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Abstract

Correct decision making is fundamental for all living organisms to thrive under environmen-

tal changes. The patterns of environmental variation and the quality of available information

define the most favourable strategy among multiple options, from randomly adopting a phe-

notypic state to sensing and reacting to environmental cues. Cellular memory—the ability to

track and condition the time to switch to a different phenotypic state—can help withstand

environmental fluctuations. How does memory manifest itself in unicellular organisms? We

describe the population-wide consequences of phenotypic memory in microbes through a

combination of deterministic modelling and stochastic simulations. Moving beyond binary

switching models, our work highlights the need to consider a broader range of switching

behaviours when describing microbial adaptive strategies. We show that memory in individ-

ual cells generates patterns at the population level coherent with overshoots and non-expo-

nential lag times distributions experimentally observed in phenotypically heterogeneous

populations. We emphasise the implications of our work in understanding antibiotic toler-

ance and, in general, bacterial survival under fluctuating environments.

Author summary

While being genetically the same, a population of cells can show phenotypic variability

even under homogeneous environments. Often advantageous under heterogeneous envi-

ronments, this phenotypic heterogeneity is highly relevant in the studies of antibiotic resis-

tance evolution and cancer resurgence. Numerous theoretical models exist applying a

simple model of phenotypic switching. Experimental measurements on phenotypic het-

erogeneity have increased in precision over the past decade, and the simple models are

inadequate to explain the new observations. In this paper, we explore the role of cellular

memory as a crucial component of phenotypic switching. We see that memory helps

account for the hitherto unexplained observations and fundamentally extend our under-

standing of phenotypic heterogeneity.
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Introduction

In an ideal world, living organisms would be able to adapt instantly and reliably to changing

environmental conditions to maximise their instantaneous performance. However, conditions

may change abruptly and unpredictably, making it ineffective to mount a specific rapid

response. Also, some responses require the synthesis of complex molecules (secretion systems

or capsules in bacteria) or entering a physiological state (dormancy) that cannot be reverted

instantaneously, if need be. Switching to a new phenotype may thus commit the cell to a

response that lasts for a specific timescale different from the duration of the changing environ-

ment. Besides phenotypic switching, diversity in response rates can result in intricate patterns

of phenotypic heterogeneity. We postulate that instantiating memory, i.e. some form of mech-

anistic regulation of the time spent in a state before switching to another, will affect population

composition, size and ultimately fitness. While classical models of phenotypic heterogeneity

use simple on-off switches, recent results stemming from accurate, modern experimental

methods require us to delve deeper into the dynamics. Here we provide a first step towards a

more realistic theoretical framework for phenotypic switching.

When environmental fluctuations show stereotypical patterns, unicellular organisms may

harness this temporal information to adjust their mode of phenotypic adaptation to match, or

even anticipate, environmental fluctuations [1]. Such strategies can be embedded in genetic

regulatory networks [2, 3] or arise from epigenetic phenotypic switches [4, 5]. These forms of

fitness optimization by associative learning can arguably be assimilated to memory-based pro-

cesses [6, 7]. Far from being a phenomenon involving cognition or learning, memory in bac-

teria may emerge as a component of phenotypic heterogeneity [8–12]. In homogeneous

environments, non-genetic individuality can arise through fluctuations in the concentration

of signaling molecules during transcriptional bursts [13], unequal partitioning at cell division

[14] or via other epigenetic mechanisms [15–19]. When these events operate on molecules

involved in ultrasensitive responses, they open the possibility that a population of genetically

identical cells cultivated in homogeneous environment might split into two (or more) sub-

populations of cells exhibiting qualitatively different phenotypes, often characterized by the

on-off expression switch of some genes [20]. Numerous studies have identified bimodal distri-

butions of gene expression levels in a variety of organisms, and it was shown that such ‘in-

built’ mechanisms for phenotypic variation help bacterial populations adapt to harsh environ-

ments [19, 21–23].

