC1 explained by sex, are estimated using the first principal component 

(PC1) from each of the protein complexes. Intervals represent 95% subsample intervals 

(STAR Methods). The exosome, CCT complex, 26S proteasome, and MRSS are highlighted 

as examples of protein complexes with unique genetic effects patterns (Figures 4, 5, 6, 

S5, and S6). The multi-eIF complex and eIF2B are highlighted as complexes with large 

sex differences in CC and DO mice. The identity line is included for reference. Pearson 

correlation coefficients (r) between CC and DO mice and corresponding p values included.

See also Figure S4 and Table S6.
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Figure 4. Stoichiometry-driven genetic effects on the exosome
(A) Abundance of EXOSC7 in male and female CC mice. Points are color coded to indicate 

their haplotypes at the Exosc7 locus. The seven CC strains with low abundance of EXOSC7 

have the PWK haplotype (red points) at the Exosc7 locus and are highlighted.

(B) The effects of a chromosome 9 QTL are mediated through EXOSC7 to affect variation 

in proteins of the exosome and two functionally related proteins, DIS3L and ETF1.

(C) Abundances of proteins with distal pQTLs at the Exocs7 locus for female and male CC 

mice. Points are colored by the founder haplotype at Exosc7.

(D) The genome scan for PC1 of protein abundances in the exosome complex for CC mice 

(light red) overlayed with the mediation conditional LOD scores (gray dots). Mediation 

scores were evaluated for all proteins genome-wide. Proteins with low mediation scores 

are labeled. The horizontal line at a LOD score of 6 is included as reference point across 

genome scans.

(E) The exosome PC1 plotted as males versus females for the CC strains. Points are colored 

by the founder haplotype at Exosc7. The black dashed line is the best fit line between males 

and females for the complex PC1, based on all 58 CC strains. The gray dashed line shows 

the best fit line excluding the seven CC strains with the PWK haplotype at Exosc7.

See also Figure S5.
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Figure 5. Genetic control of the constitutive and inducible forms of the 26S proteasome
(A) The 26S proteasome is composed of multiple subcomplexes: the 20S proteasome 

catalytic core (PSMA and PSMB proteins) and 19S regulator (PSMC and PSMD proteins) 

for the constitutive form and the inducible immunoproteasomes (PSMB8, PSMB9, and 

PSMB10) with their 11S regulator (PSME proteins).

(B and C) The Pearson correlations of the 26S proteosome proteins in (B) CC and (C) 

DO mice. Black boxes were added to highlight correlations between the constitutive and 

inducible components.

(D and E) PSMD9 genome scan in (D) CC and (E) DO mice. The horizontal line at a LOD 

score of 6 is included as reference point across genome scans.

(F and G) PSMB6 genome scan in (F) CC and (G) DO mice overlaid with mediation 

conditional LOD scores (gray dots) for all proteins, with PSMB9 highlighted.

(H) The abundance of PSMB6 is plotted against the abundance of PSMB9 for CC mice. 

Horizontal and vertical bars represent means ± 2 standard deviations. Points and bars are 

colored by the founder haplotype at Psmd9. The dashed line is the best fit line between 

PSMB6 and PSMB9.

(I) CC strains with the WSB haplotype at Psmd9 have greater abundance of PSMB9 relative 

to its constitutive analog PSMB6.
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See also Figure S7.
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Figure 6. Polygenic regulation of the mitochondrial ribosomal small subunit (MRSS)
(A and B) The Pearson correlations of the MRSS in (A) CC and (B) DO mice.

(C and D) MRPS7 (*) abundance (C) and PC1 of protein abundances from the MRSS 

core (black box) (D) plotted as males versus females for the CC strains. The dashed lines 

represent the best fit lines between males and females for MRPS7 and complex PC1.

(E and F) Genome scans for AUH (**), a protein affiliated with the mitochondrial ribosome 

that is largely uncorrelated with core members of the complex, reveal a local pQTL detected 

in (E) CC and (F) DO mice. Horizontal lines at a LOD score of 6 are included as a reference 

point across genome scans.
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Figure 7. Strain-specific genetic variants affect protein abundance and influence larger protein 
networks
(A–C) Abundance for (A) C3, (B) ITGAL, and (C) SASH1 in female and male CC mice 

with the outlier strain highlighted.

(D) Abundance of proteins related to innate immune response are shown for female and 

male CC mice with the outlier strain CC013 indicated.

(E) Abundance for HCLS1 in female and male CC mice with the outlier strain CC013 

indicated. Point color corresponds to the founder haplotype at the gene locus of the specified 

protein.

(F) CC013 has a unique liver phenotype characterized by white granules, indicated with a 

red arrow.

(G) Abundance of proteins related to the mitochondrial respiratory chain complex I are 

shown for female and male CC mice with the outlier strain CC007 indicated.
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See also Figure S8 and Table S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Pierce Protease Inhibitor Tablets Thermo Fisher A32963

Pierce Phosphatase Inhibitor Mini 
Tablets

Thermo Fisher A32957

Trypsin Protease MS grade, Frozen Thermo Fisher 90305R200

Lys-C, Mass Spectrometry Grade Wako Chemicals Barcode#4987481427648

TMT10plex Isobaric Label reagent 
Set plus TMT11–131C Label Reagent

Thermo Fisher A34808

Critical commercial assays

Pierce BCA Protein Assay Kit Thermo Fisher 23227

Deposited data

CC liver proteomics ProteomeXchange (http://www.proteomexchange.org) PXD018886

DO and founder strain liver 
proteomics

Chick et al.1; ProteomeXchange (http://
www.proteomexchange.org)

