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Abstract: Plants of the Veratrum genus have been used throughout history for their emetic properties,
rheumatism, and for the treatment of high blood pressure. However, inadvertent consumption of
these plants, which resemble wild ramps, induces life-threatening side effects attributable to an
abundance of steroidal alkaloids. Several of the steroidal alkaloids from Veratrum spp. have been
investigated for their ability to antagonize the Hedgehog (Hh) signaling pathway, a key pathway for
embryonic development and cell proliferation. Uncontrolled activation of this pathway is linked to
the development of various cancers; most notably, basal cell carcinoma and acute myeloid leukemia.
Additional investigation of Veratrum spp. may lead to the identification of novel alkaloids with the po-
tential to serve as chemotherapeutics. V. parviflorum is a relatively uncommon species of Veratrum that
resides in the southeastern regions of North America. The phytochemical profile of this plant remains
largely unexplored; however, bioactive steroidal alkaloids, including cyclopamine, veratramine,
veratridine, and verazine were identified in its extract. The structural elucidation and bioactivity
assessment of steroidal alkaloids in lesser abundance within the extract of V. parviflorum may yield
potent Hh pathway inhibitors. This review seeks to consolidate the botanical and phytochemical
information regarding V. parviflorum.
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1. Introduction

Most modern therapeutics have originated from a treasure trove of secondary metabo-
lites extracted from natural products of terrestrial or marine origin. An estimated 70,000 plant
species have been used throughout history for medicinal purposes and more than 3000 plants
are reported to contain compounds with anticancer properties [1,2]. The Veratrum califor-
nicum derived the steroidal alkaloid, cyclopamine; it was first isolated in 1965 and later
identified as an inhibitor of the protein Smoothened (Smo), which is a critical protein in
the Hedgehog signaling pathway [3,4]. Since this discovery, a new class of Food and Drug
Administration (FDA) approved chemotherapeutics called Hedgehog pathway inhibitors
have been developed for the treatment of cancers; most prominently, for basal cell carci-
noma and acute myeloid leukemia [5]. Plants from the genus Veratrum, including V. viride,
V. album, V. nigrum, and V. californicum have been extensively studied; they are found to be
rich sources for unique steroidal alkaloids (>100 alkaloids/plant), with approximately 20%
of these secondary metabolites being characterized [6]. Here, we present a consolidated
review of the morphological, ecological, and phytochemical information regarding the
sparsely studied Veratrum spp., V. parviflorum.

1.1. Background
1.1.1. Veratrum Genus

The Veratrum genus is comprised of perennial flowering herbs located predominantly
in the Northern hemisphere [7]. These plants are found throughout temperate regions of
North America and northern temperate to arctic regions in Eurasia [7]. Depending on the
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taxonomic treatment, the number of species varies between 17–45 species. These can be
divided into four species complexes: V. album L., V. nigrum L., V. mackii Regal, and V. viride
Aiton [7,8]. Wide variability in taxonomic treatment may be attributed to a dissimilarity in
morphology, including leaves, tepals, and perigonal nectaries, and habitats, including rocky
tundra, bogs, meadows, riverbanks, swamps, and deciduous forest slopes [7]. Veratrum
may be further divided into two major sections based on gynoecia characteristics: Veratrum
sect. Veratrum [Clade B] and Veratrum sect. Fuscoveratrum [Clade C] (Figure 1).
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1.1.2. Medicinal Relevance