Nevertheless, in most cases, the conditions and the dynamics at which cells alternate

between different phenotypic states are still obscure. If switching from one phenotype to the

other only relies on one stochastic event (that typically follows a Poisson process), one can pre-

dict that residence time in each phenotypic state should be exponentially distributed [24]. This

hypothesis underpins a large body of theoretical work dealing with the evolution of phenotypic

heterogeneity in bacteria [22, 25–27]. But this constant phenotypic switch, however attractive

for its modeling simplicity, is not a generic model when approaching the problem of intergen-

erational memory. For example, it is inadequate when explaining phenomena such as broad

time-lag distributions and both over- and undershooting behaviour of specific phenotypes

observed in bacteria or eukaryotic organisms [4, 28, 29]. Recent technological developments

now allow measuring actual switching rates and phenotypic residence times of individual cells

grown in a stable environment. By studying the motility/chaining phenotypic switch in Bacil-
lus subtilis, Norman et al. [30] showed that residence time in the motile state was exponentially

distributed, whereas it followed a gamma distribution in the chaining state. Similar observa-

tions of non-exponentially distributed residence times are observed for cells exiting lag phases

[4, 29]. Explaining these behaviours at the molecular level requires considering the entire
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molecular network controlling the switch and its cellular context. For example, excitable gene

regulatory networks can display activity pulses of stereotyped duration [31]. In the case of the

B. subtilis motility/chaining switch, the high-affinity binding of two proteins forming an inac-

tive complex, coupled to their dilution at each cell division, explain the timed pulses of chain-

ing-associated gene expression [32]. In this context, memory can thus be defined as the ability

of unicellular organisms to track the time already spent in a given phenotypic state. This sensi-

tivity allows cells to adjust their switching rates according to some ‘internal clock’ so that the

time spent in this state follows a gamma distribution [24]. In contrast, cases where the proba-

bility of switching remains constant with time, are deemed memory-less.

Working within this conceptual framework [24, 30], we propose a mechanistic approach to

model memory that does not abdicate the simplicity of earlier work. It would be possible to

directly implement memory by preselecting an appropriate non-exponential waiting time dis-

tribution. However, that does not help decipher a mechanism to how the distribution material-

ises. Hence, first, we derive deterministic dynamics from first-principles at the level of

individual cells and track the behaviour of a cell population emerging from different switching

genotypes. Using this model, we can consistently explain the experimental observation of

over/undershoots and point to a possible way to understand wide time (non-exponential) lag

distributions. Then, paying particular attention to the characterisation of transient states of the

system, we discuss their potential consequences on the fitness of a lineage in the presence of

fluctuating environments. Significantly, fluctuations across stressed and relaxed environments,

as in specific antibiotic treatment regimes, highlight the applicability of our approach.

Results

Building memories

We simulate the ecological dynamics of isogenic populations of unicellular organisms that can

exist in two different phenotypic states: ‘on’ and ‘off’. Switching from ‘off’ to ‘on’ is unidirec-

tional and stochastic and occurs at rate μ. After turning ‘on’, cells cascade via a deterministic,

multi-step process through n compartments, eventually returning to the ‘off’ phenotype. These

compartments represent internal molecular substates (potential), that may correspond to vari-

ous biological processes, such as the dilution of cytoplasmic or membrane proteins [9, 11, 14,

32], or the sequential realization of independent molecular reactions collectively required to

trigger a response [33–35].

Immediately after turning ‘on’, cells have the highest potential. While retaining the ‘on’

state, cells gradually lose potential by transitioning through the successive compartments at a

leaching rate of �. In our model, this movement reflects a decrease in protein concentration in

a simplistic manner, whereas more complicated forms can be formulated (with bumps or pla-

teaus on the landscape, see S1 Text). Cell flow through compartments (i = n, . . ., 1) is a repre-

sentation of phenotypic dynamics, while growth (cell birth and death) dynamics occur

separately at rates bi and di, respectively. Admittedly, birth and death can themselves lead to

cell movement from one compartment to another (via symmetric or asymmetric division of

the protein concentration in the daughters) [36]. We have explored such a model where cells

differentiate into the downstream compartments separately and is available online on GitHub.