PXD002801

Processed data (e.g., proteins, 
peptides, genotypes) and code to 
generate all results and figures

https://doi.org/10.6084/m9.figshare.12818717 N/A

CC liver proteomics QTL Viewer https://qtlviewer.jax.org/viewer/FerrisCC N/A

DO liver proteomics QTL Viewer https://qtlviewer.jax.org/viewer/SvensonHFD N/A

Experimental models: Organisms/strains

Mouse: A/J The Jackson Laboratory JAX: 000646

Mouse: C57BL/6J The Jackson Laboratory JAX: 000664

Mouse: 129S1/SvImJ The Jackson Laboratory JAX: 002448

Mouse: NOD/ShiLtJ The Jackson Laboratory JAX: 001976

Mouse: NZO/HlLtJ The Jackson Laboratory JAX: 002105

Mouse: CAST/EiJ The Jackson Laboratory JAX: 000928

Mouse: PWK/PhJ The Jackson Laboratory JAX: 003715

Mouse: WSB/EiJ The Jackson Laboratory JAX: 001145

Mouse: J:DO The Jackson Laboratory JAX: 009376

Mouse: CC001/Unc UNC Systems Genetics Core N/A

Mouse: CC002/Unc UNC Systems Genetics Core N/A

Mouse: CC003/Unc UNC Systems Genetics Core N/A

Mouse: CC004/TauUnc UNC Systems Genetics Core N/A

Mouse: CC005/TauUnc UNC Systems Genetics Core N/A

Mouse: CC006/TauUnc UNC Systems Genetics Core N/A

Mouse: CC007/Unc UNC Systems Genetics Core N/A

Mouse: CC008/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC009/UncJ UNC Systems Genetics Core N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: CC010/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC011/Unc UNC Systems Genetics Core N/A

Mouse: CC012/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC013/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC015/Unc UNC Systems Genetics Core N/A

Mouse: CC016/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC019/TauUnc UNC Systems Genetics Core N/A

Mouse: CC021/Unc UNC Systems Genetics Core N/A

Mouse: CC023/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC024/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC025/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC026/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC027/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC029/Unc UNC Systems Genetics Core N/A

Mouse: CC030/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC031/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC032/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC033/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC035/Unc UNC Systems Genetics Core N/A

Mouse: CC036/Unc UNC Systems Genetics Core N/A

Mouse: CC037/TauUnc UNC Systems Genetics Core N/A

Mouse: CC038/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC039/Unc UNC Systems Genetics Core N/A

Mouse: CC040/TauUnc UNC Systems Genetics Core N/A

Mouse: CC041/TauUnc UNC Systems Genetics Core N/A

Mouse: CC042/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC043/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC044/Unc UNC Systems Genetics Core N/A

Mouse: CC045/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC046/Unc UNC Systems Genetics Core N/A

Mouse: CC049/TauUnc UNC Systems Genetics Core N/A

Mouse: CC051/TauUnc UNC Systems Genetics Core N/A

Mouse: CC053/Unc UNC Systems Genetics Core N/A

Mouse: CC055/TauUnc UNC Systems Genetics Core N/A

Mouse: CC057/Unc UNC Systems Genetics Core N/A

Mouse: CC058/Unc UNC Systems Genetics Core N/A

Mouse: CC059/TauUnc UNC Systems Genetics Core N/A

Mouse: CC060/Unc UNC Systems Genetics Core N/A

Mouse: CC061/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC062/Unc UNC Systems Genetics Core N/A

Mouse: CC071/TauUnc UNC Systems Genetics Core N/A

Mouse: CC072/TauUnc UNC Systems Genetics Core N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: CC075/Unc UNC Systems Genetics Core N/A

Mouse: CC078/TauUnc UNC Systems Genetics Core N/A

Mouse: CC079/TauUnc UNC Systems Genetics Core N/A

Mouse: CC080/TauUnc UNC Systems Genetics Core N/A

Mouse: CC081/Unc UNC Systems Genetics Core N/A

Mouse: CC082/Unc UNC Systems Genetics Core N/A

Software and algorithms

Bioconductor Bioconductor https://bioconductor.org; RRID: 
SCR_006442

clusterProfiler Yu et al.63 https://bioconductor.org/packages/release/
bioc/html/clusterProfiler.html; RRID: 
SCR_016884

ensimplR https://github.com/churchill-lab/ensimplR N/A

evd https://cran.r-project.org/web/packages/evd N/A

intermediate https://github.com/churchill-lab/intermediate N/A

intermediate2 https://github.com/duytpm16/intermediate2 N/A

lme4 Bates et al.64 https://cran.r-project.org/web/packages/
lme4/index.html; RRID: SCR_015654

pcaMethods Stacklies et al.51 https://www.bioconductor.org/packages/
release/bioc/html/pcaMethods.html

QTL Viewer webtool https://github.com/churchill-lab/qtlapi N/A

R The R Project https://www.r-project.org; RRID: 
SCR_001905

R/qtl2 Broman et al.65 https://github.com/rqtl/qtl2; RRID: 
SCR_018181

Other

Complex Database Ori et al.49 http://doi.org/10.1186/
s13059-016-0912-5; Table S6

DO founder haplotype dosages 
(genoprobs)

Chick et al.1 http://doi.org/10.1038/nature18270

SQLite CC founder variant database https://doi.org/10.6084/m9.figshare.5280229.v3 N/A

Waters 100mg Sep-Pak Waters WAT036820

Orbitrap Fusion Thermo Fisher N/A

Orbitrap Fusion Lumos Thermo Fisher N/A
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