Traditional medicines have utilized Veratum spp. plants as a source of therapeutically
active compounds for centuries [6,9]. Chinese medicine utilized V. nigrum in a medici-
nal concoction, referred to as Li-lu, to treat conditions including aphasia resulting from
apoplexy, wind-type dysentery, jaundice, scabies, and chronic malaria [10]. The roots and
rhizome of V. album subsp. lobelianum are described in the first Pharmacopoeia Rossica as
a traditional Russian medicine that is made into a tincture or ointment for the treatment
of head lice, scabies, neuralgic and rheumatic pain, eczema, or fevers [11]. This plant has
also been used as an antiparasitic in cattle against hypodermatosis [11]. V. album has seen
widespread use in Eurasia [12]. The Greeks used a powdered form of V. album to induce
sneezing and for psychological diseases such as depression and epilepsy [12,13]. An alcohol
extract of V. album’s roots was used in Italy as an antirheumatic [12]. In Iranian folk tradition,
V. album root, pulverized into a paste, was used to relive headache and neuralgic pain [12].
In North America, Native American tribes, including the Shoshone, Bella Coola, Cherokee,
Gitksan, Haisla, Hanaksiala, Iroquois, Kitasoo, Okanagan-Colville, Oweekeno, Quinault,
Salish Thompson, and Tsimishian used the crushed roots of V. viride as an antirheumatic to
treat snake bite wounds, to make a tea for venereal diseases, and as an analgesic for sore
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throats and colds [6,12]. Table 1 presents a comparison of several Veratrum spp., including
the identified steroidal alkaloids and traditional medical applications.

Table 1. A comparison of the identified steroidal alkaloids and traditional medicinal applications for
several Veratrum species.

Veratrum spp. Alkaloids Identified Traditional Medical Applications References

V. nigrum 1 Epiverazine, veratramine, and
verazine.

Apoplexy, wind-type dysentery,
jaundice, scabies, and

chronic malaria.
[10,14]

V. album 2

Verazine, jervine, pseudojervine,
rubijervine, veralosine, veralosidine,

verabenzoamine, veratroilzigadenine,
15-O-(2-methylbutyroyl)germine,

veralosinine, veratramine,
veratridine, and cevadine.

Head lice, scabies, neuralgic pain,
eczema, fever, hypodermatosis,

rheumatism, and headache.
[11–14]

V. viride 2 Veratramine, isorubijervosine,
pseudojervine, and rubijervine.

Rheumatism, venereal diseases, and
analgesic. [6,12,14]

V. californicum 2
Cyclopamine, veratramine,
muldamine, isorubijervine,

cycloposine, and veratrosine.
None reported. [6,14]

V. parvilforum 1 Cyclopamine, veratramine,
veratridine, and verazine. None reported. [15]

1 Species within Veratrum sect. Fuscoveratrum [Clade C]. 2 Species within Veratrum sect. Veratrum [Clade B].

2. Veratrum parviflorum
2.1. Taxonomy and Physical Characteristics

Veratrum (Melanthium) parviflorum, commonly known as mountain bunchflower, has
a complex history regarding its classification in the Veratrum and Melanthium genera due
to variation in the morphological constraints set by botanists [7,16]. To provide a more
defined taxonomy of Veratrum spp., the nuclear ribosomal internal transcribed spacers (ITS)
were analyzed and correlated to traditional taxonomic classifications, including flower
color and geographical location [7]. The strict and bootstrap consensus trees were almost
identical, except for V. parviflorum. The strict consensus suggested that V. parviflorum formed
a subclade and was sister to V. latifolium, V. virginicum, and V. woodii; whereas the bootstrap
consensus suggested that this species falls outside of the clade, forming a polytomy with
the V. maackii and V. micranthum complexes [7].

V. parviflorum is identified in nature using defined morphological traits. The stem is
slender and 2 to 5 feet tall [15,17]. A pseudostem is formed by the overlapping sheaths
of the leaves, which are broad (2–4 inches wide), petiolate, obscurely plicate, and have a
blue tint adaxially [7,16,18]. The tepals are pale green to olive green, narrowly rhombic
oblanceolate, with entire margins, gradually attenuated at base, filaments adnate, gland
bilobed, diffuse, and dark (Figure 2) [7].



Molecules 2022, 27, 5349 4 of 14Molecules 2022, 27, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 2. V. parviflorum in situ before blooming (left). In the later stages of growth, a stem protrudes 
from the base of the plant and blooms with pale green flowers (right) [19]. 