However, to sort out the effects of leaching from growth and keep the model simple, in this

manuscript, we have not included such scenarios.
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Fig 1 visualizes this compartmental model for n = 4. The reactions in which an individual

cell Xi in compartment i is involved are then,

Xi !
bi Xi þ Xi

Xi !
di ⌀

Xi !
� Xi� 1; i ¼ n; . . . ; 1

X0 !
m
Xn;

ð1Þ

These reactions have a deterministic counterpart in the following linear system of differential

equations,

_x0 ¼ ðb0 � d0Þx0 � mx0 þ �x1

_xn ¼ ðbn � dnÞxn � �xn þ mx0

_xi ¼ ðbi � diÞxi � �xi þ �xiþ1;

ð2Þ

which describe the time evolution of the abundances xi of cells in the compartments with i = 1,

. . ., n − 1. We envisage that once a cell is in an ‘off’ state, it stays ‘off’ until an external or inter-

nal perturbation of sufficiently large magnitude switches it back ‘on’. The origin of perturba-

tions may be abiotic or biotic [21, 37]. For n = 1, we recover the classically studied memory-

less switch. In what follows, we consistently compare this more classic model with two states

and two compartments, which shows no memory according to our definition, with the case of

our interest n> 1, i.e. two states yet multiple ‘on’ compartments, which can be shown to gen-

erate a form of memory that correlates with the magnitude of n. In the subsequent sections, we

compare the performances of the two models (n = 1 versus n> 1) with particular attention to

the transient phase. We ensure that the models can be considered equivalent from the point of

view of long term properties by tuning the � parameter accordingly.

However, we end this section by showing how our model meets the minimal requirement

of producing memory. Tracking the amount of time a cell spends in a particular compartment

makes this evident. Following the trajectories of individual cells, qualitatively different distri-

butions of the time spent in the ‘on’ state emerge as the number of compartments n increases.

In particular, departure from an exponential distribution, the hallmark of memory [30] (Fig

1B) in this context, is observed. For a constant leaching rate and negligible growth parameters,

the number of compartments acts like a timer (a deterministic time as termed in [30] for the

residence time in the motile state). The overall density function can be captured by a combina-

tion of multiple exponential waiting times which results in a gamma distribution with a shape

parameter given by the memory size n (Fig 1B). This shows that our model satisfies the mini-

mal requirement of generating memory as a deviation from an exponentially distributed wait-

ing time before switching to ‘on’. As the magnitude of this deviation relates directly to n, we

conveniently refer to this parameter as the length or size of memory. Codes for implementing

our algorithm as well as for reproducing the relevant figures are available at GitHub.

Asymptotic properties

The asymptotic properties of the model were already well described and do not represent the

primary focus of our study [30]. However, to make further progress, we recapitulate them

briefly. As the more classic two-state two-compartment model, our model is linear and Mar-

kovian: the current system state entirely determines cell dynamics. The equilibrium cell distri-

bution in the compartments can be recovered from the dominant eigenvector of the constant

matrix that captures the system in Eq 2 (S1 Text). The corresponding eigenvalue corresponds
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Fig 1. Growth and phenotypic dynamics of ‘off’ and ‘on’ cells. (A) The growth dynamics of cells is given by a birth

process and a death process. A cell divides into two cells at rate bi and dies at rate di. The index i refers to the phenotypic

state of being ‘off’ or ‘on’. The ‘off’ cells are the cells in the resting state which is the zeroth compartment i = 0. Due to a

trigger (an internal constant or a dependence on frequency/density/environmental state) the cells can be turned ‘on’ at

rate μ and they jump to the nth compartment (here n = 4). The cells do not stay in the ‘on’ state but slowly decay back to

the ‘off’ /resting state via passaging at rate � through a number of intermediate phenotypic stages, the different substates

of the ‘on’ state. The number n of compartments in the ‘on’ state modulates memory. With n = 1, there is zero memory,

while for n> 1 memory increases in the number of compartments, i.e. the increase is here understood as the increase in
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to asymptotic population growth. Under complete symmetry in the growth dynamics (bi = b
and di = d) we can get a simple, closed-form expression for this equilibrium for any number n
of compartments. We begin with a focus on this symmetric case, where the asymptotic growth

rate b − d of the population is independent of the number of compartments. The assumption

is relaxed further in the manuscript. Our interest is in the effect of changes in the leaching rate

� and memory n. We observe that as � decreases or n increases, both the time a cell spends in

the ‘on’ state and the equilibrium fraction of ‘on’ cells increases (see S1 Text). For a small num-

ber of compartments or faster transition through ‘on’ states, the system is dominated by ‘off’

cells.