2.2. Geographic Location and Herbivory 
V. parviflorum is found in the southeastern regions of North America [15–18,20]. This 

species grows in rich deciduous forests (800–2030 m) in the mid-Appalachians, including 
parts of Alabama, Georgia, Kentucky, North Carolina, South Carolina, Tennessee, Vir-
ginia, and West Virginia [15,16]. The states of Alabama, Kentucky, and West Virginia have 
classified the conservation status of V. parviflorum as critically imperiled (S1), imperiled 
(S2), and vulnerable (S3), respectively [18,20]. This plant is most easily discovered in the 
spring when it reaches peak germination [21]. Unfortunately, V. parviflorum growth sea-
son coincides with wild ramps (Allium tricoccum); furthermore, it has led to the accidental 
ingestion of V. parviflorum, resulting in cardiac and gastrointestinal toxicity [15]. Despite 
inducing toxic effects when ingested by humans, white-tailed deer have been observed to 
consume the entire inflorescences of this species [16,22]. 

2.3. Toxicity 
Cases of Veratrum poisoning are found extensively within the literature; however, V. 

parviflorum has only been implicated in one case of poisoning in the United States [15]. 
Symptoms of Veratrum poisoning generally include nausea, vomiting, diarrhea, hypoten-
sion, bradycardia, hypopnea, paresthesia, or death if medical attention is not received 
[15,23–31,32]. Treatment for Veratrum poisoning is generally symptomatic and supportive; 
it may include the administration of atropine, intravenous fluids, vasopressors, activated 
charcoal, and promethazine [15,23–30,32]. Although digoxin immune Fab has been used 
for treating symptoms of cardiotoxicity similar to those observed in cases of Veratrum poi-
soning, it has been suggested that medical providers should not unnecessarily administer 
DigiFabTM as they do not bind steroidal alkaloids extracted from V. viride [32]. Further-
more, MultigentTM digoxin immunoassay reagent antibodies demonstrated cross-reactiv-
ity with the alkaloids; this resulted in false-positive tests [32]. Table 2 presents a summary 
of treatments for several cases of Veratrum poisoning. 

  

Figure 2. V. parviflorum in situ before blooming (left). In the later stages of growth, a stem protrudes
from the base of the plant and blooms with pale green flowers (right) [19].

2.2. Geographic Location and Herbivory

V. parviflorum is found in the southeastern regions of North America [15–18,20]. This
species grows in rich deciduous forests (800–2030 m) in the mid-Appalachians, including
parts of Alabama, Georgia, Kentucky, North Carolina, South Carolina, Tennessee, Virginia,
and West Virginia [15,16]. The states of Alabama, Kentucky, and West Virginia have
classified the conservation status of V. parviflorum as critically imperiled (S1), imperiled
(S2), and vulnerable (S3), respectively [18,20]. This plant is most easily discovered in the
spring when it reaches peak germination [21]. Unfortunately, V. parviflorum growth season
coincides with wild ramps (Allium tricoccum); furthermore, it has led to the accidental
ingestion of V. parviflorum, resulting in cardiac and gastrointestinal toxicity [15]. Despite
inducing toxic effects when ingested by humans, white-tailed deer have been observed to
consume the entire inflorescences of this species [16,22].

2.3. Toxicity

Cases of Veratrum poisoning are found extensively within the literature; however, V.
parviflorum has only been implicated in one case of poisoning in the United States [15].
Symptoms of Veratrum poisoning generally include nausea, vomiting, diarrhea, hypoten-
sion, bradycardia, hypopnea, paresthesia, or death if medical attention is not received [15,23–32].
Treatment for Veratrum poisoning is generally symptomatic and supportive; it may include
the administration of atropine, intravenous fluids, vasopressors, activated charcoal, and
promethazine [15,23–30,32]. Although digoxin immune Fab has been used for treating
symptoms of cardiotoxicity similar to those observed in cases of Veratrum poisoning, it has
been suggested that medical providers should not unnecessarily administer DigiFabTM as
they do not bind steroidal alkaloids extracted from V. viride [32]. Furthermore, MultigentTM

digoxin immunoassay reagent antibodies demonstrated cross-reactivity with the alkaloids;
this resulted in false-positive tests [32]. Table 2 presents a summary of treatments for
several cases of Veratrum poisoning.
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Table 2. A summary of several cases of Veratrum poisoning, including the causative plant, symptoms,
and treatment.