Transient properties

Bacteria in natural environments are frequently exposed to changing conditions. These fluctu-

ations can often keep populations from reaching evolutionary or ecological steady states, and

transient dynamics become crucial. Although less amenable to analytical treatment, we shall

focus on them requiring greater reliance on computational exploration. While under constant

switching (μ), a decrease in � is qualitatively equivalent to an increase in n in terms of asymp-

totic properties (i.e. the equilibrium cell distribution and the time spent in either state), this

equivalence breaks down when considering transient dynamics. As the number of compart-

ments increases, the frequencies of the ‘on’ and ‘off’ cells do not approach their equilibrium

values directly. Instead, in the case of ‘on’ cells, the frequencies overshoot and undershoot, in

the case of ‘off’ cells. The frequency dynamics oscillates when approaching equilibrium (Fig

2A).

Interestingly, overshooting and oscillations in the transients of cell frequencies as seen in

our model recapitulate observations in cancer cells dynamics [28] and in bacterial growth rate

recovery following antibiotic treatments [38]. This transient effect directly relates to the length

of memory. While modelling the ‘off’ and ‘on’ states as two compartments would appear more

parsimonious, it falls short of replicating empirical results. Adding compartments intensifies

transients, an effect attributable to the spectrum of the matrix model underlying Eq 2 (see S1

Text). The presence of multiple compartments introduces oscillations due to complex sub-

dominant eigenvalues, absent when there is a single ‘on’ compartment. Increasing the number

of compartments also magnifies the influence of complex subdominant eigenvalues on cell

dynamics, as the real parts of such eigenvalues get closer to the real part to the dominant eigen-

value. Importantly, this analysis is possible while preserving linear dynamics and, thus, a form

of simplicity. This, we suggest, would be lost if non-exponentially distributed waiting times

were coded directly into a two-state two-compartment model via the introduction of non-lin-

ear terms in a coupled system of two differential equations.

Cells switch back to the ‘off’ state after spending a certain amount of time in the ‘on’ state.

The presence of multiple compartments extends memory and affects population composition

the average time spent in the ‘on’ state relative to the average of the exponentially distributed time spent in this state

when n = 1. Thus we intend to make use of this mechanistic interpretation of memory instead of an assumption of a

separation between the amount of time a cell spends in ‘on’ or ‘off’ state. (B) Distribution of times a cell stays ‘on’ before

switching ‘off’. Starting with a single cell in the completely ‘on’ state we ask how long it takes for the cell to reach the ‘off’

state. Assuming extremely low replication and death rates bi = di = 10−6, the process is governed by the leaching rates � =

0.3. For 1, 2 and 4 ‘on’ compartments we start the Gillespie simulation with one cell in the first ‘on’ state. Once the cells

reaches the ‘off’ state we stop the simulation. The normalised histogram of waiting times is then plotted. The probability

density function of a gamma distribution with the shape parameter given by the number of ‘on’ compartments and the

rate � = 0.3 provides the theoretical estimates (black lines) for the simulated 1, 2 and 4 ‘on’ compartments. Increasing the

memory, (n = 6, 8 and 10) flattens the distribution of the time spent in the ‘on’ state.

https://doi.org/10.1371/journal.pcbi.1009431.g001
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as well as population density when evaluated at a specific time-point (Fig 2A). To capture the

transient dynamics when increasing memory, we estimate the peak-to-peak amplitude (the

difference between the largest overshoot and undershoot in the frequency of ‘on’ cells) (Fig

2B). Typically we see a monotonic increase in the relationship between the amplitude and

memory length. The relationship wanes as the equilibrium value of ‘on’ cells approaches 1 due

to boundary effects Fig 2B). More generally, the magnitude of the over/undershoot depends

on the initial conditions and equilibrium of the system.