Veratrum spp. Ingested Symptoms Treatment References

V. parviflorum Nausea, vomiting, hypotension, and
bradycardia.

Antiemetics, intravenous fluid
resuscitation, and digoxin

immune Fab.
[15]

V. viride

Nausea, vomiting, diaphoresis,
lightheadedness, bilateral

retrobulbar headache, leg spasms,
hypotension, bradycardia, paresthesia,
dyspnea, and sluggishly reactive 2–3

mm pupils.

Intravenous fluid resuscitation,
atropine, promethazine, and

dopamine infusion.
[23,24,26,32]

V. album

Nausea, vomiting, headache, diarrhea,
bradycardia, dizziness, paresthesia,

blurred vision, abdominal pain,
clouded consciousness, pyrosis,

atrioventricular dissociation, and death.

Activated charcoal, antiemetics,
intravenous fluid resuscitation,

thiethylperazine, atropine,
prednisolone, hydrocortisone,

tocopherol, unithiol, and digoxin
immune Fab.

[25,27–31]

The cardiotoxic effects from consuming Veratrum spp. are primarily due to the steroidal
alkaloids produced by the plant [33]. These steroidal alkaloids are present throughout the
plant; however, the roots and rhizomes contain higher concentrations than the leaves [31,34].
Veratrum steroidal alkaloids are recognized for their tendency to bind to the type 2 receptor
site of voltage-gated sodium ion channels in vertebrate organisms [33,35]. Once bound,
the resting membrane potential is depolarized, causing excitable membranes to fire repet-
itively [33,35,36]. Symptoms including bradycardia and hypotension are caused by the
alkaloids interacting with cardiac receptors in the left ventricle posterior wall and the
baroreceptor area of the coronary sinus; while depolarization in the vagus nerve can induce
bradycardia, hypotension, and dyspnea [33,37]. Additional symptoms resulting from depo-
larization of the nerve cells may comprise of paresthesia, numbness, and vomiting [33]. The
triad of symptoms, including bradycardia, hypotension, and dyspnea, caused by Veratrum
poisoning is referred to as a Bezold–Jarisch reflex [6,33,38,39].

Veratrum steroidal alkaloids are recognized as antagonistic to the Hedgehog signal-
ing pathway (Figure 3) [40–42]. In the late 1950s, sheep herders in the south-central and
southwestern alpine meadows of Idaho observed that 1–25% of their lambs were born
with cyclopean-type developmental defects [43]. These malformations were originally
thought to be congenital; however, further investigations revealed that they resulted from
pregnant ewes feeding on V. californicum between the 10th and 15th days of gestation [43,44].
The Veratrum steroidal alkaloids cyclopamine, jervine, cycloposine, and veratrosine were
identified as the causative teratogenic agents [45]. Veratrum steroidal alkaloids exert ter-
atogenic effects via antagonism of the Hedgehog signaling pathway by directly binding to
the transmembrane protein Smoothened (Smo) [4,40]. The binding of the small molecule
to Smo takes place in the extracellular pocket of Smo, inhibiting activation by membrane
sterols [46].
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Figure 3. Schematic of the Hedgehog signaling pathway. In the absence of Hedgehog (Hh) ligands
(left), Patched (PTCH) inhibits the G protein-coupled receptor, SMO. Protein kinase A (PKA) phos-
phorylates glioma-associated (Gli) transcription factors, which then undergo proteolytic cleavage
from the suppressor of fused (SuFu) to generate the repressor form (Glir). Glir hinders transcription
of the Hh genes and turns the pathway off. In the presence of Hh ligands (right), PTCH is bound
by the Hh ligand, resulting in the phosphorylation of SMO. Gli transcription factors dissociate from
SuFu and generate the activator form (Glia). Glia promotes the transcription of the Hh genes and
turns the pathway on. In the presence of a Hh pathway inhibitor such as cyclopamine, SMO will
remain inactivated and PKA will phosphorylate Gli transcription factors; thus, this will generate the
Glir that inhibits transcription [46]. (Graphic created with BioRender.com.)