Environmental variation

While cell lineages can stochastically switch phenotypes even in static conditions [39], such

behaviour might be evolutionarily advantageous under fluctuating environments [40]. As the

Fig 2. Transient dynamics of multi-state memory. (A). Multi-state memory and overshoots. Assuming full symmetry

in growth dynamics between the compartments (bi = b = 1.0 and di = d = 0.98) and a switch rate of μ = 0.2 and � = 0.5

we show the population dynamics as well as the population composition for fixed time period. The instantaneous

growth rate of the two population with different memory sizes is the same g = 1/tmax log(Nfinal/Ninitial). However, with

a larger memory, the fraction of ‘on’ cells in the final population is higher. On the way to the equilibrium, multiple

compartments result in overshoot dynamics as the ‘on’ cells first need to seed them while depleting the ‘off’ state. (B).
Transient magnitude and number of compartments. To characterise the oscillations, we plot the peak-to-peak

amplitude (the amplitude between the first peak, i.e. overshoot, and the second peak, i.e. undershoot) against the

equilibrium value of ‘on’ cells as the number n + 1 of compartments increases (n ‘on’ compartments and one ‘off’

compartment, gray numbers). The equilibrium fraction of cells in the ‘on’ state is given by nμ/(� + nμ) (S1 Text).

Keeping μ fixed, the peak-to-peak amplitude is obtained by varying the leaching rate � and by varying the number n of

compartments in the multi-compartment system, which has constant �. As the equilibrium fraction of ‘on’ cells

approaches unity, boundary effects prevail, i.e. transient frequency cannot exceed 1, and oscillations’ amplitude gets

compressed. The right panel shows the temporal dynamics of ‘on’ cells, all leading to the same equilibrium of 0.8 but

for different leaching rate � (vertical line in the left panel). The corresponding memory sizes are n = 5, 15, 25, 35

respectively. Increasing the number of compartments leads to more pronounced oscillations, not observed in the

system with a single ‘on’ compartment regardless of the value of � and the equilibrium value of ‘on’ cells. Codes for

generating these panels and the general algorithm are available on GitHub.

https://doi.org/10.1371/journal.pcbi.1009431.g002
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environment changes, bacteria can hedge their bets via the well-documented phenomena of

persistence [41, 42], a salient case being bacterial response to antibiotic treatment strategies.

To explore the potential effects of memory on bacterial fitness, we consider the case of per-

sisters when subjected to transient antibiotic exposure. Persistence is a common phenomenon

in bacteria where a subpopulation of bacterial cells does not grow but can survive antibiotic

treatments. Persisters can arise stochastically via epigenetic switching, but environmental con-

ditions (nutrient limitation, high cell densities or antibiotic treatments) can also induce their

formation (‘triggered’ persistence or type I persisters; [37]. We track population composition

and fitness (as proxied by population size) of bacterial lineages under fluctuating environ-

ments, consisting of transient exposure to antibiotics. We assign ‘off’ cells to the ‘normal’ phys-

iological state (i.e. growing in permissive conditions, dying under antibiotic treatment). On

the other hand, ‘on’ cells are persisters (no growth in either environment and tolerant to anti-

biotic treatment; see description of parameters in Fig 3 and example dynamics in S1 Text).

While the leaching rate is kept constant, switching from ‘off’ to ‘on’ is triggered only under

stress. We consider an initial population of ‘off’ cells, representing a stable equilibrium state

under conducive growth conditions.

We subject a growing population of cells to a set of 84 environmental sequences where bac-

teria are exposed to drug treatment sequences (each horizontal line in Fig 3A corresponds to a

different environmental sequence). The total duration of the procedure is kept constant, and

the duration of drug treatment varies, with exposure to the permissive environment before

and after drug exposure (also see S1 Text). Using these environmental sequences, we compute

the fitness of a set of lineages with different memory sizes for each condition. We observe a

non-linear relationship between memory size and fitness (Fig 3B). While there is a general

trend that more memory is beneficial when drug treatment increases, local maxima emerge at

intermediate drug treatment lengths (Fig 4). This effect arises from the trade-off between