2.4. Phytochemistry

There is a lack of published information regarding the steroidal alkaloid content in V.
parviflorum. Currently, only four alkaloids have been identified in an extract of V. parviflorum
root and rhizome [15]. The four alkaloids, including cyclopamine, veratramine, verazine,
and veratridine, are not novel to the Veratrum genus and have been investigated for a
variety of bioactive properties. Challenges to the structural elucidation of Veratrum steroidal
alkaloids are largely due to the complexity of the molecules and presence of isomers. Many
alkaloids cannot be differentiated by chemical formula and require full characterization,
unless a commercially available standard can be purchased. A variety of instrumentation
may be used to identify the structures of unknown steroidal alkaloids, including nuclear
magnetic resonance (NMR) spectroscopy, infrared spectroscopy, ultraviolet spectroscopy,
and liquid chromatography mass spectrometry [4,14,15,34,41].

2.4.1. Cyclopamine

Cyclopamine (Figure 4a) was isolated from V. grandiflorum in 1965 and was the first
molecule identified to inhibit the Hedgehog signaling pathway [3,4,6,47]. Since its discovery,
cyclopamine has also been identified in V. californicum and V. parviflorum [6,14,15,42,45]. Cy-
clopamine is classified as a jervanine-type steroidal alkaloid with a C-nor-D-homosteroidal
skeleton, where the C and D rings of the steroidal backbone are five- and six-membered
rings, respectively [6]. Jervanine-type alkaloids feature a tetrahydrofuran E-ring that links
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the nitrogen containing F-ring to the D-ring through a spiro-carbon at the cyclic ether [6].
This compound has been observed to inhibit Hedgehog signaling in Shh Light II cells,
inhibit the growth of breast cancer, induce apoptosis in human prostate cancer, increase the
expression of death receptor 5 in tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) resistant gastric cancer cells, induce apoptosis and COX-2 overexpression via PKC
activation in HEL and TF1a human erythroleukemia cell lines, and induce growth inhibition
in human carcinogenesis of cholangiocarcinoma cell lines [42,48–52]. Cyclopamine shows
promise as a human chemotherapy; however, it has limited use due to its low solubility in
aqueous solutions (~5 µg/mL), and instability in acidic conditions [53,54]. To addresses
these limitations, semi-synthetic approaches have been undertaken to increase potency and
solubility [54,55]. The cyclopamine derivative KAAD-cyclopamine included the addition
of a 3-keto,N-aminoethyl aminocaproyl dihydrocinnamoyl (KAAD) functional group to
the F-ring nitrogen; this resulted in a 10-20 fold increase in potency [53,55]. A cyclopamine-
tartrate salt was developed to increase the solubility of the compound in water [53,56]. The
cyclopamine-tartrate salt was more soluble in water at about 5 mg/mL, had a higher LD50
of 62.5 mg/kg of body weight compared to that of cyclopamine, which is 43.5 mg/kg, and
had a lower tumor area value in Krt6a-cre: Ptch1neo/neo mice [56]. Cyclopamine has been
used as a molecular scaffold for the semi-synthetic derivative patidegib (Figure 5), which
is currently undergoing phase III clinical trials. Patidegib, formerly known as saridegib
and IPI-926, has received orphan drug approval for the treatment of nevoid basal cell
carcinoma [5,57].

Patidegib was developed through a series of structure–activity relationship (SAR) stud-
ies focused on the improvement of potency, aqueous solubility, and chemical stability for
cyclopamine [54,58]. In acidic environments, cyclopamine readily converts to veratramine
due to the acid-catalyzed opening of the spirotetrahydrofuran E-ring and aromatization of
the D-ring [54]. Veratramine possesses the ability to cause neurotoxic effects and hemolysis;
thus, removing the potential degradation of cyclopamine, or its analogues, was advan-
tageous to furthering the modification of the cyclopamine skeleton [54,59–61]. Tremblay
et al. (2008) describe two modifications, a D-ring expansion and the formation of an α/β-
unsaturated ketone, to cyclopamine [54]. These modifications not only improved chemical
stability in simulated gastric fluid from 60% remaining to 98% remaining following a 60 min
incubation, but also maintained Hh inhibitory properties equivalent to cyclopamine [54].
This analog (Figure 5b) was administered to CD-1 mice orally and intravenously resulting
in an observed 80% oral bioavailability and elimination half-life of 3.2 h. A successive
study by Tremblay et al. (2009) sought to improve upon the previous study by modifying
the A-ring system [58]. Although the cyclopamine analog developed in 2008 exhibited im-
proved chemical stability and aqueous solubility, the α/β-unsaturated ketone in the A-ring
was observed to be readily metabolized [58]. Through exploration of SAR surrounding the
A-ring, three lead compounds emerged with improved bioactivity and metabolic stability
(Figure 5c–e). A cis-ring fusion system showed an improved bioactivity while the addition
of the sulfonamide (Figure 5c), pyrazole (Figure 5d), and lactam (Figure 5e) functionali-
ties increased metabolic stability. All three lead compounds outperformed the previous
analog (Figure 5b); however, the sulfonamide containing analog, now known as patidegib,
outperformed the other compounds regarding efficacy and pharmacokinetics [58].
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2.4.2. Veratramine