Fig 3. Growth performance of lineages with different memory lengths exposed to treatment of varying length. Cell lineages with different memory

sizes (n = (1, . . ., 31) + 1) are temporarily exposed to antibiotic treatment. Each row in the grid is a sequence of seasons from left to right. Seasons with

no-treatment (white) and treatment (black) where each lasts for one unit of time. All sequences begin at t = 0 with 1000 ‘off’ cells and last until tmax =

165. Under the no-treatment season the growth rate of ‘off’ cells is boff − doff = 1 − 0.98 = 0.02 and the switch is inactive μno treatment = 0. As cells

encounter the treatment season (black squares), the switch is triggered, μno treatment = 0.2 and the death rate of ‘off’ cells increases, boff − doff = 1 − 1.02 =

−0.02. The ‘on’ cells are produced but they do not grow, bon − don = 0. The ‘on’ cells leach through the memory compartments at rate � = 0.25. At the end

of the sequence (t = 165), the absolute growth rate, gm = log (Nmemory(tmax)/Nmemory(0)), was computed. A memory-less process (two compartments with

n = 1 and an appropriate �) can generate the same stable fraction of ‘on’ cells under sustained treatment. We subtract the absolute growth rate of such a

memory-less lineage gmless = log (Nmless(tmax)/Nmless(0)) from gm to estimate the relative fitness of having memory r = (gm − gmless)/tmax.

https://doi.org/10.1371/journal.pcbi.1009431.g003
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producing a high proportion of ‘on’ cells (occurring with higher memories) and exiting rapidly

from the ‘on’ state when the environment switches from drug to permissive (occurring with

smaller memories). For extended treatment lengths, longer memory in such cases staves off an

inevitable population collapse.

Memory is coupled to the transients and the final frequency of ‘on’ cells observed at the end

of each sequence. To disentangle the respective effect of these two factors, we compared the fit-

ness of a lineage with memory (n> 1) to a lineage without memory (n = 1). To make lineages

comparable, the memory lineage has a different leaching rate which results in the same equilib-

rium ‘on’ frequency under sustained treatment Fig 3C. The relative growth rate is the differ-

ence between the growth rate of a lineage with memory and without memory following http://

myxo.css.msu.edu/ecoli/srvsrf.html. When the treatment length is short, longer memory is dis-

advantageous as compared to larger leaching rates. The disadvantage arises because the cells

stay in the ‘on’ state even after the short treatment has elapsed. For intermediate treatment

Fig 4. Lineage adaptation under treatment. Top panels show the effect of memory size on absolute and relative lineage fitness. Each of the lines in the top panels

corresponds to each of the 84 sequences from Fig 3. The colorscheme of the left and right top panels is the same as from Fig 3B and 3C with the 42nd sequence

highlighted in bold. We report the frequency of ‘on’ cells and the population size in the bottom panels. The results are shown for a chosen number of memory sizes (n)

+ 1 (‘off’ compartment). The non-linear relationship between the final ‘on’ cell frequency and the final population size is shown in the last panel as n + 1 ranges from 2

to 32.

https://doi.org/10.1371/journal.pcbi.1009431.g004
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lengths, more memory allows (i) to produce more ‘on’ cells and (ii) longer residual time in the

‘on’ state, then becoming advantageous. However, long residual times corresponding to longer

lag times could conflict with the total sequence length where the fitness is measured. Hence,

very long memory is also not helpful as the cells then take much longer to exit the ‘on’ state

than the sequence length. Thus, we see the presence of local maxima in memories (driven

partly by the absolute fitness of the memoryless lineage, Fig 4). Under lengthy sustained treat-

ment, all lineages are at the ‘on’ equilibrium, and memory length is inconsequential. This anal-

ysis reveals that memory outperforms ‘classical’ memoryless switching against an equal

equilibrium value of ‘on’ cells for a range of conditions.

Discussion and conclusion

Studies on phenotypic heterogeneity and persistence in bacteria have typically relied on mod-

els assuming two distinct cellular states, ‘off’ and ‘on’ with constant switching rates. We have

argued that this assumption hinders us from understanding the rich dynamics observed in

empirical studies. Keeping the two states model while decomposing the ‘on’ state into multiple,

interconnected ‘on’ substates performs better in reconciling observations. The key to this rec-

onciliation is that having more than one ‘on’ state generates memory. In this context, memory

is the ability to revert to ‘off’ while accounting for the time spent in ‘on’ [24].