Veratramine (Figure 4b) has been identified in V. parviflorum, V. viride, V. oxysepalum,
V. nigrum L., V. californicum, and V. grandiflorum [15,42,62–65]. Similar to cyclopamine,
veratramine contains a C-nor-D-homosteroidal skeleton; however, it is further categorized
as a veratramine-type alkaloid [6]. In comparison to jervanine-type alkaloids, those of
the veratranine-type feature an aromatized D-ring and lack a tetrahydrofuran E-ring that
connects the piperidine ring to the D-ring. Veratramine is a lipid-soluble alkaloid that
exhibits a range of bioactivities [66]. This alkaloid was observed to cause DNA dam-
age in the cerebellum and cerebral cortex of mice in a dose-dependent trend through
the generation of reactive oxygen species; moreover, it inhibited Hedgehog signaling in
Shh light II cells, reduced the growth, proliferation, and migration of the PC-3 human
metastatic prostate cancer cell line, and induced autophagy-mediated apoptosis by in-
hibiting PI3K/Akt/mTOR signaling in HepG2 cells [14,42,66–69]. One study regarding
the metabolism of veratramine in male Sprague–Dawley rats suggested that elimination
of the alkaloid primarily occurred through phenyl mono-oxidation, hydroxylation, and
methylation [66]. The phenyl-oxidation metabolite of veratramine was proposed to lead to
the formation of reactive oxygen species that oxidize DNA and proteins [66].

2.4.3. Verazine

Verazine (Figure 4c) is a precursor to steroidal alkaloids, including cyclopamine and
veratramine, found across the Melanthiaceae and Solanaceae plant families [6,15,70–74]. This
compound is classified as a verazine-type steroidal alkaloid in the cyclopentanophenan-
threne skeleton ring system [6]. The cyclopentanophenanthrene skeleton features a ring scaf-
fold typical of cholesterol, where the C-ring and D-ring are six- and five-membered, respec-
tively [6]. Verazine-type alkaloids are differentiated from additional cyclopentanophenan-
threne skeleton alkaloids by the presence of an imine-containing ring [6]. The importance
of verazine to the biosynthesis of Veratrum steroidal alkaloids has promoted efforts to eluci-
date its biosynthetic production from cholesterol [74]. Augustin et al. identified cholesterol
22-hydroxylase (CYP90B27), 22-hydroxycholesterol, 26-hydroxylase/oxidase (CYP94N1),
22-hydroxycholesterol-26-al transaminase (GABAT1), and 22-hydroxy-26-aminocholesterol
22-oxidase (CYP90G1) as the four enzymes that transform cholesterol into verazine [74].
Although these efforts illustrated how verazine forms, proceeding steps in the biosynthetic
formation of additional steroidal alkaloids remain largely unexplored. Kaneko et al. per-
formed a series of studies that observed the conversion of products within the biosynthetic
pathway; however, the mechanisms in which these conversions take place remain un-
known [75–82]. Verazine has not been studied for potential anticancer properties, however,
the alkaloid does exhibit antifungal and melanogenesis inhibitory properties [72,73]. The
growth of Candida albicans and Trichophyton rubrum was inhibited at minimum inhibitory
concentrations of 6.2 µg/mL and 3.1 µg/mL, respectively [74]. Furthermore, melanogenesis
in B16 F1 mouse melanoma cells were inhibited with an IC50 of <1 µg/mL [72]. Verazine
also showed inhibitory activity for Sc7 yeast; however, it proved to be cytotoxic in an M-109
cell line with an IC50 of 12.5 µg/mL [70].

2.4.4. Veratridine

Veratridine (Figure 4d) has been identified in V. album, V. viride, V. parviflorum, and
Schoenocaulon officinale [15,31,36,83]. This compound is classified as a cevanine-type alkaloid
with a C-nor-D-homosteroidal skeleton [6]. The cevanine alkaloids are defined by the
presence of a six-membered E-ring, being highly hydroxylated, and a hemiketal linkage
between C4 and C9 [6]. This compound is primarily recognized as one of the major alkaloids
contributing to the cardiotoxic effects from Veratrum poisoning [15,27,31,84]. Veratridine
has been identified as an agonist of voltage-gated sodium ion channels [85]. The compound
binds to the type 2 receptor of voltage-gated sodium ion channels, leading to membrane
depolarization and repetitive firing of the nerve [33,35,36,85]. Unlike cyclopamine and
veratramine, veratridine has not been observed to inhibit Hedgehog signaling through
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the antagonism of Smo. Belgacem and Borodinsky used veratridine to study the effects of
a Ca2+ spike on Gli transcriptional activity [86]. Veratridine selectively inhibits voltage-
gated Na+ ion channels, resulting in an increase of Ca2+ spike activity and diminished
Gli levels; in turn, this downregulates Sonic hedgehog (Shh) signaling [86]. In contrast, if
voltage-gated Na+ and Ca2+ ion channels were blocked, Gli transcriptional activity would
increase, resulting in the upregulation of Shh signaling [86]. These results suggested that
Shh signaling may be selectively regulated by a Veratrum steroidal alkaloid in mechanisms
other than Smo antagonism.

3. Conclusions

Veratrum spp. have been investigated for their potential to inhibit the growth of cancers,
such as basal cell carcinoma and acute myeloid leukemia, resulting from aberrant activation
of the Hedgehog signaling pathway. Although species including V. viride provide precedent
for the phytochemistry of V. parviflorum, only four alkaloids (cyclopamine, veratramine,
verazine, and veratridine) with known bioactivities have been identified in V. parviflorum.
However, over forty-three prominent peaks can be observed in the chromatogram of its
ethanolic extract [15]. A combined effort to characterize these unknown alkaloids and
assess their capability to antagonize Hh signaling may yield a compound suitable for
further study.

Although these compounds have undergone extensive study over the last century,
there are gaps in current research that limit the development of Veratrum steroidal alkaloids.
Few alkaloids may be found in online databases with up-to-date spectral data. With
each Veratrum spp. containing >100 alkaloids and approximately 20% of those alkaloids
receiving full characterization, reducing the likelihood of repeated discovery would make
the natural product drug discovery process more efficient. Lu et al. utilized ITS2 sequence
and metabolite profiling of Veratrum steroidal alkaloids to distinguish species [87]. A
continuation of such efforts may prove fruitful for the rapid identification of alkaloids
within Veratrum biomass extracts. An additional deficiency in current Veratrum research
is with respect to the biosynthesis of the structurally complex alkaloids. There may be
a demand in the future for low-cost production of cyclopamine if the semi-synthetic
drug patidegib receives full approval by the FDA. The chemical synthesis of cyclopamine
is relatively complex and low yield. Giannis et al. reported a diastereoselective and
biomimetic synthetic procedure for cyclopamine with over twenty steps and a 1% overall
yield [88]. Furthermore, efforts to cultivate Veratrum proved challenging due to the slow
growth rate, temperature requirements, and low germination rates [6]. Only four enzymes
that catalyze the biosynthesis of cyclopamine have been characterized, leaving the majority
of the pathway unknown [74]. Next-generation sequencing technology has been applied
to V. nigrum to identify candidate genes involved in the biosynthesis of the Veratrum
steroidal alkaloid jervine [89]. Such technologies may be beneficial for works dedicated to
cyclopamine biosynthesis.
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