Multiple ‘on’ states are also implemented in a recent theoretical study studying the optimal

switch time dependence on the likelihood and duration of a hazardous environment [43]. This

study’s overall approach was to look at evolutionary stable states but ignores transient popula-

tion dynamics and stochasticity, an integral component of experimental findings. Our contri-

bution fills this gap. We show that memory, originating from a process going through multiple

substates, appears to explain otherwise anomalous observations.

Take, for example, the time it takes to resume division for a single cell taken out of a toler-

ant population that has just exited a prolonged antibiotic treatment [37]. This duration is the

so-called lag time. Under artificial selection experiments, cells adapt their lag time to match

treatment duration [4, 29] while displaying within-population variability. This variability

increases with the mean lag time (see S1 Text). Initially, this observation seems counter-intui-

tive, as the best strategy would be for all cells to resume growth as soon as the treatment is

over. Moreno-Gámez et al. [29] showed that heterogeneous lag times could promote survival

to transient antibiotic treatments while having a negligible cost on population growth. In these

studies, the lag time was shown to have a gamma distribution, which is not compatible with a

memory-less process of switching from ‘on’ to ‘off’. Our model finds that a cell in any ‘on’ state

will exhibit a gamma-distributed lag time, coherent with observations.

It is possible to study how the lag time evolves in response to treatment likelihood and

length [43]. Our framework, although not tackling this evolutionary problem directly, is sug-

gestive of the fact that the variability in lag times upon which selection can act may potentially

arise through multiple sources: changes in the number of ‘on’ states/compartments, in the

leaching rate, in both or competition between lineages with variable properties of the gamma

distribution. However, for a fuller understanding of the evolutionary forces acting on these

traits, explicit considerations of their potential trade-offs will be required.

In experiments, the details of the growth dynamics often play an essential role. For example,

cells may be first let grow exponentially, then starved into a stationary phase and finally sam-

pled to regrow on abundant, fresh media. In our model, growth dynamics were minimized on

purpose to focus on phenotypic dynamics. Moreover, while sampling from a single ‘on’ com-

partment would produce gamma-distributed lag times, sampling from multiple ‘on’ compart-

ments would result in a lag time that is not gamma distributed, although emerging from a
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combination of different gamma distributions (see S1 Text). Since our model abstracts bacte-

rial populations’ natural growth dynamics, we do not produce a qualitative match between the

experimental data on lag times. To approximate experiments, it may be possible to design a

two-compartment model with different waiting time distributions that recapitulate some of

the properties that we present in this study. However, this would beg to reason the mecha-

nisms resulting in the different distributions. Instead, we aim to postulate a mechanistic pro-

cess that encompasses the internal “to-do” list before switching phenotype as suggested in

[30]. Also, the compartments allow us to mathematically connect the number of ‘on’ states to

the observed transient dynamics quantitatively.

Expressly, the transients of the dynamics can be understood in terms of eigenvalue analysis.

Complex eigenvalues introduce oscillations in the dynamics (S1 Text). Larger memory sizes

correspond to more solutions in the imaginary space, which are reflected in the dynamics with

more oscillations (Fig 2). The magnitude of the effect hinges on how fast cells experience the

memory (leaching rate) and the initial switch rate. For any leaching rate, however, as the mem-

ory increases, the oscillations (captured by the peak-to-peak amplitude) increase but only up

to a limit (Fig 2B). The difference is solely in the fraction of the ‘on’ cells and not the popula-

tion size. The result rests on our assumption of ‘on’ and ‘off’ cells having the same birth and

death rates. Forgoing this assumption would lead to further divergence between the composi-

tion and size of lineages with different memories. Whether fitness depends on the composition

or size of a lineage, memory will bring unique dynamical properties that might impact survival.

The ecological context will set the timing of fitness evaluation, realising Darwinian selection

on lineages (Fig 2).

Phenotypic heterogeneity while advantageous for a lineage [27, 44] can be a nuisance when

population expansion is harmful. Since Hobby and Bigger [41, 42] persisters have been a fly in

the ointment for antibiotic treatment only exacerbated now by the antibiotic crisis. We have

presented the structure of the use of multi-state memory and its application to antibiotic toler-

ance. The persisters, as defined in our case, are a subpopulation of tolerant cells appropriately

defined as “heterotolerant” [37]. While tolerance does not affect minimum inhibitory concen-

tration, the duration of treatment will be crucial for eradicating bacteria. Another application

of our approach could be in understanding the persistence and dormancy mechanisms in can-

cer populations when underlined by phenotypic switching [45]. Quiescent subclones are a per-

sistent problem leading to cancer relapse [46–48]. The subclone population dynamics also

show overshooting [28, 49]. A tunable and evolvable memory could then underlie the mecha-

nisms of dormancy categorised as adaptive response [50]. Thus considering memory brings a

different time-scale that can be exploited for steering evolution to control pathogenic

populations.

Numerous extensions of our approach are possible. For example, we have focused on het-

erogeneity resulting from only environmentally triggered switches, a property observed in sev-

eral experimental models [10, 12, 37, 51]. Alternative switching mechanisms may depend on

the intrinsic properties of the population, such as density or composition. Similarly, the leach-

ing mechanism is predetermined and constant across the compartments. Such processes may

be under the complex, joint control of the organism as well as the environment. Although

detailed experimental characterisation of bidirectional switching behaviours remains rare (due

to technical challenges), we expect that memory-based switching is not an exception.

Oscillations involving excitation and decay can be identified across life. For example, excit-

able genetic switches are found in bacteria [52], belonging to circadian clocks in cyanobacteria

[53], in other non-photosynthetic bacteria [54], in Drosophila [55] and in plants [56, 57]. The

molecular mechanisms identified in these systems point towards a malleable duration of the

oscillations by mutations [52, 58], modifications of the regulatory network [32] or degradation
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and destabilisation of protein complexes [55]. Similar to the external cycling antibiotic stimu-

lus explored in this study, the explicit dependence on external signals, flies’ chronobiology has

been proposed as a tool to understand adaptation to variable environmental conditions. Thus

the adaptive evolution of molecular processes underpinning the oscillations of the excitable

systems such as our model is conceivable.

While theoretical developments are essential, the applied aspect can be further exploited.

Beyond antibiotics and cancer treatment, bioengineering and understanding microbial con-

sortia formation could be informed using our approach. Knowing the memory limitations

(e.g. coming from decay rates of protein complexes) involved in critical oscillatory processes

such as in chronobiology can inform us about the limits of adaptation under extreme environ-

mental events or anthropogenic changes. Especially when harsh environments and time-lags

are of importance, such as in niche construction and the evolution of multicellularity [30, 59].

Understanding gene regulatory networks on a developmental landscape, à la Waddington

[45, 60], poses exponentially complex computational challenges (e.g. the explosion of possible

attractors when considering multiple switches [61] and multiple phenotypes) (as also discussed

in [62]). We show multiple local maxima for memory, which may change depending on the

definition of fitness (population size or composition). Furthermore, this forces us to rethink

our concepts about possible phenotypic states and how they are determined by a plethora of

molecular constructs (see S1 Text for an extended discussion). How epigenetic memory func-

tions over generations would focus on understanding how the phenotypic clock (molecules,

appropriate histone modifications) are inherited. In our model, time, as kept by degrading mol-

ecules, is arbitrary. Inputs from chronobiology could help see how the molecular concentra-

tions and circuits are entrained, resulting in biologically driven growth and leaching dynamics.

Phenotypic heterogeneity forces us to reassess the genotype-phenotype map fundamentally.

Choosing the appropriate phenotypic response to complex and varied environments is possi-

ble via numerous processes such as environmental sensing, epigenetic triggers and controlled

molecular concentrations. Such processes that interpret genetics to a large but finite pheno-

typic space to survive in a possibly infinite environmental space are incredibly relevant for nat-

ural selection. Theories, as described herein, coupled with experiments exploring diverse

environments, will help us elucidate the variety of possible interpreting mechanisms bridging

the genotype-phenotype divide.

Supporting information

S1 Text. Supplementary text for memory shapes microbial populations.

(PDF)
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